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We wish to transmit messages to and from a hypersonic vehicle around which a plasma sheath
has formed. For long distance transmission, the signal carrying these messages must be necessarily
low frequency, typically 2 GHz, to which the plasma sheath is opaque. The idea is to use the plasma
properties to make the plasma sheath appear transparent.

I. INTRODUCTION.

A. General discussion.

A vehicle moving through the stratosphere (altitudes
40km-50km) at hypersonic velocities (8-15 Mach) is cov-
ered by a plasma sheath. Typically, the plasma density
n can be as high as 1018m−3 with corresponding plasma
frequency

2πfL = ωL =

(

e2n

Mε0

)1/2

(1)

of about 9GHz. In (1), e is the electron charge −1.6 ×
10−19C, ε0 = 8.85 × 10−12CV −1m−1 and M is the elec-
tron mass 9 × 10−31kg. Therefore the plasma is opaque
to frequencies lower than 9GHz. Direct communication
through such a plasma to and from the vehicle is im-
possible because frequencies f suitable for long distance
propagation through the atmosphere are usually much
less. For example, the standard frequency used for nav-
igational satellite systems, including the global position-
ing system (GPS), are less than 2GHz. For the GPS,
f = 1.57542GHz.

The challenge is to devise means to maintain contin-
uous contact with the hypersonic vehicle. When such
vehicles were principally spacecrafts, a blackout period
of up to two minutes was acceptable albeit undesirable.
But when the vehicles are of military origin, it is clear
that continuous contact is essential for both targeting
and rapid abort reasons.

It is a challenge which has drawn many responses.
They fall into several categories. The first ignores the
presence of the plasma by using signals with frequencies
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well above the plasma frequency. The difficulty with this
method is that such signals are heavily attenuated in and
scattered by the atmosphere. A second means, which also
ignores the plasma, is to use low frequency signals in the
100MHz range where wavelengths are large compared to
the plasma sheath thickness (typically of the order of a
meter). But such solutions have high cost and low bit
rates and are not well supported by existing infrastruc-
ture. A third category of solutions violates the plasma.
One approach is to remove, by vehicle reshaping, for ex-
ample, the plasma from certain points on the vehicle at
which one might place an antenna. Another is to destroy
it by electrophilic injection or by injecting water drops.
A third approach is to use powerful magnets to reshape
the plasma. Such solutions involve a heavy cost in that
design features necessary for their implementation must
be built into the vehicle a priori. Nevertheless some are
feasible and worthy of consideration. For example, it is
possible to build an antenna into a sharp leading edge
which would protrude beyond the plasma and survive
for sufficiently long (it would be eventually destroyed by
ablation) to cover the flight time.

The fourth category of solutions, and the one to which
we are attracted, uses the properties of the plasma itself
to affect transmission in the same way a judo expert uses
the strength and motion of an opponent to defeat him.
One idea is to create new modes of oscillation and prop-
agation by the introduction of magnetic fields. Indeed,
for strong enough fields, the Larmour frequency fLarmour

is sufficiently large that the window (fLarmour,max(fL))
for which the plasma is opaque is small and transmission
can be achieved for frequencies below fLarmour. But the
introduction of magnetic fields involves large additional
weight and new design features. The second idea is much
more simple. Its aim is to take advantages of nonlinear
properties of plasma to render it effectively transparent
to the signal. Communications both to and from the
vehicle are feasible using basically the same ideas. We
shall first describe the “to the vehicle” case. Consider
Figure 1 in which we show schematically the response of
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FIG. 1: ωL(zr) = ω cos φ, ωL(0) = ω. If the thickness of the
plasma sheath is equal to L + R = 1m, the signal frequency
f = 2GHz and the plasma frequency fL ≃ 9GHz then L ≃

5cm and R ≃ 95cm.

the plasma to an incoming signal with low frequency ω
from a direction which makes an angle φ with the nor-
mal to the vehicle. There are two principal features to
the response. First, there is a reflection from the layer
at a point z = zr where the plasma frequency at the
point ωL(zr) is ω cosφ. However, the influence of the
signal is felt beyond that point, namely at the resonant
layer z = 0 where ωL(0) = ω. Langmuir oscillations are
excited there which produce large transversal and longi-
tudinal components of the electric field. The resonant
layer acts as an antenna. The task is to find a way to
connect the antenna at the resonant layer at z = 0 to a
receiver on board the vehicle at z = R. There are several
possibilities which we have outlined before [1–3].

The most practical one, however, is also the most sim-
ple and first suggested without a detailed numerical sim-
ulation in [1]. We use an onboard source, which we call
the pump, to generate electromagnetic signals of suffi-
ciently high frequency ωp (ωp > max

z
ωL(z) + ω) that

they can propagate through the plasma. There are sev-
eral candidates for such a source. For example, available
on the open market is a klystron amplifier which can
generate 3kW of power at frequencies of 12 − 14GHz.
These high frequency waves have only to travel distances
of a meter or less. They interact nonlinearly with and
scatter off the signal wave. Not surprisingly, the largest
contribution to the scattered wave comes from the non-
linear interaction of pump wave with the plasma density
distortion induced by the incoming signal wave at the
resonant layer. We call the scattered wave a Stokes wave
because the scattering process is a three wave interaction
analogous to Raman scattering. The Stokes wave with
frequency ωS = ωp−ω carries the information encoded on
the signal wave back to the vehicle. We will show that,
whereas much of the scattered Stokes wave propagates
away from the vehicle, a significant fraction is returned
to the vehicle.

What is remarkable is this. The ratio of the power flux
of the Stokes wave received at the vehicle to the power
flux contained in the signal wave at the plasma edge can
be between 0.7 and 2 percent. This means that recep-

tion of GPS signals may be possible because one simply
needs an onboard receiver approximately 100 times more
sensitive than commercially available hand held receivers
or use sufficiently larger antenna. We shall discuss in the
conclusion the sensitivity required for a variety of sources.

