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Theorem:

Assuming the ABC, Szpiro, and B&SD con-

jectures, all semistable elliptic curves of fixed

rank have

|ILLI| � N3/4+ε.
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ASSUMPTIONS

ABC Conjecture

For all A,B,C ∈ Z with GCD(A,B,C) = 1 and

A+B = C,

SUP (|A| , |B| , |C|)� N0(ABC)1+ε,

where N0 is the conductor of the product ABC:

N0(ABC) =
∏

p|ABC
p.

Szpiro’s Conjecture

For all elliptic curves E/Q,

|D| � N6+ε,

where D is the minimal discriminant of E, and

N is the conductor of E.

Remark

The above conjectures are equivalent. We will

make use of both formulations.
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ASSUMPTIONS

Birch & Swinnerton-Dyer Conjecture

Let L(s) ≡ L-series of E, and r ≡ RANK(E).

Then

ORD
s=1

L(s) = r,

and

L(s)

(s− 1)r

∣∣∣∣∣
s=1

=
2r · |ILLI| ·Ω ·R ·

∏
p|N cp

|E(Q)TOR|
2 ,

where Ω is the real period, R is the regulator,

and the cp are the local periods (Tamagawa

numbers).
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THEOREM

Assuming the previous three conjectures, we

have:

For all semistable elliptic curves of fixed rank r,

|ILLI| � N3/4+ε.

Precise statement:

For each rank r and each ε > 0, there exists

a constant Cr,ε > 0 so that, for all semistable

elliptic curves of rank r, we have

|ILLI| < Cr,ε ·N3/4+ε.
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OVERVIEW OF PROOF
Rearranging B&SD gives:

|ILLI| =
L(s)

(s− 1)r

∣∣∣∣∣
s=1
·
|E(Q)TOR|

2

2r ΩR
∏
p|N
cp
� N3/4+ε

(rank fixed)

Thus, to bound |ILLI|, we seek bounds for:

•
L(s)

(s− 1)r

∣∣∣∣∣
s=1

� N1/4+ε, to be shown

• |E(Q)TOR|
2 ≤ 144, by Mazur’s theorem

•
1

Ω
� N1/2+ε, to be shown

•
1

R
� Cr (constant depending on r),

to be shown

•
1∏

p|N
cp
≤ 1, since each cp =

∣∣∣∣∣ E(Qp)

E0(Qp)

∣∣∣∣∣ ≥ 1
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Establishing L(s)

(s− 1)r

∣∣∣∣∣
s=1
� N1/4+ε

Recall, for <(s) > 3/2, and semistable E:

L(s) =
∏
p|N

1

1± p−s
∏
p-N

1

1− ap p−s + p1−2s
,

where ap = (1 + p)−#Ep(Fp).

To bound L(s)
(s−1)r

∣∣∣
s=1

, we proceed indirectly. As
usual, set

Λ(s) = Ns/2(2π)−sΓ(s)L(s),

so that Λ(2− s) = ±Λ(s).

We have the bounds:

•
∣∣∣ Λ(s)
(s−1)r

∣∣∣� N3/4+ε for <(s) = 3/2 + ε.

•
∣∣∣ Λ(s)
(s−1)r

∣∣∣� N3/4+ε for <(s) = 1/2− ε.
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Establishing L(s)

(s− 1)r

∣∣∣∣∣
s=1
� N1/4+ε

Now we will transfer these bounds to the strip

1/2− ε ≤ <(s) ≤ 3/2 + ε.

=1

By a generalized maximum modulus principle,

it is sufficient to show, throughout the strip,

∣∣∣ Λ(s)
(s−1)r

∣∣∣ is bounded (by something).
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Establishing L(s)

(s− 1)r

∣∣∣∣∣
s=1
� N1/4+ε

Obtaining an arbitrary bound on
∣∣∣ Λ(s)
(s−1)r

∣∣∣:
• Some upper bound on Λ(s):

Λ(s) = Ns/2 (2π)−sΓ(s)L(s)︸ ︷︷ ︸
Mellin transform of
the weight 2 cusp
form

∑
anqn

(semistable)

• Some lower bound on (s− 1)r:

B&SD implies that Λ(s)
(s−1)r does not blow up

at s = 1.
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Establishing L(s)

(s− 1)r

∣∣∣∣∣
s=1
� N1/4+ε

Thus our bounds transfer to give∣∣∣∣∣ Λ(s)

(s− 1)r

∣∣∣∣∣� N3/4 + ε

for 1/2− ε ≤ <(s) ≤ 3/2 + ε.

