
Math 410 (Prof. Bayly) MINIMUM-LENGTH SOLUTIONS Summer 2005

The fundamental theorem of finite-dimensional linear algebra is that a system of simulta-
neous linear equations has either no solutions, one unique solution, or an infinite number
of solutions. When an infinite number of solutions exist, an application-minded person
would ask ”Which one is the best?” It is often practical to ask, if there are several ways
to solve a problem, which one does so in the most efficient or optimal way?

To quantify the concept of quality, we often define a ”utility function” for which bigger
values are better, or a ”cost function” for which smaller values are more desirable. Finding
the best is then to determine the solution that either maximizes the utility or minimizes the
cost. In a real-world situation these functions depend on the situation, and the problem of
finding the optimum can be quite complicated. There is a lot of current research activity
on efficient techniques for finding optimum solutions. (Visit some of the Systems and
Industrial Engineering professors!)

In Mathematics we’re allowed to consider simple questions first, and in the context of
linear algebra it’s natural to define the ”cost” of a vector as simply its length. It turns out
that the problem of finding the minimum-length solution to a system that has infinitely-
many solutions is solvable but not trivial. The answer ends up not only being a lot more
useful than you might initially think for such a simplistic cost function, but we also learn
some interesting mathematics. We’ll see minimum-length solutions reappear in a different
context in our later discussions of the Singular Value Decomposition and its applications.

Example 1. The most direct way to find the minimum-length solution of a system of
equations is to find the general solution first, and then seek the one with minimum length.
For example, consider A~x = ~b, with

A =
(

1 3 2
2 1 −1

)
, ~x =



x
y
z


 , ~b =

(−1
3

)
. (1a)

We quickly find the solution family

~x =




2 + z
−1− z
z


 =




2
−1
0


+ z




1
−1
1


 = ~xp + z~n, (1b)

where ~xp denotes the particular solution and ~n the null vector.

The length of the solution vector is a function of the free variable:

L(z) =
[
(2 + z)2 + (−1− z)2 + z2

]1/2
=
[
3z2 + 6z + 5

]1/2
. (2a)



It’s a simple Calculus exercise to minimize L(z) by finding the derivative

L′(z) =
1
2
[
3z2 + 6z + 5]

]−1/2
(6z + 6), (2b)

setting it to zero and solving for z = −1. Therefore the minimum-length solution is

~xml =




1
0
−1


 . (3)

One thing to notice is that when we solved for the value of z at which L′ = 0, all we did
was set 6z + 6 = 0, which is the derivative of the length squared L2(z) = 3z2 + 6z + 5. In
retrospect it’s clear that minimizing L2 is equivalent to minimizing L, and we don’t have
to bother with the square root. It’s also worth noting that L2 is a simple quadratic, and
the derivative of L2 is a linear function of z, so it’s very easy to find the minimum.

Example 2. Let’s apply these observations to A~x = ~b, where ~x = (x y z )T again,
A = ( 1 1 −2 ), and ~b = ( 3 ). Now the solution family has two free variables and
corresponding null vectors:

~x =




3− y + 2z
y
z


 =




3
0
0


+ y



−1
1
0


+ z




2
0
1


 = ~xp + y~n1 + z~n2. (4)

The length squared function is

L2(y, z) = (3− y + 2z)2 + y2 + z2 = 2y2 − 4yz + 5z2 − 6y + 12z + 9. (5a)

To find the minimum we calculate the partial derivatives of L2 with respect to both y, z,
and set both equal to zero. Explicitly

∂L2

∂y
= 4y − 4z − 6 ,

∂L2

∂z
= −4y + 10z + 12. (5b)

Setting these to zero and solving yields y = 1/2, z = −1. Therefore the minimum-length
solution is

~xml =




1/2
1/2
−1


 . (6)

Note again that L2 is again a simple quadratic (albeit in two variables), its partial deriva-
tives are linear functions, and finding the minimizing values of the free variables is just
solving a pair of simultaneous linear equations.