Communications from the vehicle requires two power
sources on the vehicle. One, which we term the Stokes
wave generator, will also carry the signal. The other
is the pump wave. Both have carrier frequencies above
that of the maximum of the plasma frequency. Their
nonlinear interaction in the plasma produces an oscilla-
tions of frequency ω = ωp − ωS. Consider Figure 2. For
zr < z < R where zr is determined by ωL(zr) = ω cosφ
and φ is calculated from the differences in propagation
directions of the pump and Stokes waves, the oscillation
does not propagate and its strength decays away from the
vehicle. Nevertheless this oscillation is sufficiently strong
to act as a power source for a propagating wave in the
region z < zr where ω cosφ > ωL(z). In the conclusion
we analyze what power is required in order for the sig-
nal to be detected by distant receivers. It appears that
even if we use usual available on the market generators
communication can be put into practice.

"Stokes" wave

Pump wave

Signal wave

FIG. 2: The concept for communication from the vehicle.
Although drawn in such a way that the angles of pumping,
Stokes and signal waves are different, the optimal configura-
tion is when all angles are the same, i.e. Stokes and pump
waves are generated in the same direction as the target of the
desired low frequency signal.

B. Plan of the paper.

The plan of the paper is as follows. We begin in Sec-

tion 2 with a detailed analysis of the two dimensional
propagation and interaction of a signal wave of frequency
ω, a pump wave of frequency ωp and a Stokes wave of fre-
quency ωS through a plasma with a given density profile
n0(z) where z is the direction normal to the vehicle. The
key equation is a modification of the well known Ginzburg
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equation [4]

∂

∂z

(

(

ε0
ε(z,Ω)

)

∂ ~H

∂z

)

+
ε0

ε(z,Ω)

∂2 ~H

∂y2
+

Ω2

c2
~H = (2)

= −
[

∇×
(

ε0
ε(z,Ω)

~jNL

)]

,

for the magnetic field amplitude (H(y, z), 0, 0)e−iΩt of an
oscillation of frequency Ω. In (2), the effective electric
susceptibility is

ε(z,Ω) = ε0

(

1 − ω2
L(z)

Ω2

(

1

1 + iν/Ω

))

, (3)

(ωL(z) is the local plasma frequency and ν the collision
frequency). The susceptibility is due to the linear re-
sponse of the plasma to the electric fields of whichever
waves are involved. The nonlinear current~jNL will be de-
termined both by the product of the plasma density dis-
tortion with the linear current and the nonlinear response
of the electric velocity field due principally to dynamic
pressure forces. We observe that, for Ω ≫ max

z
ωL(z),

the electric susceptibility is approximately ε0 and the left
hand side of the nonlinear Ginzburg equation (2) is the
usual wave operator.

How do we use (2)? For the case of communication to

the vehicle, we use it in two ways. First with ~jNL = 0,
we determine for Ω = ω and H(y, z) = H(z)ei(ω/c)y sin φ,
the field H(z) from which the distortion to the plasma
produced by the incoming wave is calculated. In this
instance, H(z) satisfies

d2H

dz2
− 1

ε(z, ω)

dε(z, ω)

dz

dH

dz
+ (4)

ω2

c2

(

ε(z, ω)

ε0
− sin2 φ

)

H = 0.

A glance at the third term shows that propagation is im-
possible for ε/ε0 < sin2 φ or, from (3), for ω cosφ <
ωL(z). The importance of the resonance layer where
ε(z, ω) ≃ 0 is seen from the denominator in the second
term. Having solved for H(z) from (4) we can then cal-
culate the plasma distortion field δn(z). Its interaction
with the pumping wave then produces a nonlinear current
~jNL which gives rise to the Stokes wave. The Stokes wave
HS(y, z) and its propagation is calculated by solving (2)

with this ~jNL and appropriate boundary conditions at
the plasma edge and at the vehicle. Our goal is to de-
termine HS(y, z = R). We give the results of both the
numerical simulation and an analytic estimation. The
latter takes advantage of the fact, that, for the Stokes
wave, ωS ≫ max

z
ωL(z) and that the principal plasma

distortion occurs at the resonance layer.
For communicating from the vehicle, we solve (4) with

the right hand side given by −∇ × ε0

ε
~jNL with ~jNL cal-

culated from the nonlinear interaction of the pump and
Stokes waves. Here the goal is to calculate the flux of

power of the signal wave with frequency ω = ωp − ωS as
it leaves the plasma edge in the direction of some distant
receiver.

In Section 3, we describe the numerical procedure and
give detailed results of our calculations.

Finally, in Conclusion, we use our results to calculate
the powers of both the incoming and outgoing signals at
their respective receivers. We discuss in addition several
important considerations:

• The advantages, particularly in terms of available
power, of using pulsed signals.

• The possibility of using GPS sources for incoming
signals.

• The challenges involved in making ideas practica-
ble.

II. ANALYTICS.

A. Basic theory.

We shall study a very idealized situation when the
plasma sheath is a flat slab. The plasma density is a
linear function of the horizontal coordinate z

n0(z) = n0
z + L

R + L
. (5)

In this geometry the vehicle is the vertical wall placed at
z = R. The plasma density near the vehicle is n0. The
plasma contacts the vacuum at z = −L, where n = 0. We
shall study two situations: communication to the vehi-
cle and communication from the vehicle. In both cases,
three almost monochromatic electromagnetic waves ex-
ist in plasma. Two of them have high frequencies ωp

(pumping wave), ωS (Stokes wave). The third one has
low frequency ω, satisfying the condition

ω = ωp − ωS . (6)

In the “to the vehicle” case ω is the circular frequency
of the incoming signal. In the “from the vehicle” case, ω
is the circular frequency of the outgoing signal. In both
these cases, the low-frequency signal plays a key role.
Because the local plasma frequency at z = 0 is ω,

ω2 =
e2n0

Mε0

L

R+ L
. (7)

Let us denote also the Langmuir frequency at the vehicle
as

ω2
L =

e2n0

Mε0
.

Thus

L

R+ L
=
ω2

ω2
L

=
f2

f2
L

.
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In a realistic situation fL ≃ 9GHz (it corresponds to
n0 = 1018m−3), f ≃ 2GHz, R+L = 1m, and L ≃ 0.05m.
The wavelength of the incoming signal in the vacuum
is λ = c/f = 0.15m, so that λ > L. We point out
that in the case of low-frequency wave reflection from
the ionosphere, the situation is the opposite λ << L.

