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Theorem:
Assuming the ABC, Szpiro, and B&SD con-

jectures, all semistable elliptic curves of fixed
rank have

|I_|_I| < N3/4+€.

From:

Dorian Goldfeld and Lucien Szpiro, Bounds for
the order of the Tate—Shafarevich group, Com-
positio Mathematica 97, 1995, pp. 71-87.
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ASSUMP TIONS

ABC Conjecture
For all A,B,C € Z with GCD(A,B,C) =1 and
A+ B =C,

SUP (|Al, |B],|C|) < No(ABC) e,
where Ng is the conductor of the product ABC'.

No(ABC) = || »p.
p|ABC

Szpiro’s Conjecture
For all elliptic curves E/Q,

D| < NOT¢

where D is the minimal discriminant of £, and
N is the conductor of E.

Remark
The above conjectures are equivalent. We will
make use of both formulations.



ASSUMP TIONS

Birch & Swinnerton-Dyer Conjecture
Let L(s) = L-series of E, and »r = RANK(E).
Then

ORD L(s) =,
s=1

and
L(s) 2" - M| - €2 R - Tl v cp

(s = 1)"| 4= |E(Q)orl?
where Q2 is the real period, R is the regulator,
and the ¢, are the local periods (Tamagawa
numbers).
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THEOREM

Assuming the previous three conjectures, we
have:

For all semistable elliptic curves of fixed rank r,

|I_|_I| < N3/4+€.

Precise statement:

For each rank r and each £ > 0, there exists
a constant C,c > 0 so that, for all semistable
elliptic curves of rank r, we have

LI < Cpc - N3/47F2



OVERVIEW OF PROOF

Rearranging B&SD gives:

L(s) IE(Q)T0Rr|?

—1)r o Q)
(s = 1)7|s=1 Rpl‘}vcp (rank fixed)

L] =

Thus, to bound |LI|, we seek bounds for:

L(s)
(s—1)"

< NY/4+¢ to be shown

s=1

e |E(Q)1or|? < 144, by Mazur's theorem

1
¢ 5 < N1/2+¢ to be shown

1
e — K () (constant depending on r),
R
to be shown

E(Qp)

1
Eo(Qp)| ~

< 1, since each c¢p = '

11 Cp
p|N
4-1



OVERVIEW OF PROOF

Rearranging B&SD gives:

_L(s) E(Q)1orl’
“—L” o ( 1)7 " or
s—1)".—1 27Q2R [[cp
p|N

Thus, to bound |LI|, we seek bounds for:

. L(s)
(s—1)"

s=1

e [E(Q)Tor|?

1
2




< 144, by Mazur’'s theorem

E(Qp)

1
Eo(Qp)| ~

< 1, since each c¢p = '




< NY/4+¢ to be shown

< N1/2+¢ to be shown

< Cy (constant depending on r),
to be shown
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(rank fixed)



Establishing 0« e
S — s=1

Recall, for ®(s) > 3/2, and semistable E:

1 1
— _ — 1—2s’
p|N1:|:p SpJ(N]- apPp S_I_p °

where ap = (1 4+ p) — #Ep(Fp).

L(s)
(s—1)"

X we proceed indirectly. As
S—=

To bound
usual, set

A(s) = N5/2(21) 51 (s) L(5s),

so that N2 —s) = E£A(s).

We have the bounds:

. (;\_(‘i))r < N3/4+e for R(s) = 3/2 +¢.
° | As) |« N3/44¢ for R(s) = 1/2 — .

(s—1)"



Establishing . L(S> « Nl/ate

1) s=1

Now we will transfer these bounds to the strip

1/2—e < R(s) <3/2+e.

By a generalized maximum modulus principle,
it is sufficient to show, throughout the strip,

is bounded (by something).

| A(s)
(s—1)"




Establishing . L(S)

1y <

s=1

Obtaining an arbitrary bound on ‘(A—(?}r

e Some upper bound on A(s):

A(s) = N3/2 (27) 5T (s) L(s)

e Some lower bound on (s —1)":
B&SD implies that (;\_(Sl)y does not blow up
at s = 1.