It turns out that the pattern we have seen in these two examples always appears when we
look for the minimum-length solution, whatever the number of free variables. Furthermore
there is a direct way to find a system of linear equations whose solution is the desired
minimum-length solution, without having to do any calculus.

General theory. Let’s consider the case of one free variable. The general solution is
~x = ~xp + z~n where ~xp and ~n depend on the matrix A and right-hand side vector ~b. The
length squared function can be written

L2(z) = ~xT~x = (~xp + z~n)T (~xp + z~n) = z2~nT~n+ 2z~nT~xp + ~xTp ~xp. (7a)

Its derivative is
dL2

dz2
= 2~nT~n+ 2~nT~xp, (7b)

which is zero when z = −~nT~xp/~nT~n. Therefore the minimum length solution is

~xml = ~xp − ~nT~xp
~nT~n

~n. (8)

There is nothing new (yet) about the result in (8), except you may recognize it as the
formula for the projection of ~xp orthogonal to ~n. If you have not learned about orthogonal
projections, you will very soon - if you’re psychic you can precognize* it from the future
instead of recognizing it from the past. If neither, then just observe that

~nT~xml = ~nT
(
~xp − ~nT~xp

~nT~n
~n

)
= ~nT~xp − ~nT~xp

~nT~n
~nT~n = 0. (9)

The important conclusion is that the minimum length solution ~xml is orthogonal to the
null vector ~n.

A similar calculation involving partial derivatives shows that whatever the number of
free variables, THE MINIMUM LENGTH SOLUTION IS ALWAYS ORTHOGONAL TO
EVERY NULL VECTOR OF THE MATRIX! (You should go back right now and verify
this assertion for the examples we did above.) This is the crucial observation that knocks
down the calculus problem of minimizing a quadratic function to a problem of simultaneous
linear equations.

There’s still a bit of thinking that has to be gone through before we’re home, which is
connected to the problem of what it means for a vector to be orthogonal to the null
vectors of a matrix. If you think about where the null vectors of a matrix A come from,
you recall that each null vector ~n has the property that A~n = ~0. And the operation of

* Recognize is to recognition as precognize is to precognition.



matrix-vector multiplication simply consists of dot-multiplying the row vectors of A with
the column vector ~n. So each row vector of A dotted with the null vector ~n gives zero, i.e.
the null vector is orthogonal to each row vector of A. Or, since we often prefer to think of
column vectors, each null vector of A is orthogonal to each column vector of AT .

The conclusion of the previous paragraph can be restated as saying that each column vector
of AT is orthogonal to each null vector of A. It turns out, via a somewhat nontrivial proof†,
that any vector that is orthogonal to each null vector of A must be a linear combination
of the column vectors of AT .

The implication is that ~xml must be a linear combination of the column vectors of AT .
It’s clearly the case in our second example, where ~xml = 1

2A
T , and you can check that in

the first example ~xml is −1/5 times the first column of AT plus 3/5 times the second. We
can use this fact to get a practical and efficient way to find minimum length solutions in
general.

Practical method. An algebraic way to express the fact that the minimum length so-
lution is a linear combination of the column vectors of AT is ~xml = AT~u, where the
components of ~u are the coefficients in the desired linear combination. Since the original
problem was A~x = ~b, with ~xml being simply the shortest possible solution, the coeffi-
cient vector ~u must satisfy A(AT~u) = ~b. Or, using the associative property of matrix
multiplication,

(AAT )~u = ~b. (10)

Therefore, if (10) can be solved for ~u, all we need to do is multiply ~u by AT to obtain the
minimum length solution ~xml. No calculus, no free variables or null vectors! We still have
to solve a linear system, and do a couple of extra multiplications, but conceptually at least
we have a much simpler procedure.

Let’s see how it works. In example 1, AAT =
(

14 3
3 6

)
, so the system (10) becomes

(
14 3
3 6

)(
u
v

)
=
(−1

3

)
, therefore

(
u
v

)
=
(−1/5

3/5

)
. (11)

These are exactly the coefficients that we observed above give ~xml as a combination of the
columns of AT , or more concisely,

~xml =




1
0
−1


 = AT~u =




1 2
3 1
2 −1



(−1/5

3/5

)
.