We shall assume that the ions’ positions are fixed and
the plasma is cold (Te ≃ 0). The magnetic field has only
one component Hx. The electric field has two compo-
nents Ey, Ez. Neither the electric nor magnetic fields
depend on the x-coordinate. Maxwell’s equations read

~E(0, Ey(y, z), Ez(y, z)); ~H(H(y, z), 0, 0)

∇× ~E = −µ0
∂ ~H

∂t
, (8)

∇× ~H = ε0
∂ ~E

∂t
+~j, (9)

∇ · ~H = 0, (10)

∇ · ε0 ~E = e(n− n0(z)), ~j = en~v. (11)

∂ρ

∂t
+ ∇ ·~j = 0

∂n

∂t
+ ∇ · n~v = 0, (12)

∂~v

∂t
+ ν~v =

e ~E

M
+ ~v ×

(

[∇× ~v] +
µ0e

M
~H
)

− 1

2
∇v2, (13)

c =
1√
ε0µ0

≃ 3 × 108ms−1,

n0 ≃ 1018m−3, ω2
L(R) =

e2n0

Mε0
,

ωL(R)

2π
= fL(R) = 9GHz.

The power flux in vacuum is

S = 2ε0c |E|2 = 2cµ0 |H |2Wm−2; 1Wm−2 → 13.7Vm−1.

In equation (13) ν is the effective friction of the elec-
tron fluid with the neutral gas, sometimes called the ion
collision frequency. We take ν = 108Hz.

The current ~j = ~jL + ~jNL. ~jL is the linear response
of the plasma on the electric field, ~jNL is the current
due to nonlinear effects. For a monochromatic wave of
frequency Ω, Maxwell’s equations can be rewritten in the
following form

∇× ~H = −iΩε ~E +~jNL, ε0∇× ~E = iε0µ0Ω ~H,

i
Ω

c2
~H =

i

Ω
∇×

(ε0
ε
∇× ~H

)

− i

Ω
∇×

(ε0
ε
~jNL

)

,

Ω2

c2
~H = ∇×

(ε0
ε
∇× ~H

)

−∇×
(ε0
ε
~jNL

)

. (14)

In our geometry, (14) is one scalar equation. We should
stress that this is an exact equation. The only challenge
is the calculation of ~jNL.

Finally for the magnetic field, one obtain the Ginzburg
equation

∂2H

∂z2
− ε′

ε

∂H

∂z
+

ε

ε0

Ω2

c2
H +

+
∂2H

∂y2
= −

(

∇×~jNL

)

x
− ε′

ε
(~jNL)y. (15)

For the high frequency pump and Stokes waves ε ≃ ε0.
Some exact solutions of simplified versions of the homo-
geneous Ginzburg equation for several important cases
can be found in Appendix A.

What we are going to do is the following: in subsection
II B we shall calculate linear responses of the plasma to
an electromagnetic wave, such as electron velocity, linear
current and the electron density profile perturbation; the
calculation of the first nonlinear correction to the linear
current is done in subsection II C; analytic estimations for
“to the vehicle” and “from the vehicle” cases are given
in subsections II D and II E respectively.

B. Linear responses.

In order to calculate the nonlinear current we need to
consider the linear responses of the plasma to the pres-
ence of an electromagnetic wave. For a field with fre-
quency Ω

H ∼ e−iΩt,

from (13), the linear term in the velocity

~vL =
ie

MΩ

1

1 + iν/Ω
~E, (16)

and

~jL =
ie2n0

MΩ

1

1 + iν/Ω
~E.

From (9)

∇× ~H = −iΩε0 ~E +
ie2n0

MΩ

1

1 + iν/Ω
~E = −iΩε ~E

Using Maxwell equations one can express all responses in
terms of magnetic field

~E =
i

Ωε(Ω)

(

0,
∂

∂z
H,− ∂

∂y
H

)

, (17)

~vL = − e

MΩ2ε(Ω)

1

1 + iν/Ω

(

0,
∂

∂z
H,− ∂

∂y
H

)

, (18)

~jL = −
(

1 − ε0
ε(Ω)

)(

0,
∂

∂z
H,− ∂

∂y
H

)

. (19)
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The expression for a distortion δn of the electron density
in the plasma n(z) = n0(z) + δn(y, z, t) can be derived
from (12) and (18),

δn = − ie

MΩ3

1

1 + iν/Ω

∂

∂z

(

n0(z)

ε

)

∂

∂y
H. (20)

C. Nonlinear current.

The nonlinear current is due to the first nonlinear cor-
rection to the linear response velocities of electrons and
a scattering of an electromagnetic wave on the distortion
of the charge density profile produced by another wave

~jNL = en0(z)~vNL + eδn~vL. (21)

We introduce the nonlinear velocity vNL which can be
found from the following equation

∂~vNL

∂t
= ~vL × [∇× ~vL] +

µ0e

M
~vL × ~H − 1

2
∇v2

L = −1

2
∇v2

L.

Here we used a corollary of the Maxwell equations and
(16) whence to within O(ν/ω),

[∇× ~vL] = −µ0e

M
~H.

This means that only the dynamic pressure induced by
the fields affects the plasma.

Finally, we have everything for the calculation of the
first term in right hand side of Ginzburg equation (15)

(

∇×~jNL

)

x
=

ie

2ω

dn0(z)

dz

∂

∂y
v2

L + evzL
∂

∂y
δn− (22)

−evyL
∂

∂z
δn− µ0e

2

M
δn ~H.

The detailed expression of equation’s (15) right hand side
can be found in Appendix B.

D. Analytic estimation. “To the vehicle.”

We would like to estimate the ratio

µS =
SS(z = R)

S0

of the fluxes of the squared scattered field to the squared
incoming signal field and express it as a function of pump
power flux Sp measured in Watts per square meter.

We can make an analytic estimation of the three-wave
process efficiency. The main contribution comes from the
vicinity of z = 0. The reason comes from the fact that
the real part of dielectric susceptibility (3) for the low
frequency signal wave has a zero at this point. It means
that our nonlinear current on the right hand side of the
Ginzburg equation has a very sharp peak near z = 0. A
typical plot of right hand side is given in Figure 3. This
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FIG. 3: The typical right hand side (absolute value) of the
Ginzburg equation in the “to the vehicle” case. Logarithmic
scale. One can see that the main contribution comes from the
region of the point z = 0.

issue is discussed in more detail in Appendix B 2.
If we consider a high frequency pumping wave we can

use the plane wave approximation

Hp(y, z, t) = Hpe
i(−ωpt+kpy−κpz).