Establishing L(S)

1| S

s=1

T hus our bounds transfer to give
A(s)
(s—1)"
for 1/2 —e <R(s) <3/2+4c¢.

< N3/% 4 ¢

In particular, substituting s =1 gives

NY2(0m) 1 (1) ( L(s) : < N3/4+e
S
so that
L(s) 1/4+¢
< N .
(s—1)" s=1



Esta b||Sh|ng é < N1/2+e

Recall that the real period is

2= wl
E(R)

where w is the associated invariant differential.

Upon choosing a Weierstrass equation, E(R)
has one of two possible forms:

Let v denote the infinite component, and let ¢

denote the number of components. The inte-
gral along either component is the same; thus

Q:é/wy
i
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ESta b“Shlng é <« N1/2+e

Starting with a global minimal equation

Y24 a1 XY 4+ a3y = X3+ arX? + as X + ag,
dx

we have w = .
2Y —|— alX —|— a3z

The usual transformations (see Tate's article
or Silverman’s book) give the convenient form:

y2 = 23 — 27cqx — Bécq
3dx

w = —.
Y

Furthermore (we'll need this later):
1728D 043 — 0627
GCD(ca, D) 1.
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ESta b“Shlng é <« N1/2+e

Then Q2 =4 [ |w| becomes
3dx

o
v o \/:133 — 27cqz? — 54cq

where rg is the largest real root of the cubic.

3dx
Yy

oo
°° ®e

Knowing how to compute €2, we now show how
to bound 1/Q:

1
o < SUP(Jeal™* Jeg|'/0) < NT/ZFE
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Calculus: % < SUP <|04|1/4,|c6|1/6)

We must study
3d
Q= 25/ L .
o \/:L'3 — 27cqx — bécq

We will consider two cases based on the value

k= leal / leg| /3.

If |cg|® > |cal®, i.e., if 0 < k <1, then write the
integral in the form

1/ /OO 3dx
lesl /2 Jrg - \3 cal R '
(|c6|1/3> jE27<|c6|2/3) <|c6|1/3>154

The substitution v = x/ |c6|1/3 gives
1 /OO 3du
6| M/® Jr() |3 + 27ku + 54
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Calculus: % < SUP <|C4|1/4,|C6|1/6)

T hree observations:

e [ he integral

1 /OO 3du
6| M/© Jr() \[u3 £ 27ku + 54

converges when u3 4+ 27ku + 54 has distinct
roots, i.e., when k £+ 1.

e [ he integral goes to oo as kK — 1, which is
okay since we seek a lower bound.

e [ he integral is continuous in k for k €
[0,1 — ¢].

14



Calculus: % < SUP <|04|1/4,|c6|1/6)

Hence a lower bound must exist for the inte-
gral, so that

< 2.

1/6
cg |/

The other case, |cg|? < |cal?, similarly gives

cq|/* o

Combining the two cases gives

1
o < SUP (Jeal™*  Jes|Y°) .
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ABC: SUP (jealV/*,|c6|1/®) < N1/2F<.

Recall

GCD(C4,D)

043 — C62

1,
1728D.

Let d = GCD(c43,1728). Applying ABC to
ca3  cg?  1728D

d d d

gives

3 a2 30:21728D)\ 1 T¢
SUP <|C4| 7|C6| ) < N <C4 C6 )

d d d3
< NO (64662 - 3 - D)1+€
< eal* T jegl e No(D) e
= eal'TF Jeg| P TENTTE,

Absorb the d's into the "<’ constant:
SUP (Jeal® les|?) < feal™= Jeg| 1o NTF2.
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ABC: SUP (jealV/*,|c6|1/®) < N1/2F<.

There are two cases to consider.
If |cg|? < |cal®, then our inequality

SUP (|cal?, |c6|?) < |cal'T¢ el e N 1T

becomes |ca|3 < |eq|?/215/28 N1te

Thus g 1/275/28 « N1TE
or simply |c4|1/2 < N1Te,
so that lca| /' <« N1/2Fe

The other case, |ca|> < |cg|?, similarly gives

Combining the cases gives

SUP (‘C4|1/4 7 |C6|1/6> < N1/2+€.
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PROGRESS REPORT

Rearranging B&SD gives:

L(s) IE(Q)T0Rr|?

