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Herein are solutions to the exercises given in [1]. Let K be a field, and f(X) ∈
K[X] an irreducible polynomial. The root quantum number rK(f) is the number
of roots of f in the stem field K(α), where α is an arbitrary choice of root of f .
It was shown that rK(f) is well-defined and divides the degree of f .

We start by establishing the connection with Galois theory. Let f be irre-
ducible and separable over K. Let L/K be the splitting field and G the Galois
group. Fix a root α, and let H ⊂ G be the subgroup fixing α. A root of f lies
in K(α) if and only if it is fixed by H, so rK(f) equals the number of roots fixed
by H. Any automorphism of K(α)/K is determined by the image of α, which
must be another root of f lying in K(α); conversely, the map sending α to any
root of f in K(α) gives rise to an automorphism. Thus rK(f) equals the cardi-
nality of Aut

(
K(α)/K

)
. Finally, rK(f) equals the index [NG(H) : H] of H in its

normalizer, since Galois theory (see below) tells us Aut
(
K(α)/K

) ∼= NG(H)/H.

Proposition. Let L/K be a finite Galois extension with Galois group G, let H
be a subgroup, and let LH be its fixed field. Then Aut(LH/K) ∼= NG(H)/H.

Proof. An element g ∈ G restricts to an automorphism of LH/K if and only if
g(LH) ⊆ LH , and g is trivial on LH precisely when g ∈ H. Any automorphism
of LH/K extends to an automorphism of L/K, so we must show: the g ∈ G that
induce automorphisms of LH/K are precisely the g ∈ NG(H). If g ∈ NG(H)
and x ∈ LH , then Hgx = gHx = gx, so gx is fixed by H, whence gx ∈ LH . If
g /∈ NG(H), then there exists h ∈ H so that g−1hg /∈ H, so there exists x ∈ LH

with g−1hgx 6= x, whence hgx 6= gx, so gx /∈ LH .

The exercises concern triples (K, n, r) that indicate the existence of an irre-
ducible polynomial f(X) in K[X] of degree n with rK(f) = r. The necessary
condition is that r must divide n.

Exercise 1. Show that (Q, 2, 1) does not appear.

Solution. For (Q, 2, 1) to appear, there would have to exist a quadratic irre-
ducible polynomial over Q, call its roots α and β, such that Q(α) contains
precisely one root of f : either β = α or β /∈ Q(α). But irreducible polynomials
over Q have distinct roots, ruling out β = α, and over Q(α) the factorization
of f must have the form f(X) = a(X − α)(X − β), whence β ∈ Q(α).

Remark. The precise class of fields K for which (K, 2, 1) does not appear com-
prises the fields that admit no quadratic irreducible polynomial with a repeated
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root. This class includes all perfect fields, and thus includes all finite fields and
all fields of characteristic 0.

Exercise 2. Find a field K for which (K, 2, 1) does appear.

Solution. Let K = F2(t), the field of rational expressions in t with coefficients in
the finite field F2. The polynomial X2 − t is quadratic and irreducible, but not
separable: its factorization over K(

√
t) is (X −

√
t)2. Although K(

√
t) contains

all roots of f , there is only one root.

Remark. The reader may feel that roots ought to be counted with multiplicity.
To that end, define `K(f) to be the number of linear factors in the factorization
of f over any stem field, and call `K(f) the linear factor quantum number of f .
Letting sK(f) be the number of stem fields, we have:

rK(f) · sK(f) = SepDeg(f), `K(f) · sK(f) = Deg(f).

If we were to consider triples (K, n, `) instead of (K, n, r), then the triple (K, 2, 1)
would never occur, no matter what field K was chosen.

Exercise 3. Let r divide n. Show that there exists K for which (K, n, r) appears.

Solution. The existence of a (K, 2, 1) was established in the solution to the
previous exercise, so we now assume (n, r) 6= (2, 1). Hilbert showed: for each n,
there exists f(X) ∈ Q[X] of degree n with Galois group Sn. If r = 1, then we’re
done: a stem field of f over Q will contain precisely one root of f . (Here we
used the assumption (n, r) 6= (2, 1).) Henceforth we assume r > 1.

We will be done if we can produce a field K and an irreducible separable
polynomial f(X) ∈ K[X] of degree n whose Galois group has the property that
a point stabilizer fixes precisely r points. We start with f(X) ∈ Q[X] with
Galois group Sn, as in the previous paragraph. To produce K, we first cook
up a subgroup G ⊂ Sn with the desired properties: it must be transitive on n
points, and a point stabilizer must fix precisely r points. For example, label the
roots of f in vertical packets of size r:

α11, α21, α31 α(n/r)1,
α12, α22, α32 . . . α(n/r)2,

...
...

...
...

α1r, α2r, α3r α(n/r)r.