The low frequency signal wave can be written

H0(y, t) = H(y, z, t)|z=0 = H(z)|z=0e
i(−ωt+ky).

For the Stokes wave, whose frequency is higher than the
plasma frequency, one can use the following approximate
Ginzburg equation

∂2HS

∂z2
+ κ2HS = fS, (23)

where fS is calculated from the curl of the nonlinear cur-
rent given in (II C). To solve, we use the method of
variation of constants.We find

HS = C1e
iκSz + C2e

−iκSz,

C′
1e

iκSz + C′
2e

−iκSz = 0,

C1(z) =
1

2iκS

z
∫

−L

e−iκSyfS(y)dy,

C2(z) = − 1

2iκS

R
∫

z

eiκSyfS(y)dy.

One can say that C1 is the amplitude of the Stokes wave
propagating to the vehicle and C2 is the amplitude of the
anti-Stokes wave propagating from the vehicle. The main
contribution to C1(R) arises from the vicinity of z = 0,
where fS(z) is almost singular

C1(R) =
1

2iκS

R
∫

−L

fS(y)e−iκSydy ≃
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FIG. 4: Dependence of C1(R) on the signal incidence angle
φ.

≃ 1

2iκS

+∞
∫

−∞

fS(y)e−iκSydy.

After some simple but tedious calculations (see Appendix
B 2) one finds

C1(R) ≃ 2πi
eL

Mc2
1

ε0c
cos(2θ) sin(φ)HpH

∗(0). (24)

where θ is the pumping incident angle.

Details of these calculations are given in Appendix B 2.
The angular dependence of H(0), which we call ρ(φ), can
be calculated numerically by solving the homogeneous
Ginzburg equation. In Fig. 4, we plot the product ρ sinφ
against φ. At the optimal value φ ≃ 0.5, ρ(φ) sin φ ≃ 1/4,

C1(R) ≃ π

2
i
eL

Mc2
1

ε0c
cos 2θHpH

∗(−L). (25)

Using the expression Sp = |Hp|2/(ε0c), one gets

µS =

∣

∣

∣

∣

C1

H

∣

∣

∣

∣

2

cε0
Sp

1Wm−2
≃

≃ π2

4

(

eL

Mc2

)2
1

ε0c
cos2(2θ)

Sp

1Wm−2
. (26)

For the optimal values of incidence angles (θ = 0, φ ≃
0.5), the given plasma parameters and L ≃ 0.05m, one
gets the following maximum value of the efficiency coef-
ficient

µS ≃ 0.9 × 10−11 Sp

1Wm−2
. (27)

This is consistent with what we obtain by direct numer-
ical simulation.

E. Analytic estimation. “From the vehicle.”

Equation (2) can be rewritten in the following form

d

dz

1

ε

dH

dz
+

(

1

ε0

ω2

c2
− k2

0

ε0

)

H =
∂

∂z

(

(~jNL)y

ε

)

− (28)

−1

ε

∂

∂y
(~jNL)z.

It is not too surprising that that the dominant contri-
bution to the RHS of (28) is the first term and arises
from the neighborhood of z = 0. Again, just as in the
“to the vehicle” case, the resonant layer acts as a trans-
mitting antenna which will beam the message contained
on the Stokes wave to a distant receiver at frequency
ω = ωp − ωS. In Fig. 5 we verify that indeed the domi-

1.0x10-9
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1.0x10-6

1.0x10-5

 0  0.2  0.4  0.6  0.8  1
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S
|

Z

Full RHS
Approximate RHS

FIG. 5: The full right hand side (absolute value) of the
Ginzburg equation in the “from the vehicle” case (solid
line) together with the expression used in the approximation
(dashed line). Logarithmic scale. Before the vicinity of point
z = 0 almost no forcing is present. Almost all contributions
in the vicinity of the resonant point comes from the term used
in the approximation. In the propagation region (z < 0), the
approximation slightly underestimates the right hand side.

nant contribution comes from the first term on the RHS
of (28) and from the neighborhood of z = 0. Hence we
can get simple equation for a very good approximation
to the approximate particular solution of (28), namely

dH

dz
= (~jNL)y. (29)

The general solution is the following

H = C1φ1(z) + C2φ2(z) +

z
∫

0

(~jNL)ydz, (30)

where φ1(z) and φ2(z) are solutions of the homoge-
neous part of equation (28), and φ1(z) is bounded as
z → R ≫ 1, φ2(z) is unbounded (exponentially) at the
vehicle. Thus C2 ≃ 0. See Appendix A for a discussion
of solutions to the homogeneous Ginzburg equation.
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Using the boundary condition on the edge of the
plasma (z = −L)

dH

dz
(−L) = −iκ0H(−L),

where κ0 = ω0

c cosφ is the z-component of wavevector of

the outgoing low frequency signal wave, and ~jNL(−L) =
0, one finds

C1 =
−iκ0

φ′1(−L) + iκ0φ1(−L)

−L
∫

0

(~jNL)ydz. (31)

Finally, for the magnetic field at z = −L we find

H(−L) ≃ φ′1(−L)

φ′1(−L) + iκ0φ1(−L)

−L
∫

0

(~jNL)ydz. (32)

The function (~jNL)y oscillates with z with wavenumber
κp−κS . The lower the wavenumber the more will be the
contribution in the integral. This gives us a very sim-
ple optimal strategy for the choice of pump and Stokes
wave directions. We should radiate both the Stokes and
pumping waves in the desired direction of the signal wave
propagation. In this case we also have an exact compat-
ibility with the boundary conditions at z = −L.

If we consider the expression for (~jNL)y given in Ap-
pendix B, we can see that in the case ω0 ≪ ωS, ωp the
first term (B5) is the major one in the vicinity of resonant
layer. The resonant layer works like radiating antenna.