—1)r o Q)
(s = 1)7|s=1 Rpl‘}vcp (rank fixed)

L] =

Thus, to bound |LI|, we seek bounds for:

L(s)
(s—1)"

< NY/4+¢ DONE

s=1

e |E(Q)1or|? < 144, by Mazur's theorem

1
¢ 5 < N1/2+¢ DONE

1
° . < Cy (constant depending on r),
TO BE SHOWN

E(Qp)

1
Eo(Qp)| ~

< 1, since each c¢p = '

11 Cp
p|N
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Establishing %<<o,a

Recall that the regulator is
R = DET [<PZ-, Pj>] ,

where (-,-) is the canonical height pairing, and
{P;} is a basis for E(Q)/E(Q)ToR-

Viewing the free Z-module E(Q)/E(Q)Tor as
a lattice (of rank r) inside the R-vectorspace

Ef(SQT)OR <§Z§>R (of dimension r),

the regulator is simply

R = COVOL(lattice)?,

where volume is measured with respect to the
length
((P) = /(P P).
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Establishing %<<o,a

Among all nonzero lattice points, let hg be the
minimal canonical height. Three results will
help us bound 1/R:

e Minkowski's Theorem from the geometry
of numbers will give us:

1<< 1\"
— < Cr |\ — .
R " \hg

e Hindry—Silverman will give us:

1
P <K something involving S.
0

e Szpiro's conjecture will give us:

S<6+4¢ec+ ce.

20



Establishing * <. (i)

1
R ho

Theorem (Minkowski)
Let B,, denote the ball of radius n. If

VOL(By) > 2" COVOL((lattice),

then B,, contains a nonzero lattice point. In
particular, the minimal nonzero length /5 sat-
isfies £g < n.

Corollary
Since VOL(B,) = n"VOL(B7), the theorem re-
quires

n" > 2" COVOL (lattice) / VOL(B1),

and gives /g" < n". In particular, the possibility
n” = 2" COVOL (lattice) / VOL(B1)

gives us the unconditional conclusion

lo < 2" COVOL(lattice) / VOL(Bq).
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Establishing X <., (i)

ho

The corollary gave,

£o < 2" COVOL(lattice)/ VOL(B1),
which for us becomes
lo" < 2"VR/VOL(By).

Length and canonical height satisfy the iden-
tity ¢(P)2 = 2h(P); in particular, £52 = 2ho.
Thus we have

(2ho)" < 2°"R/VOL(B1)?,
so that

1 _ 27 /VOL(B1)?
R — ho" .
In short, we have established

1<< 1\"
— ] Cr | — 1 .
R " \hg
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Establishing %<<o,~

Theorem (Hindry—Silverman)
Letting S = LOG |D| /LOG N denote the “Szpiro
number’”, we have

1 _ (205)%101 145
ho ~ LOG[D|

Conjecture (Szpiro)
We have |D| <« N%T¢. Hence we have

LOG|D| < ¢z + (6 +¢) LOG N,

or

LOG |D| ‘.
— < < )
S= ooy S0TeT ognyS0tete
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Establishing %<<o,~

Now combine the pieces:

11
— C
R "ho"

(208)87“101.17“+47“8
<
= T (LoG D"

(20(6 _I_a_l_C€>)8T101.1T—|—4T(6—|—€—|—65)
o (LOG [DY)"

VAN

Since |D| is always at least 3, we know

1
LOG |D|
and thus we may conclude

< 1,
1
I < Cf.
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THANKS

e To Barry Mazur and Minhyong Kim, for
suggesting this material.

e To Minhyong Kim, Dinesh Thakur, Kirti
Joshi, and Bill McCallum, for answering all
our questions.

T hese slides were last modified in March 1999.
The most recent version is available for anony-
mous retrieval from the website:

www.math.arizona.edu/~aprl

Send comments and corrections to Alex Perlis:

aprl@math.arizona.edu
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