
The conclusion from the foregoing is that Steinhaus conjectured the ham sandwich
theorem and Banach gave the first proof, using the Ulam-Borsuk theorem. This shows
that Stone and Tukey were not correct in attributing the ham sandwich theorem to
Ulam. However, Ulam did make a fundamental contribution in proposing the antipodal
map theorem.

Remarks. We first mention a recent application by Blair Swartz of ham sandwich
theorems for fractions other than 1/2 to interface reconstruction in hydrodynamic cal-
culations. See paragraph 20 of the web site:

http://www-troja.fjfi.cvut.cz/∼liska/bbw/abs-list.html

There is a cautionary note stating that for some shapes or configurations of cells there
exist n-tuples of mass fractions that cannot be simultaneously sliced from cells.

Finally, we note a paper by Steinhaus [3] that represents work Steinhaus did in
Poland on the ham sandwich problem in World War II while hiding out with a Polish
farm family.

ACKNOWLEDGEMENT. We thank Sharon Smith for help in finding material in Polish libraries.
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Roots Appear in Quanta

Alexander R. Perlis

We start with a special case. Consider an irreducible quintic polynomial

f (X) = X 5 + a1 X 4 + a2 X 3 + a3 X 2 + a4 X + a5

with rational coefficients and with three real roots and one pair of complex conjugate
roots. For example, f (X) could be X 5 − 10X + 5.

Question. If α is a root of f , then how many roots of f lie in the field Q(α)?

The field Q(α) is obtained by adjoining the root α to Q. Thus Q(α) contains at least
one root of f , and of course it can contain at most five roots of f .

Answer. The number r( f ) of roots of f in Q(α) is 1. We prove that, for an arbitrary
irreducible polynomial f and root α, r( f ) divides the degree of f . For the quintic
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under discussion, adjoining one of the real roots cannot possibly produce the nonreal
roots, so r( f ), being a divisor of 5, must be 1.

An informal survey of books and colleagues indicates that the divisibility result
“r( f ) divides the degree” is not well known. In what follows, K is a field and, unless
stated otherwise, all roots and field extensions are taken in a fixed algebraic closure K
of K . When K = Q, we always take K inside the complex numbers so that we can
speak of real roots and nonreal roots.

Theorem 1. Let f (X) in K [X ] be an irreducible polynomial, and let α be a root of f .
Set

rK ( f ) := number of roots of f that lie in K (α),

sK ( f ) := number of fields of the form K (α′), where α′ is a root of f .

Then rK ( f ) is independent of the choice of α, and

rK ( f ) · sK ( f ) = cardinality of the set of roots of f .

In particular, rK ( f ) divides the degree of f .

Concerning the last statement of the theorem: the cardinality of the set of roots of f
is known as the separable degree of f , and it is well known that the separable degree
divides the usual degree.

Proof. For this proof, we let “root” mean “root of f ” and let “stem field” signify a
field of the form K (α′), where α′ is a root. Since f is irreducible, each stem field
is K -isomorphic to the abstract field K [X ]/( f (X)

)
, whence any two stem fields are

K -isomorphic. Isomorphisms take roots to roots, so rK ( f ) is the same for each stem
field. Each root α′ lies in precisely one stem field: it lies in K (α′), and if it also lies
in K (α′′), then K (α′) ⊆ K (α′′), but because the two stem fields have the same degree
over K (they are K -isomorphic), we must have K (α′) = K (α′′). In summary, the set
of roots is partitioned by the stem fields into sK ( f ) collections with rK ( f ) roots in
each collection, making rK ( f ) · sK ( f ) the cardinality of the set of roots.

The symbol rK ( f ) is determined both by the polynomial f and by the base field K .
When K is understood, as it was earlier when K = Q, the simpler notation r( f ) can
be used. There doesn’t seem to be an established name for the quantity rK ( f ), and I
propose: root quantum number of f over K . While this name initially sounds rather
fancy for a simple concept, the following theorem shows that the roots of f really do
come bundled in collections of size rK ( f ).

Theorem 2. Let f (X) in K [X ] be irreducible. If L/K is a field extension (not neces-
sarily algebraic), then the number of roots of f in L is a multiple of rK ( f ).

Proof. The proof of Theorem 1 exhibits a partition of the set of roots of f into collec-
tions of equal size rK ( f ), where each collection has the property: in any field extension
of K , the presence of one of the roots implies the presence of the remaining ones.

Remark. We can also see that the cardinality of the set of roots of f lying outside
a given extension L/K (counted in an algebraically closed field containing L) is a
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multiple of rK ( f ). Theorem 1 shows that rK ( f ) divides the total number of roots, and
Theorem 2 shows that rK ( f ) divides the number of roots in L , so rK ( f ) also divides
the difference of these two numbers.

Corollary. If f (X) in Q[X ] is irreducible, then the number of real roots of f is a
multiple of rQ( f ). The same can be said about the number of nonreal roots.

Proof. Keeping the remark in mind, take L = R in Theorem 2.

Theorem 2 may be summarized as follows: roots appear in quanta. This places
combinatorial restrictions on the way f can factor. For example, if f (X) in K [X ]
is irreducible and separable of degree 15, with α a root, then the factorization of f
over K (α) cannot have the following form:

(linear)(linear)(linear)(quadratic)(quadratic)(octic).

To see this, assume for the sake of contradiction that the factorization of f over K (α)

has the form indicated. Since f is separable, the three linear factors correspond to dis-
tinct roots of f in K (α), so rK ( f ) = 3. The field L obtained from K (α) by adjoining
the roots of the two quadratic factors has degree at most 4 over K (α). Thus L contains
none of the roots of the octic factor, so L contains precisely seven of the roots of f .
This contradicts the fact that the number of roots of f in L must be a multiple of three.

The interested reader can check that the root quantum number has the following
three descriptions in terms of Galois theory. Let f be irreducible and separable over K ,
with Galois group G, viewed as a permutation group on the set of roots of f . Let
H ⊂ G be the subgroup fixing a root α. Then:

i. rK ( f ) is the number of roots fixed by H ;
ii. rK ( f ) is the cardinality of Aut(K (α)/K ); and

iii. rK ( f ) is the index [NG(H) : H ] of H in its normalizer.

Finally, it is instructive to think about the triples (K , n, r) that indicate the existence
of an irreducible polynomial f (X) in K [X ] of degree n with root quantum number r .
The necessary condition discussed in this note is that r must divide n. Here are some
exercises involving these triples:

1. Show that (Q, 2, 1) does not appear.
2. Find a field K for which (K , 2, 1) does appear.
3. Let r divide n. Show that there exists K for which (K , n, r) appears.
4. (Advanced) Let r divide n. Except for (Q, 2, 1), show that (Q, n, r) appears.

Solutions can be obtained from the author.
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