Using the simplified nonlinear current expression and
considering the pumping and Stokes waves as plane waves
one finds

H(−L) ≃ −i
eω2

0L sinφ

2Mε0c3ωSωp

1

A
HpH

∗
S × (33)

× φ′1(−L)

φ′1(−L) + iκ0φ1(−L)

(

1 − eiA cos φ − 1

A cosφ

)

.

Where A = Lω0/c.
Using the solutions of the approximate homogeneous

equations (A8), we can estimate φ′1(z)/φ1(z)|z=−L ≃
1/L. Thus for κ0L = A cosφ≪ 1, one finds

H(−L) ≃ eω2
0L sinφ

4Mε0c3ωSωp

1

A
HpH

∗
S .

For the power density, we have

S =
1

32

(

eL

Mc2

)2
1

ε0c

(

ω2
0

ωSωp

)2

sin2 φSSSp. (34)

This result is quite clear from physical point of view. The
larger φ is, the longer is the distance over which the signal
wave is generated in the plasma.

In our simulations, A ≃ 2.1 and in this case we cannot
use the simplified expression given above. Instead we
find,

S =
1

8

(

eL

Mc2

)2
1

ε0c

(

ω2
0

ωSωp

1

A

)2

×

× tan2 φ

(

1 − 2
sin(A cosφ)

A cosφ
+ 2

1 − cos(A cosφ)

A2 cos2 φ

)

×(35)

× 1

1 + Cder cos2 φ
SSSp.

Here we introduced the coefficient Cder = (κ0φ1/φ
′
1)

2 the
value of which we obtain from our numerics.

Finally, we find

S12GHz = 1.2 × 10−16 tan2 φ

(

1 − 2
sin(A cosφ)

A cosφ
+

+2
1 − cos(A cosφ)

A2 cos2 φ

)

1

1 + Cder cos2 φ
SSSp, (36)

S18GHz = 2.0 × 10−17 tan2 φ

(

1 − 2
sin(A cosφ)

A cosφ
+

+2
1 − cos(A cosφ)

A2 cos2 φ

)

1

1 + Cder cos2 φ
SSSp. (37)

The subscripts refer to the frequencies of the onboard
pump waves. Again, we find the magnitude and angular
dependence to be consistent with our numerical results.

III. NUMERICAL PROCEDURES AND

SIMULATIONS.

The equation we solve numerically in all cases is the
Ginzburg equation (15) including all terms on its right
hand side. The boundary conditions are given at z =
L1 = −L − (L + R), in the vacuum beyond the plasma
edge and at z = R, the vehicle.

To solve this equation we use a “sweep”-method de-
scribed in detail in Appendix C. The method was in-
vented simultaneously in several places for work on classi-
fied topics in the middle of the last century. In the Soviet
Union, it was introduced by a group of L. D. Landau (in-
formation from I.M. Khalatnikov) (the first publication
[5] appeared several years later due to obvious reasons)
and was developed to its modern form in [6].

As the first step in the “to the vehicle” case we have
to find the profile of the incoming magnetic field in the
plasma. We used an incident angle φ = 0.5. It will
be shown later that this angle is an optimal value but
it is good for an initial evaluation of the possibility of
communication. We consider the incoming signal as a
monochromatic plane wave of a given frequency f0 =
2GHz and amplitude H0. The current is equal to zero.
In this case, the boundary conditions are

z = −L1,
∂H

∂z
+ iκ0H = 2iκ0H0, (38)

z = R,
∂H

∂z
= 0. (39)
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The resulting profile of the magnetic field is shown in
Fig. 6. The profile of Ez(z) is shown in Fig. 7. At
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FIG. 6: Incoming signal magnetic field profile.
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FIG. 7: Incoming signal electric field (z-component) profile.

the next stage, we consider an incident low frequency
magnetic field profile as a source of distortion of the
plasma density profile and take into account currents due
to the presence of a pump wave. The pumping wave angle
θ = 0.0. Our goal is to calculate the scattered field HS

with frequency ωS = ωp − ω. In this case, the boundary
conditions are

z = −L1,
∂HS

∂z
+ iκSH = 0, (40)

z = R,
∂HS

∂z
= 0. (41)

The profiles of the magnetic fields HS for two different
pumping frequencies are shown in Figures 8 and 9. We
note that the resonant layer z = 0 acts as if it were a
source.

In the “from the vehicle” case we calculate the mag-
netic field of the low frequency wave generated by plane
pump and Stokes waves. Following the optimal strategy
in this case, described in the analytic part of the paper,
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FIG. 8: Magnetic field profile of the Stokes wave. Pumping
frequency 12GHz.
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FIG. 9: Magnetic field profile of the Stokes wave. Pumping
frequency 18GHz.

we take all angles equal to each other φ = θ = π/4. In
this case, the boundary conditions are

z = −L1,
∂H

∂z
+ iκ0H = 0, (42)

z = R, H = 0. (43)

Here H(z) is the magnetic field of the signal wave with
frequency ω = ωp − ωS . The boundary condition at z =
R, H = 0, gives us the worst of all cases by definition.

The low frequency magnetic fields for two different
pumping frequencies are shown in Figs. 10 and 11.

We tested the robustness of the code by allowing for
both finite and zero conductivity of the vehicle surface in
the “to the vehicle case”. During the simulation in the
“from the vehicle” case we also redid the simulation with
the derivative of the magnetic field at the vehicle equal
to zero. In all the cases, the influences of the differing
boundary conditions were negligible.

In the “to the vehicle” case, it is convenient to intro-
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FIG. 10: Generated low frequency magnetic field. Pumping
frequency 12GHz.
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FIG. 11: Generated low frequency magnetic field. Pumping
frequency 18GHz.

duce the function µS as the ratio

µS =
SS(z = R)

S0

of the scattered field flux to the incoming signal flux and
express it as a function of pump flux Sp measured in
Watts per square meter. We found

ωp = 2π ∗ 12GHz, max(µS) ≃ 2.2 × 10−12 Sp

1Wm−2
,

ωp = 2π ∗ 18GHz, max(µS) ≃ 0.63 × 10−11 Sp

1Wm−2
.

These results are in a good agreement with the analytic
estimation (27). Any difference is due to the fact that the
pumping frequency is not sufficiently high to neglect the
plasma frequency. The reason we used these frequencies
and not much higher ones was that they are available on
standard microwave equipment and devices.