Let G be the group of permutations on these n roots generated by independent
cyclic permutations on each vertical packet, together with a cyclic permutation
on the overall set of packets. This construction is called a wreath product.
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If some group element g ∈ G fixes one root in a vertical packet, then g ties down
the vertical cycle of that packet as well as the overall horizontal cycle, but the
remaining vertical cycles remain free and independent. In other words, all roots
in one packet are fixed, but no roots in other packets are fixed. (Here we used
the assumption r > 1. Otherwise all roots would be fixed.)

Letting L/Q be the splitting field of f , let K = LG be the fixed field of the
group G constructed above. Then L/K is Galois with G as Galois group. This
group permutes the roots of f transitively, so f(X) remains irreducible when
viewed as a polynomial in K[X]. By construction, if α is any root of f in L,
then the stem field K(α) contains precisely r roots of f , so rK(f) = r. In other
words, we have produced a (K, n, r).

Exercise 4. Let r divide n. Except for (Q, 2, 1), show that (Q, n, r) appears.

Solution. The trick here is to modify the solution to the previous exercise to
obtain the base field Q. Since we already showed that (Q, n, 1) appears when
n 6= 2, we henceforth assume r > 1. Recall that we constructed a wreath product
G ⊂ Sn and showed it to occur as the Galois group of an irreducible polynomial
with coefficients in a field K, thus giving us a (K, n, r). Now we will show that
the same group occurs as the Galois group of an irreducible polynomial with
coefficients in Q, thus giving us a (Q, n, r). To do this, we will show that G is
solvable and then appeal to a theorem of Shafarevich.

The wreath product construction of G has the explicit description of a semi-
direct product

G = (Cr × Cr × · · · × Cr︸ ︷︷ ︸
n/r copies

) o Cn/r,

where the symbols denote cyclic groups of the indicated order, and the action
of Cn/r is to permute the factors on the left. The chain

1 ⊂ Cr ⊂ Cr × Cr ⊂ · · · ⊂ (Cr × Cr × · · · × Cr) ⊂ G

has cyclic quotients, so G is solvable. Now apply the following theorem.

Theorem (Shafarevich). If G is a finite solvable group, then there exists a
finite Galois extension of Q with Galois group isomorphic to G.

Proof. See [2, Thm 9.5.1].

Actually, for our purposes, we need the more precise statement: If G is a
solvable transitive subgroup of Sn, then there exists an irreducible polynomial
f(X) ∈ Q[X] of degree n and a labeling of the roots so that G is the root per-
mutation group of f . The point is that we have a particular permutation repre-
sentation of G in mind, namely the wreath product from earlier, and knowing
merely that G occurs somehow as a Galois group does not trivially imply that
it occurs in the form of our wreath product. (After all, S3 also occurs in its left
regular representation as a transitive subgroup of S6, so knowing merely that S3

occurs as a Galois group does not immediately tell us that it occurs as the root
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permutation group of a degree 6 polynomial. For a more elaborate example,
S7 admits non-conjugate copies of GL(3,F2) as subgroups, so when GL(3,F2)
occurs as a Galois group of a degree 7 polynomial, which of the possible root
permutation groups do we get? In fact, in both examples, all representations
occur.) As we show below, every faithful transitive permutation representation
of an abstract Galois group occurs concretely as the root permutation group
of a polynomial. This gives us the precise form of Shafarevich’s theorem and
completes the exercise solution.

Proposition. Let G be a given transitive subgroup of Sn for some n. If there
exists a finite Galois extension of a field K with Galois group abstractly isomor-
phic to G, then there exists an irreducible polynomial f(X) ∈ K[X] of degree n
and a labeling of the roots so that the Galois group of f , viewed as a root per-
mutation group, is precisely G.

Proof. Let H ⊆ G be the stabilizer of the symbol 1; then there is a canonical
labeling of the n cosets in G/H so that G acts on G/H exactly the same way G
acts on the original n symbols. In particular, the action of G on G/H is faithful
and transitive. Now suppose that G is abstractly isomorphic to
the group G′ = Aut(N/K) for some finite Galois extension N
of K. Under that isomorphism, H corresponds to a subgroup
H ′ ⊆ G′. Let L be the subfield of N fixed by H ′. Then G′

acts faithfully and transitively on G′/H ′ exactly the same way
that G acts on G/H. In particular, one can easily check that N
is the normal closure of L/K, since the normal closure of L/K
in N is the subfield of N corresponding to the intersection of the
conjugates of H ′ in G′, and that intersection is 1 since the action
is faithful. Now write L = K(θ). Then θ is a root of an irreducible polynomial
f(X) ∈ K[X] of degree n. You can identify the n roots of f(X) with the n
cosets in G′/H ′. We have produced an irreducible polynomial whose Galois
group G′ acts on the n roots exactly like G acts on the original n objects.

N

K

G′L

n
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