† There’s magic going on here, folks, and one of the rewards of studying rigorous pure
mathematics is the power you acquire to wield that magic.



Example 2 goes even faster. AAT = (6), so (10) is nothing but the scalar equation 6u = 3,
whose solution u = 1/2 is the desired multiple we identified above.

To summarize, a practical way to find the minimum length solution of A~x = ~b is:

(1) Calculate AAT ,

(2) Solve AAT~u = ~b for ~u,

(3) Calculate ~xml = AT~u.

NOTE: On homework and/or exams we may have you derive the general solution toA~x = ~b,
with free variables and null vectors, as the first part of a problem, and ask you to find the
min length solution for the second part. Or we might actually give you the general solution
as part of the problem. If so, i.e. if you already have the general solution, it might be less
work to use the calculus approach, especially if there is only one free variable. We advise
you to become expert with both techniques, so that you can choose the best method under
any circumstances.

Remarks. You may wonder whether the new linear system AAT~u = ~b has no solutions,
one unique solution, or an infinite number of solutions. It turns out (if you do the rigorous
theory) that if the original system A~x = ~b has at least one solution, then so does AAT~u = ~b.
However it is quite possible for AAT~u = ~b to have an infinite number of solutions for ~u,
for example if

A =
(

1 2 −1
2 4 −2

)
, ~b =

(
6
12

)
,

then

AAT =
(

6 12
12 24

)
, therefore ~u =

(
1− 2v
v

)
=
(

1
0

)
+ v

(−2
1

)
.

Does this mean that there are infinitely many minimum length solutions? That would
seem to contradict our expectation that we are finding ”the one” with smallest length. If
we follow through to find

~xml = AT~u =




1 2
2 4
−1 −2



(

1− 2v
v

)
=




1− 2v + 2v
2− 4v + 4v
−1 + 2v − 2v


 =




1
2
−1


 ,

however, we find that the free variable in ~u disappears. It turns out that our expectation
is indeed correct; the minimum length solution is always unique even if AAT~u = ~b has an
infinite number of solutions.



It frequently happens that AAT is invertible, in which case we can write ~u = (AAT )−1~b

and therefore ~xml = AT (AAT )−1~b. The matrix Ar = AT (AAT )−1 plays a similar role
to the matrix A−1 when A itself is invertible. In fact Ar has the property that when it
multiplies A on the right it yields AAr = I, so we sometimes call it the right semi-inverse
of A. However, ArA is not necessarily equal to I, so a right semi-inverse is not necessarily
a genuine inverse.

Preview of coming attraction. A matrix A may have the property that ATA is invert-
ible, even if neither A nor AAT is invertible. Then the matrix Al = (ATA)−1AT has the
property that AlA = I, and is called the left semi-inverse of A. The left semi-inverse arises
when the system A~x = ~b has no solutions, and we seek the least squares best approximation,
as described in chapter 4 of Olver and Shakiban. When the left semi-inverse exists it gives
the least-squares best approximate solution as ~xls = Al~b.

As mentioned, the left semi-inverse (if it exists) is not necessarily a genuine inverse. If
a matrix does have both right and left semi-inverses, then it must be invertible, and the
one-sided semi-inverses are both equal to the genuine inverse.

Distant future. When we study the Singular Value Decomposition (SVD, see chapter 8
in Olver and Shakiban) we will learn about a matrix A+ called the pseudoinverse of A.
The pseudoinverse always exists for any matrix A whatever (as long as at least one entry
is nonzero), and coincides with whichever of the right and/or left and/or genuine inverses
happen to exist. Given the system A~x = ~b, we can therefore always find ~xlsml = A+~b, the
minimum length least squares best approximate solution.

Not only does the SVD give us a completely guaranteed foolproof ”solution”, whatever the
properties of the original problem, it has a lot of properties that are useful in many other
situations. Watch this space!