In particular, substituting s = 1 gives

N1/2(2π)−1Γ(1)
L(s)

(s− 1)r

∣∣∣∣∣
s=1
� N3/4+ε,

so that

L(s)

(s− 1)r

∣∣∣∣∣
s=1
� N1/4+ε.
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Establishing 1

Ω
� N1/2+ε

Recall that the real period is

Ω =
∫
E(R)

|ω| ,

where ω is the associated invariant differential.

Upon choosing a Weierstrass equation, E(R)

has one of two possible forms:

=2 =1

Let γ denote the infinite component, and let δ

denote the number of components. The inte-

gral along either component is the same; thus

Ω = δ
∫
γ
|ω| .
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Establishing 1

Ω
� N1/2+ε

Starting with a global minimal equation

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6,

we have ω =
dX

2Y + a1X + a3
.

The usual transformations (see Tate’s article

or Silverman’s book) give the convenient form:

y2 = x3 − 27c4x− 54c6

ω =
3dx

y
.

Furthermore (we’ll need this later):

1728D = c4
3 − c62,

GCD(c4,D) = 1. ← semistable
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Establishing 1

Ω
� N1/2+ε

Then Ω = δ
∫
γ |ω| becomes

Ω = δ
∫
γ

∣∣∣∣∣3 dx

y

∣∣∣∣∣ = 2δ
∫ ∞
r0

3 dx√
x3 − 27c4x

2 − 54c6
,

where r0 is the largest real root of the cubic.

•
0

Knowing how to compute Ω, we now show how
to bound 1/Ω:

1

Ω
�x

Calculus

SUP
(
|c4|1/4 , |c6|1/6

)
�x

ABC

N1/2+ε.
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Calculus: 1

Ω
� SUP

(
|c4|1/4 , |c6|1/6

)

We must study

Ω = 2δ
∫ ∞
r0

3 dx√
x3 − 27c4x− 54c6

.

We will consider two cases based on the value

k = |c4| / |c6|2/3 .

If |c6|2 ≥ |c4|3, i.e., if 0 < k ≤ 1, then write the

integral in the form

1
|c6|1/2

∫ ∞
r0

3 dx√(
x

|c6|1/3

)3

±27

(
|c4|
|c6|2/3

)(
x

|c6|1/3

)
±54

.

The substitution u = x/ |c6|1/3 gives

1

|c6|1/6

∫ ∞
r(k)x

largest real root of u3 ± 27ku± 54

3 du√
u3 ± 27ku± 54

.
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Calculus: 1

Ω
� SUP

(
|c4|1/4 , |c6|1/6

)

Three observations:

• The integral

1

|c6|1/6

∫ ∞
r(k)

3 du√
u3 ± 27ku± 54

converges when u3±27ku±54 has distinct

roots, i.e., when k 6= 1.

• The integral goes to ∞ as k → 1, which is

okay since we seek a lower bound.

• The integral is continuous in k for k ∈
[0,1− ε].
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Calculus: 1

Ω
� SUP

(
|c4|1/4 , |c6|1/6

)

Hence a lower bound must exist for the inte-

gral, so that

1

|c6|1/6
� Ω.

The other case, |c6|2 ≤ |c4|3, similarly gives

1

|c4|1/4
� Ω.

Combining the two cases gives

1

Ω
� SUP

(
|c4|1/4 , |c6|1/6

)
.
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ABC: SUP
(
|c4|1/4 , |c6|1/6

)
� N1/2+ε.

Recall

GCD(c4,D) = 1,

c4
3 − c62 = 1728D.

Let d = GCD(c4
3,1728). Applying ABC to

c4
3

d
−
c6

2

d
=

1728D
d

.

gives

SUP

(
|c4|3

d
,
|c6|2

d

)
� N0

(
c4

3c6
21728D
d3

)1+ε

� N0 (c4c62 · 3 · D)1+ε

� |c4|1+ε |c6|1+εN0(D)1+ε

= |c4|1+ε |c6|1+εN1+ε.

Absorb the d’s into the “�” constant:

SUP
(
|c4|3 , |c6|2

)
� |c4|1+ε |c6|1+εN1+ε.
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ABC: SUP
(
|c4|1/4 , |c6|1/6

)
� N1/2+ε.

There are two cases to consider.
If |c6|2 ≤ |c4|3, then our inequality

SUP
(
|c4|3 , |c6|2

)
� |c4|1+ε |c6|1+εN1+ε

becomes |c4|3 � |c4|5/2+5/2εN1+ε.

Thus |c4|1/2−5/2ε � N1+ε,

or simply |c4|1/2 � N1+ε,

so that |c4|1/4 � N1/2+ε.