In the “from the vehicle” case, we calculate the ratio

µ =
Sout(z = −L)

SSSp

of the output signal flux to the product of the pump and
Stokes fluxes and express it as a function of the optimal
angle.

We found

ωP = 2π ∗ 12GHz, max(µ) ≃ 1.8 × 10−16 1

1Wm−2
,

ωP = 2π ∗ 18GHz, max(µ) ≃ 3.0 × 10−17 1

1Wm−2
.

In order to investigate the dependence of the result on
the angles φ, θp, θS , we calculated µ for various different
choices. The results are shown in Figs. 12-17.

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6φ  0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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FIG. 12: Dependence of power conversion efficiency coefficient
µS on angles. “To the vehicle”. Pumping frequency 12GHz.
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FIG. 13: Dependence of power conversion efficiency coefficient
µS on angles. “To the vehicle”. Pumping frequency 18GHz.

As one can see, in the “to the vehicle” case we have
a very good agreement between the analytically esti-
mated angular dependence (26) and the numerical re-
sults. Namely, we have a maximum at pumping angles
close to θ = 0 and the efficiency coefficient µS goes to
zero at the vicinity of θ = π/4 in a agreement with the
cos(2θ) dependence. So we can formulate a simple rule:
in order to get the best possible performance, send the
pump wave in a direction perpendicular to the plasma
edge surface.
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FIG. 14: Dependence of the power conversion efficiency coef-
ficient µS on several pumping angles, in the “to the vehicle”
case. Pumping frequency 12GHz.
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FIG. 15: Dependence the of power conversion efficiency coef-
ficient µS on several pumping angles, in the “to the vehicle”
case. Pumping frequency 18GHz.

In the “from the vehicle” case, the situation is even
simpler. As it was shown in Section II E the power con-
version is optimal if we radiate both the pump and Stokes
waves in the direction of the desired signal wave propa-
gation. The estimated angular dependence (35) can be
fitted with good accuracy to the numerical results using
only one tuning coefficient Cder. It is shown that this
coefficient weakly depends on the pumping frequency.

IV. CONCLUSION AND DISCUSSION.

Let us now discuss the practical usage of this approach
for receiving at and transmitting from the vehicle. For
the “to the vehicle” case we consider the problem of re-
ceiving even GPS signals. Let us estimate the resulting
attenuation coefficient. Given a pump waveguide aper-
ture of 3cm × 3cm and a pump power of 3kW , this
gives Sp = 3.3 × 106Wm−2. One can use the pulse
regime. In this case, even for pulses 10−3s long, every
pulse still contains more than 106 periods of the low fre-
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Numerical simulation, 12GHz pumping
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FIG. 16: Dependence of the power conversion efficiency co-
efficient µ on optimal angle. “From the vehicle”. Pumping
frequency 12GHz.
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Numerical simulation, 18GHz pumping
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FIG. 17: Dependence of power conversion efficiency coefficient
µ on optimal angle. “From the vehicle”. Pumping frequency
18GHz.

quency signal and we can get much higher power flux
Spulse

p = 3.3 × 109Wm−2. It gives us the attenuation

coefficients µSS
pulse
p

µSS
pulse
p ≃ 0.73 × 10−2, ωp = 2π ∗ 12GHz.

µSS
pulse
p ≃ 2.1 × 10−2, ωp = 2π ∗ 18GHz.

The usual level of a GPS signal at the Earth surface
is about −127.5dBm (1 Decibel per milliwatt is equal
to 1dBm = 10 log10(P/1mW )). Indoors, one must use
high sensitivity GPS receivers. Many general purpose
chipsets have been available for several years. Presently,
the market offers sensitivities −157.5dBm (for example
[7]). Using the definition of dBm one can see, that it
is possible to receive a signal with an attenuation about
10−3. Also it is possible to use a much bigger antenna
on the vehicle than in the case of a handheld device.
In this case, it is even possible to receive a signal using
the continuous rather than pulsed regime for a klystron
pump. So even at the angles far from optimal, one can
receive GPS signals. Further, we used maximum value
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FIG. 18: Schematic plot of beam diffraction.

of the plasma thickness. If the plasma sheath is thinner,
the angular dependence is broader.

Available on the open market are klystron
amplifiers with the following characteristics [8]:

Model Frequency (GHz) Power (kWatt) Mass (kg)

LD4595 14.0-14.5 3 40

LD7126 17.3-18.4 2 27
In the “from the vehicle” case, because of sensitive land

based receivers, all we need is to have a reasonable signal.
Let us estimate an incoming power on some land based
antenna. First of all, for any real antenna we have to take
into account the decrease of a signal due to diffraction
broadening. If the diameter of the land-based antenna
(Figure 18) is D0, the diameter of the signal flux after
some long distance l will be

D(l) ≃ lλ

2D0
. (44)

It means that if we have power flux at an antenna SA,
the power flux at the edge of the plasma after a distance
l will be

S0 ≃ SA

(

2D2
0

lλ

)2

. (45)

For example, for an antenna of the diameter equal to 5m,
after 100km

S0 ≃ 1.1 × 10−5SA.

Now one can calculate the sensitivity of the receiver
needed. Let us suppose that the signal beam outgo-
ing from the vehicle has diameter D0 = 1m, signal
frequency f = 2GHz and corresponding wave length
λ = 1.5 × 10−1m, the land based antenna has a diame-
ter DLB = 5m and is situated at a distance l = 100km.
Using the previous results for diffraction, the pumping
klystrons’ powers from the table above and the expres-
sion Sout = µSpSS , one can get for the power on the land
based receiver

SLB ≃ Sout

(

2D2
0

lλ

)2

= 1.8 × 10−8Sout. (46)

We now list for two different frequencies, the correspond-
ing powers in Watts at the receiving antenna.

ωP = 2π ∗ 12GHz,

PA ≃ 1.8 × 10−8 ∗ 1.8 × 10−16 ∗ 9 × 106Wm−2 ∗ 25m2

≃ 0.73 × 10−15W ;

ωP = 2π ∗ 18GHz,

PA ≃ 1.8 × 10−8 ∗ 3.0 × 10−17 ∗ 4 × 1012Wm−2 ∗ 25m2

≃ 0.54 × 10−17W.

