Math 112 Final Exam Study Aid

Note.
This study aid is intended to help you review for the final exam. It covers the primary concepts in the course. It is separated into 3 problem sets, each of which contains questions that review concepts covered throughout the semester. Although the final exam will be similar to the study aid, it will not be identical to it. You should also review tests, notes, study aids and homework given during the semester. The formulas at the end of the third problem set will be identical to the formulas given on the final exam.

Problem Set #1

1. Which of the following equations determine y as a function of x?

 (1) $3x + 2y^3 = 10$
 (2) $\sqrt{x-1} + y = 8$
 (3) $2x - y^2 - 7 = 0$
 (4) $3x^2 - xy = 1$

 (A) All of them (B) 1 and 3 only (C) 1, 2 and 4 only
 (D) 1 and 2 only (E) 1 and 4 only

2. If $g(x) = \begin{cases}
1 - 3x & \text{for } x < -1 \\
3 - x^2 & \text{for } x \geq -1
\end{cases}$, what is $g(-3)$?

 (A) 12 (B) 10 (C) -8 (D) -6 (E) None of these

3. What is the DOMAIN of the function $f(x) = 12 - \sqrt{108 - 3x}$?

 (A) $(-\infty, 36]$ (B) $[-108, 108]$ (C) $[36, \infty)$
 (D) $(-\infty, 36) \cup (36, \infty)$ (E) None of these
4. What is the DOMAIN of the function represented by the graph below?

(A) $(-\infty, \infty)$ (B) $[0, \infty)$ (C) $[-1, \infty)$ (D) $(-\infty, -1]$ (E) None of these
For the following TWO questions, use the partial table of values for the function \(y = f(x) \) shown below:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>9</td>
</tr>
<tr>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>-6</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

5. Complete the table above so that \(f(x) \) is an ODD function. The missing values, in order, are:

(A) 0, 6, -9 (B) 0, -6, 9 (C) 0, -\frac{1}{6}, \frac{1}{9}

(D) 0, \frac{1}{6}, -\frac{1}{9} (E) Cannot be determined

6. Complete the table above so that \(f(x) \) is an EVEN function. The missing values, in order, are:

(A) 0, 6, -9 (B) 0, -6, 9 (C) 0, -\frac{1}{6}, \frac{1}{9}

(D) 0, \frac{1}{6}, -\frac{1}{9} (E) Cannot be determined

7. The number of miles per gallon, \(M \), for an experimental engine is given by

\[
M = \frac{2000x}{1000 + x^2} + 5
\]

where \(x \) is the speed of the car in miles per hour, 10 \(\leq x \leq 60 \). Using your calculator, determine the speed that yields the greatest number of miles per gallon.

(A) about 60 mph (B) about 10 mph (C) about 37 mph

(D) about 32 mph (E) There is no maximum
8. Express the area of a rectangle AS A FUNCTION OF ITS WIDTH if the width is 25% of its length. Let L and W represent length and width, respectively.

(A) $A = (0.25W)(W)$
(B) $A = (0.75W)(W)$
(C) $A = (4W)(W)$
(D) $A = 4LW$
(E) None of these

9. The relation that vertically compresses the graph of $y = \sqrt{x}$ and shifts the graph up twenty units is:

(A) $y = \frac{2}{3} \sqrt{x} + 20$
(B) $y = \sqrt{\frac{7}{2} x + 20}$
(C) $y = \frac{3}{4} \sqrt{x} + 20$
(D) $y = 2\sqrt{x} + 20$
(E) None of these

10. You can get the graph of $y = -f(2x)$ by transforming the graph of $y = f(x)$ in the following way:

(A) Compress horizontally and reflect across the x-axis
(B) Compress horizontally and reflect across the y-axis
(C) Expand vertically and reflect across the x-axis
(D) Expand vertically and reflect across the y-axis
(E) None of these
Use the graphs below to answer the next TWO questions.