The other case, |c4|3 ≤ |c6|2, similarly gives

|c6|1/6 � N1/2+ε.

Combining the cases gives

SUP
(
|c4|1/4 , |c6|1/6

)
� N1/2+ε.
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PROGRESS REPORT
Rearranging B&SD gives:

|ILLI| =
L(s)

(s− 1)r

∣∣∣∣∣
s=1
·
|E(Q)TOR|

2

2r ΩR
∏
p|N
cp
� N3/4+ε

(rank fixed)

Thus, to bound |ILLI|, we seek bounds for:

•
L(s)

(s− 1)r

∣∣∣∣∣
s=1

� N1/4+ε, DONE

• |E(Q)TOR|
2 ≤ 144, by Mazur’s theorem

•
1

Ω
� N1/2+ε, DONE

•
1

R
� Cr (constant depending on r),

TO BE SHOWN

•
1∏

p|N
cp
≤ 1, since each cp =

∣∣∣∣∣ E(Qp)

E0(Qp)

∣∣∣∣∣ ≥ 1
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Establishing 1

R
� Cr

Recall that the regulator is

R = DET
[〈
Pi, Pj

〉]
,

where 〈·, ·〉 is the canonical height pairing, and

{Pi} is a basis for E(Q)/E(Q)TOR.

Viewing the free Z-module E(Q)/E(Q)TOR as

a lattice (of rank r) inside the R-vectorspace

E(Q)

E(Q)TOR
⊗
Z
R (of dimension r),

the regulator is simply

R = COVOL(lattice)2,

where volume is measured with respect to the

length

`(P ) =
√
〈P, P 〉.
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Establishing 1

R
� Cr

Among all nonzero lattice points, let h0 be the
minimal canonical height. Three results will
help us bound 1/R:

• Minkowski’s Theorem from the geometry
of numbers will give us:

1

R
� cr

(
1

h0

)r
.

• Hindry–Silverman will give us:

1

h0
� something involving S.

• Szpiro’s conjecture will give us:

S ≤ 6 + ε+ cε.
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Establishing 1

R
� cr

(
1

h0

)r

Theorem (Minkowski)

Let Bn denote the ball of radius n. If

VOL(Bn) ≥ 2r COVOL(lattice),

then Bn contains a nonzero lattice point. In
particular, the minimal nonzero length `0 sat-
isfies `0 ≤ n.

Corollary

Since VOL(Bn) = nr VOL(B1), the theorem re-
quires

nr ≥ 2r COVOL(lattice)/VOL(B1),

and gives `0
r ≤ nr. In particular, the possibility

nr = 2r COVOL(lattice)/VOL(B1)

gives us the unconditional conclusion

`0 ≤ 2r COVOL(lattice)/VOL(B1).
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Establishing 1

R
� cr

(
1

h0

)r

The corollary gave,

`0 ≤ 2r COVOL(lattice)/VOL(B1),

which for us becomes

`0
r ≤ 2r

√
R/VOL(B1).

Length and canonical height satisfy the iden-

tity `(P )2 = 2ĥ(P ); in particular, `0
2 = 2h0.

Thus we have

(2h0)r ≤ 22rR/VOL(B1)2,

so that

1

R
≤

2r/VOL(B1)2

h0
r .

In short, we have established

1

R
� cr

(
1

h0

)r
.
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Establishing 1

R
� Cr

Theorem (Hindry–Silverman)

Letting S = LOG |D| / LOGN denote the “Szpiro

number”, we have

1

h0
≤

(20S)8101.1+4S

LOG |D|
.

Conjecture (Szpiro)

We have |D| � N6+ε. Hence we have

LOG |D| ≤ cε + (6 + ε) LOGN,

or

S =
LOG |D|
LOGN

≤ 6 + ε+
cε

LOGN
≤ 6 + ε+ cε.
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Establishing 1

R
� Cr

Now combine the pieces:

1

R
� cr

1

h0
r

≤ cr
(20S)8r101.1r+4rS

(LOG |D|)r

≤ cr
(20(6 + ε+ cε))8r101.1r+4r(6+ε+cε)

(LOG |D|)r

Since |D| is always at least 3, we know

1

LOG |D|
< 1,

and thus we may conclude

1

R
� Cr.
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THANKS

• To Barry Mazur and Minhyong Kim, for

suggesting this material.

• To Minhyong Kim, Dinesh Thakur, Kirti
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These slides were last modified in March 1999.

The most recent version is available for anony-

mous retrieval from the website:

www.math.arizona.edu/∼aprl

Send comments and corrections to Alex Perlis:

aprl@math.arizona.edu
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