The GPS receiver mentioned above has a sensitivity
about −160dBm ≃ 10−19W . Even with such a modest
size of the antenna and ordinary klystrons one can receive
the signal at almost any angle.

As a final remark one can conclude that proposed
method for communication with and from the supersonic
vehicle is realistic even using standard devices available
on the open market.
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APPENDIX A: ANALYTIC SOLUTIONS OF THE

GINZBURG EQUATION IN SOME SPECIAL

CASES.

By neglecting ~jNL, we obtain the linear Ginzburg
equation. It takes an especially simple form if Ω = ω,
ν/ω = 0 and H ∼ eiky. In this case ε/ε0 = −z/L and
equation (15) is

d2H

dz2
− 1

z

dH

dz
−
( z

Λ3
+ k2

)

H = 0. (A1)

Here

Λ =

(

c2

ω2
L

(L+R)

)1/3

=

(

c2

ω2
L

)1/3

, (A2)

and Λ is another length. In our case ωL ≃ 2π × 9GHz,
R+ L = 1m and Λ = 0.03m ≃ L.

One can introduce the dimensionless variable ξ = z/Λ.
Then equation (A1) simplifies to,

d2H

dξ2
− 1

ξ

dH

dξ
−
(

ξ + α2
)

H = 0. (A3)

Here α2 = Λ2k2 is a dimensionless constant.
Equation (A1) has two linearly independent solutions

φ1, φ2. We assume

φ1 → 0, φ2 → ∞, at z → ∞.
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The Wronskian of these solutions is proportional to ε/ε0.
We can put

W = {φ1, φ2} = φ′1φ2 − φ′2φ1 = − z

L
. (A4)

It means that

W |z=−L = 1.

Equation (A3) cannot be solved in terms of any known
special functions. In the “outer” area |ξ| ≫ α2 it reduces
to the form

d2H

dξ2
− 1

ξ

dH

dξ
− ξH = 0. (A5)

One can check that equation (A5) can be solved in terms
of the Airy functions Ai and Bi. Namely,

φ1 = a1Ai′(ξ) ∼ a1

2
√
π
ξ1/4e−2/3ξ3/2

, (A6)

φ2 = b1Bi′(ξ) ∼ b1√
π
ξ1/4e2/3ξ3/2

, at ξ → ∞.

From (A4) one gets

a1b1 =
πΛ2

L
. (A7)

In the “inner” area |ξ| ≪ α2, the equation (A3) is
reduced to the form

d2H

dξ2
− 1

ξ

dH

dξ
− α2H = 0. (A8)

Equation (A8) can be solved in terms of Bessel functions
[4]. Two linearly independant solutions of equation (A8)
ψ1, ψ2 behave in neighborhood of ξ = 0 as follows

ψ1 = 1 +
α2

2
ξ2
(

log ξ − 1

2

)

+ ... (A9)

ψ2 = ξ2 +
α2

8
ξ4 + ...

Both solutions, which are some linear combinations of
ψ1, ψ2 are bounded. Thus the magnetic field has no
singularity at z = 0.

APPENDIX B: RIGHT HAND SIDE OF THE

GINZBURG EQUATION.

1. General case.

Consider the Ginzburg equation for a wave

H3(y, z, t) = H3(z)e
−iω3t+ik3y,

and calculate the right hand side of (15) in terms if the
fields H1(y, z, t), H2(y, z, t). In the “to the vehicle” case,
H1 will represent the pump wave, H2 the signal wave and
H3 the Stokes wave. In the “from the vehicle” case, H3

will be the signal and H1 and H2 the pump and signal
carrying Stokes waves respectively. In all cases ω3 =
ω2 − ω1, k3 = k2 − k1. We find

[

∇×~jNL(H1, H2, k1, k2, k3, ω1, ω2, ω3)
]

x
=

= − e3n′
0(z)k3

2M2ω3 (1 + iν/ω3)

(

1

ε∗1 (1 − iν/ω1)ω2
1ε2 (1 + iν/ω2)ω2

2

∂H∗
1

∂z

∂H2

∂z
+ (B1)

+
k1k2

ε∗1 (1 − iν/ω1)ω2
1ε2 (1 + iν/ω2)ω2

2

H∗
1H2

)

+

+
e3

M2

(

k2k
2
1

(1 − iν/ω1)ω3
1ε2 (1 + iν/ω2)ω2

2

∂

∂z

(

n0(z)

ε∗1

)

+

+
k2
2k1

(1 − iν/ω1)ω3
2ε

∗
1 (1 + iν/ω2)ω2

1

∂

∂z

(

n0(z)

ε2

))

H∗
1H2 (B2)

+
e3

M2

(

1

ω2
2ε2 (1 + iν/ω2)

∂H2

∂z

k1

ω3
1 (1 − iν/ω1)

∂

∂z

(

H∗
1

∂

∂z

(

n0(z)

ε∗1

))

+

+
1

ω2
1ε

∗
1 (1 − iν/ω1)

∂H∗
1

∂z

k2

ω3
2 (1 + iν/ω2)

∂

∂z

(

H2
∂

∂z

(

n0(z)

ε2

)))

− (B3)

−µ0e
3

M2

(

k2

ω3
2 (1 + iν/ω2)

∂

∂z

(

n0(z)

ε2

)

+
k1

ω3
1 (1 − iν/ω1)

∂

∂z

(

n0(z)

ε∗1

))

H∗
1H2. (B4)

Using formulae (21),
(

~jNL(H1, H2, k1, k2, k3, ω1, ω2, ω3)
)

y
=
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=
e3n0(z)k3

2M2ω3 (1 + iν/ω3)

(

1

ε∗1 (1 − iν/ω1)ω2
1ε2 (1 + iν/ω2)ω2

2

∂H∗
1

∂z

∂H2

∂z
+ (B5)

+
k1k2

ε∗1 (1 − iν/ω1)ω2
1ε2 (1 + iν/ω2)ω2

2

H∗
1H2

)

−

− e3

M2

(

1

ω2
2ε2 (1 + iν/ω2)

∂H2

∂z

k1

ω3
1 (1 − iν/ω1)