![Graph of y = f(x)](image1)

This is the graph of \(y = f(x) \)

![Graph of y = g(x)](image2)

This is the graph of \(y = g(x) \)

11. Using the previous graphs, find \((f - g)(3)\).

 (A) 3 (B) 5 (C) 15 (D) 6 (E) Not enough information

12. Using the previous graphs, find \((f \circ g)(1)\).

 (A) 6 (B) 2 (C) 1 (D) 3 (E) None of these

13. Find the equation of the line passing through the points \((2, 1)\) and \((4, 7)\).

 The slope and \(y\)-intercept are:

slope	\(y\)-intercept
(A) 3	(0,7)
(B) \(\frac{1}{3}\)	(0, \(\frac{1}{3}\))
(C) \(\frac{1}{3}\)	(0, \(\frac{5}{3}\))
(D) 3	(0,−5)
(E) None of these	
14. Write \(f(x) = 3x^2 + 60x - 1 \) in standard form. The SUM of the \(x \) and \(y \) coordinates of the vertex is:

(A) \(-473\) (B) 365 (C) \(-365\) (D) 473 (E) None of these

15. Find the vertex of the quadratic function \(f(t) = \frac{4}{7}t^2 - \frac{16}{7}t + 3 \).
 The \(y \)-coordinate of the vertex is:

(A) \(\frac{1}{2}\) (B) \(\frac{5}{7}\) (C) \(\frac{6}{7}\) (D) 1 (E) None of these

16. A horticulturist has determined that the number of inches a young oak tree grows in one year is a function of the annual rainfall, \(r \), given by \(g(r) = -0.01r^2 + 0.1r + 2 \). What is the maximum number of inches a young oak can grow in a year? The maximum number of inches is:

(A) less than 1 (B) between 1 and 2 (C) between 2 and 3
(D) between 3 and 4 (E) between 4 and 5

17. Find the following sum: \(\sum_{k=3}^{5} (4k - 7) \)

(A) \(-1\) (B) 18 (C) 25 (D) 27 (E) None of these

18. What is the degree and leading coefficient of

\[f(x) = -3x^2 + 6x^4 - 4x^5 + 7 \]

(A) degree is 2, leading coefficient is \(-3\)
(B) degree is 11, leading coefficient is \(-4\)
(C) degree is 5, leading coefficient is \(-4\)
(D) degree is 5, leading coefficient is 4
(E) None of these
19. Which of the following MUST be true?

(1) A polynomial of degree 4 has four unique zeros.
(2) A polynomial of degree 5 has at least 1 real zero.
(3) A polynomial of degree 2 has at least 1 rational zero.

(A) 1 only (B) 2 only (C) 3 only
(D) 1 and 2 only (E) 1 and 3 only

20. Which of the following could be the equation of the polynomial \(P(x) \) graphed below?

(A) \(P(x) = (x - 4)^2(x + 3)^2(x - 1) \) (B) \(P(x) = (x + 4)^3(x - 3)(x + 1) \)

(C) \(P(x) = -(x + 4)^2(x - 3)(x + 1)^3 \) (D) \(P(x) = (x - 4)^2(x + 3)(x + 1) \)

(E) \(P(x) = -(x - 4)^2(x + 3)(x - 1)^3 \)

21. Find all the real zeros of \(f(x) = x^3 + 5x^2 + 7x + 2 \). The LARGEST real zero is:

(A) \(\frac{-3 + \sqrt{5}}{2} \) (B) \(-0.5\) (C) \(\frac{-3 + \sqrt{13}}{2} \)

(D) \(\frac{-3 + \sqrt{7}}{2} \) (E) \(-2\)
22. Which of the following statements is/are equivalent to: “\(x + 3\) is a factor of the polynomial \(f(x)\)”?

(1) \(x = 3\) is a solution of \(f(x) = 0\)
(2) \(x = -3\) is a zero of \(f(x)\)
(3) \((-3, 0)\) is an \(x\)-intercept of \(f(x)\)

(A) 1 only (B) 2 only (C) 3 only
(D) 1 and 3 only (E) 2 and 3 only

23. What is the remainder when \(5x^3 - 6x^2 + 3\) is divided by \(x^2 - x + 4\)?

(A) \(-21x + 7\) (B) 7 (C) \(21x - 7\)
(D) \(-14x\) (E) None of these
24. The graph below represents $y = C(a)^x$. Find the values of C and a.

![Graph showing exponential decay]

(A) $C = -3, a = 2$
(B) $C = -3, a = 3$
(C) $C = 2, a = -2$
(D) $C = 2, a = -3$
(E) $C = \frac{1}{3}, a = -2$

25. If $f(x)$ is a one-to-one function, and $f(2) = 7$, then which of the following CANNOT be true?

(A) $f(7) = 2$
(B) $f^{-1}(7) = 2$
(C) $f^{-1}(5) = 3$
(D) $f(-2) = 4$
(E) $f(-2) = 7$

26. Which of the following functions is/are one-to-one?

(1) $f(x) = \frac{6}{x - 13}$
(2) $g(x) = 0.05(x + 3)$
(3) $h(x) = \sqrt{3x^2 - 40}$

(A) 2 and 3 only
(B) 1 and 2 only
(C) 1, 2 and 3 only
(D) 1 and 3 only
(E) None are one-to-one
27. Of the functions graphed below, which have inverse functions?