H∗
1

∂

∂z

(

n0(z)

ε∗1

)

+

+
1

ω2
1ε

∗
1 (1 − iν/ω1)

∂H∗
1

∂z

k2

ω3
2 (1 + iν/ω2)

H2
∂

∂z

(

n0(z)

ε2

))

. (B6)

2. Approximate right hand side. “To the vehicle” case.

In the “to the vehicle” case, the main contribution comes from the terms containing poles

[

∇×~jNL(H,Hp, k, kp, kS , ω, ωp, ωS)
]

x
≃ (B7)

≃ e3

M2

kpk
2

(1 − iν/ωp)ω3εp (1 + iν/ωp)ω2
p

∂

∂z

(

n0(z)

ε∗

)

H∗Hp +

+
e3

M2

1

ω2
pεp (1 + iν/ωp)

∂Hp

∂z

k

ω3 (1 − iν/ω)

∂

∂z

(

H∗ ∂

∂z

(

n0(z)

ε∗

))

−

−µ0e
3

M2

k

ω3 (1 − iν/ω)

∂

∂z

(

n0(z)

ε∗

)

H∗Hp.

(B8)

Assume that the high frequency pumping wave remains
undisturbed. Then

Hp(y, z, t) = Hpe
i(kpy−κpz−ωt),

we find

fS(z) = −
[

∇×~jNL

]

x
e−iκpz

and

C1(R) =
1

2iκS

R
∫

−L

fS(y)e−iκSydy ≃

1

2iκS

+∞
∫

−∞

fS(y)e−iκSydy.

After several integrations by parts in the second term of
[

∇×~jNL

]

x
, taking into account kS = kp − k, one finds

C1(R) ≃ −ik
2κS

e3HpH
∗

M2ε0ω2
pω

3
(kp(kp − kS) + (κp+ (B9)

κS)κp −
ω2

p

c2

) +∞
∫

−∞

∂

∂z

(

n0(z)

ε∗

)

e−i(κS+κp)dz.

For most pumping angles, and using the fact that ωp ≫
ω, one can substitute ωS ≃ ωp and consider incidence

angles of pumping and Stokes wave to be close in absolute
value. Following Fig. 1 the pumping incidence angle is θ
and low frequency signal incidence angle is φ.

C1(R) ≃ −ik
2κS

e3Hp

M2ε0ω2
pω

3

ω2
p

c2
cos(2θ) (B10)

+∞
∫

−∞

∂

∂z

(

n0(z)

ε∗

)

H∗e−i(κS+κp)dz.

Using integration by parts once more one can get

C1(R) ≃ (κp + κS)

2κS

e3Hp

M2ε0c3ω2
cos(2θ) sin(φ) × (B11)

×
+∞
∫

−∞

(

n0(z)

ε∗

)

H∗e−i(κS+κp)dz.

Calculating this integral by residues and taking into ac-
count

n0(z) ≃ n0(z = 0) = n0
L

L+R
= n0

ω2

ω2
L

,

ε0
ε

= − L

z + iδ
, δ = i

ν

ω
L,

we finally get

C1(R) ≃ 2πi
e3n0L

M2ε20c
3ω2

L

cos(2θ) sin(φ)HpH
∗(0) =

= 2πi
eL

Mc2
1

ε0c
cos(2θ) sin(φ)HpH

∗(0).
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APPENDIX C: NUMERICAL METHOD.

Here we briefly present formulae for the “sweep”
method in a very general way following the approach
given in [9].

1. Reformulation of a problem on a grid.

Consider the ODE

p(x)
d2y

dx2
+ q(x)

dy

dx
+ r(x)y = f(x), (C1)

in the region 0 < x < L with boundary conditions

α
dy

dx
+ βy|x=0 = γ, (C2)

α1
dy

dx
+ β1y|x=L = γ1.

We use for (C1) a second order finite difference scheme
on a grid of (N + 1)-nodes (y0 = y(0), yN = y(L)) with
constant step h

pn
yn+1 − 2yn + yn−1

h2
+ qn

yn+1 − yn−1

2h
+ rnyn = fn.

(C3)
This equation is only valid for inner nodes of the grid.

The boundary conditions take the form

α
y1 − y0
h

+ βy0 = γ, (C4)

α1
yN − yN−1

h
+ β1yN = γ1.

We can rewrite equation (C3) as

anyn−1 − bnyn + cnyn+1 = dn, (C5)

cn =
pn

h2
+
qn
2h
, an =

pn

h2
− qn

2h
,

bn =
2pn

h2
− rn = an + cn − rn, dn = fn.

In the same way for (C4), one finds

−b0y0 + c0y1 = d0, (C6)

b0 =
α

h
− β, c0 =

α

h
, d0 = γ

aNyN−1 − bNyN = dN , (C7)

aN = −α1

h
, bN = −α1

h
− β1, dN = γ1

(C8)

The result is a tridiagonal matrix ((N + 1) × (N + 1))
equation for a, b, c.

2. “Sweep”-method.

The solution of the linear system of equations with
tridiagonal matrix is well described in numerous sources
(for instance [10]). It can be shown that one can find a
solution in the following form

yn−1 = Pnyn +Qn. (C9)

From the left boundary, we have from (C6), that

y0 =
c0
b0
y1 +

d0

b0
.

In this case

P1 =
c0
b0
, Q1 =

d0

b0
. (C10)

Next we derive a recurrence relation for Pn andQn. After
substituting (C9) in (C5), we find

yn =
cn

bn − anPn
yn+1 +

anQn − dn

bn − anPn
.

Then, comparing with (C9), we see that

Pn+1 =
cn

bn − anPn
, Qn+1 =

anQn − dn

bn − anPn
. (C11)

Using the initial values (C10) and the recurring relations
(C11), one can get all Pn, Qn coefficients up to n = N
(“direct sweep” from left to right).

Than we use second (right) boundary condition (N-th
equation)

aNyN−1 − bNyN = dN and yN−1 = PNyN +QN .

Immediately one finds

yN =
dN − aNQN

aNPN − bN
(C12)

Finally, performing a recurrent “backward sweep” (from
right to left), using the already known Pn, Qn, “sweep”-
relations (C9) and the initial condition (C12), we get
values for all yn.
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