(A) 1, 2 and 3 only (B) 2 only (C) 1 and 2 only
(D) 1, 2 and 4 only (E) None of the answers A-D

28. Which of the following is/are correct? \([a > 0, a \neq 1]\)

(1) \(\log_a 1 = 0\) (2) \(\log_a 0 = 0\) (3) \(\ln 1 = e\) (4) \(\ln e^a = a\)

(A) None of them
(B) 4 only
(C) 1 and 4 only
(D) 3 only
(E) 2 and 4 only
29. Which of the following is a graph of the INVERSE of \(y = \log_3 x \)?
 (A) ![Graph A](image1.png)
 (B) ![Graph B](image2.png)
 (C) ![Graph C](image3.png)
 (D) ![Graph D](image4.png)
 (E) None of these

30. Find the \(x \)-intercept of the graph of \(M(x) = \log_6(2x + 3) \).
 (A) (1.5, 0)
 (B) (0, 0)
 (C) (−3, 0)
 (D) (0.5, 0)
 (E) (−1, 0)
31. Rewrite $23^b = a$ in logarithmic form.

(A) $\log_a b = 23$ (B) $\log_{23} a = b$ (C) $\log_{23} b = a$
(D) $\log_b 23 = a$ (E) None of these

32. Find the exact value of $\ln\left[\sqrt[4]{e^5}\right]$.

(A) 0.8 (B) 1.25 (C) e (D) 0.8e (E) None of these

33. Solve $\log_5 x = 2$ and $\log_2 32 = w$. The two solutions are:

(A) $x = \sqrt{5}$ and $w = \sqrt{32}$ (B) $x = 25$ and $w = 5$ (C) $x = 32$ and $w = 16$
(D) $x = 25$ and $w = 16$ (E) None of these

34. Solve for x: $3^x = 5^{x-1}$

The solution is a number:

(A) between 2 and 4 (B) between -5 and -3 (C) between -1 and 0
(D) between -3 and -1 (E) None of these

35. Solve for x: $\ln(2x - 1) = 2$

(A) $x = \frac{e^2}{2}$ (B) $x = \frac{e^2 + 1}{2}$ (C) $x = e^2 + \frac{1}{2}$ (D) $x = \frac{e^4}{2}$
(E) None of these
Math 112 Final Exam Study Aid

It has been rumored that college costs have been growing exponentially. Suppose the cost of four years of college (in thousands of dollars) can be expressed as \(y = Ce^{kt} \) where \(t = 0 \) corresponds to 1992, \(t = 4 \) corresponds to 1996, and so on. The graph of this function is shown below. Use this graph to answer the next TWO questions.

36. Use the graph (above) to find the value of \(C \).
 (A) 1992 (B) 75 (C) 0 (D) 100 (E) None of these

37. What is the value of \(k \)?
 (A) 0.288 (B) 0.333 (C) 0.072 (D) 0.066 (E) None of these

38. The release of fluorocarbons used in household sprays destroys the ozone layer in the upper atmosphere. Suppose the amount of ozone is given by \(P = Ce^{-0.0025t} \) where \(t \) is measured in years. How long will it take for 70% of the ozone to disappear? (Round to the nearest yr.)
 (A) About 143 yrs. (B) About 1699 yrs. (C) About 1360 yrs.
 (D) About 482 yrs. (E) None of these

39. True or False: The domain of \(g(x) = \frac{x^2 - x - 6}{x^2 - 4} \) is \((-\infty, -2) \cup (-2, 2) \cup (2, \infty) \).
 (A) True (B) False
40. True or False: The zeros of \(p(x) = x^4 + (3/4)x^3 - (1/2)x^2 + (1/4)x + 5 \) are the same as the zeros of \(q(x) = 4x^4 + 3x^3 - 2x^2 + x + 20 \).

(A) True (B) False

41. True or False: The following equation is correct for all \(x > 1 \):
\[\log(x) + \log(2) = \log(x + 2) \]

(A) True (B) False