
1 / 18

Summer 2009 REU: Introduction to Some Advanced
Topics in Computational Mathematics

Moysey Brio & Paul Dostert

July 4, 2009

Sparse Matrices

2 / 18

In many areas of applied mathematics and modeling, one comes across
sparse matrix problems, where we need to solve Ax = b with A containing
primarily zeros.

Storage of n × n linear system with m nonzero entries:

● Full Matrix Storage: n2 elements. For n = 10, 000 a double precision
matrix takes approx 763 Mb.

● Matlab-like (i, j, Aij) Storage: 3m elements. For n = 10, 000 and

m = 50, 000 a double precision matrix takes approximately
1

2
Mb.

An example problem would be solving an elliptic PDE on a 2D mesh. Using
a 2D mesh and simple finite differences, one would want an approximation
to the solution of a PDE at each point in the mesh. For a 1000 × 1000 mesh,
which is quite small in practical problems, we have a resulting
1, 000, 000 × 1, 000, 000 matrix. Having 5, 000, 000 nonzeros would result in
approximately 76 Mb for (i, j, Aij) storage.

CSR & CSC

3 / 18

For (i, j, Aij), generally all the i = 1 values come first, then i = 2, and so in.
Instead of saving each i value, we save how many entries come before we
transition from row i to row i + 1. This is the idea behind compressed sparse
row (column) format.

Consider storing the following matrix:
























6 1 0 1 0 0 2 0
1 6 0 1 0 1 0 0
1 1 6 1 0 0 1 0
0 0 0 6 0 3 0 0
5 0 0 1 6 0 0 1
2 0 0 3 0 6 0 0
1 0 0 0 0 0 6 0
0 0 0 0 0 0 1 6

























.

We keep
a = [6 1 1 2 1 6 1 1 1 1 6 1 1 6 3 5 1 6 1 2 3 6 1 6 1 6]
J = [1 2 4 7 1 2 4 6 1 2 3 4 7 4 6 1 4 5 8 1 4 6 1 7 7 8]
I = [1 5 9 14 16 20 23 25 27]

which is only 2m + n + 1 entries.

CSR & CSC

4 / 18

Storage of n × n linear system with m nonzero entries:

● Full Matrix Storage: n2 elements. For n = 1, 000, 000 a double precision
matrix takes approx 7 Tb.

● Matlab-like (i, j, Aij) Storage: 3m elements. For n = 1, 000, 000 and
m = 5, 000, 000 a double precision matrix takes approximately 76 Mb.

● CSR & CSC Storage: 2m + n + 1 elements. For n = 1, 000, 000 and
m = 5, 000, 000 a double precision matrix takes approximately 61 Mb.

Issues:

● CSR does not save a huge amount of space, but in applications > 2D,
matrix sizes are well into the trillions. This could be a savings in a few
terabytes.

● CSR does not take advantage of symmetry, or repeated patterns.
● Matrix-vector, matrix-matrix multiplication routines should be rewritten to

use CSR.
● In a practice, a full matrix is stored only if completely necessary. Often,

we only need to know how matrices act, rather than every element of a
matrix. For example, to use a Conjugate Gradient routine one only
needs to know how to compute Ax for any x.

Parallel Computing Architectures

5 / 18

Some problems simply cannot be done on a single computer or single
processor. For these problems, we must use some special techniques. First,
let us discuss different type of parallel computing environments.

In a general environment, we have a set of processors, a set of memory
banks, and some way to connect between them. The way this is set up
defines different types of parallel machines

Processor

ProcessorProcessor

Interconnect

Memory Memory Memory
Memory

Shared Memory

6 / 18

Examples of shared memory computers would be your multicore desktop,
some SGI Power Challenge servers, and some Cray machines. Properties
often include:

● A single memory bank, which each processor has relatively fast access
to.

● Few processors or cores. Usually, at most, 1000 or so processors.
● Very expensive. Fast interconnects between processor are extremely

expensive.

Processor

Shared Memory

Processor Processor Processor

Distributed Memory

7 / 18

Examples of distributed memory computers would be a traditional Beowulf
cluster. Properties often include:

● Each processor has it’s own local memory bank.
● Relatively slow interconnect between processors.
● Inexpensive. In it’s simplest form, this can simply be PCs linked together

over a network.
● Can be many processors (IBM Roadrunner has 19, 440 processors, with

129, 600 cores).

Memory

Processor Processor

Memory

Processor

Memory

Processor

Memory

Network

Realistic and Modern Designs

8 / 18

Nearly all powerful clusters are a combination of shared and distributed
memory. Essentially, think of this as series of shared memory machines
linked to each other in a distributed network.

Memory

Network

Processor

Memory

Processor

Memory

Processor

Memory

Processor

Parallelization of Linear Systems

9 / 18

Let us consider a matrix problem Ax = b where A is a tridiagonal matrix,
with −2 on the diagonal and 1 on the upper and lower diagonals. Suppose
we are given a vector y and wish to compute Ay = z. (Note: In a practical
application, we’d never store this matrix, since it’s matrix-vector result can be
easily computed without keeping each entry of A).

We must compute:














−2 1 0 . . . 0
1 −2 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . 1 −2 1
0 . . . 0 1 −2





























y1

y2

...
yn−1

yn















=















−2y1 + y2

y1 − 2y2 + y3

...
yn−2 − 2yn−1 + yn

yn−1 − 2yn















Suppose that we would like to compute the result using two processors, by
letting the first processor compute the first half of z and the second
processor the second half.

Linear Systems on Shared Memory

10 / 18

On a shared memory machine, each processor has direct access to each
part of A and y. We simply let each processor do the required work. We
denote the work done on the first processor in red, and the second in green.















−2 1 0 . . . 0
1 −2 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . 1 −2 1
0 . . . 0 1 −2





























y1

y2

...
yn−1

yn















=















−2y1 + y2

y1 − 2y2 + y3

...
yn−2 − 2yn−1 + yn

yn−1 − 2yn















We can easily extend this idea to many more processors. Note that we can
split the matrix any way desired, as long as we balance work to reach
processor evenly.

Linear Systems on Distributed Memory

11 / 18

On a distributed memory machine, different parts of the matrix and vectors
are stored locally on different memory/processor locations. For example, we
could multiply using the coloring below, where entries in cyan are needed by
both processors (we ignore zeros):





























−2 1 0 . . . 0 0 0 0
1 −2 1 . . . 0 0 0 0
...

. . .
. . .

. . .
. . . 0 0 0

0 . . . 1 −2 1 0 0 0
0 . . . 0 1 −2 −1 0 0

0 . . .
. . .

. . .
. . .

. . .
. . . 0

0 . . . 0 0 0 1 −2 1
0 . . . 0 0 0 0 1 −2

























































y1

y2

...
yn/2−1

yn/2

...
yn−1

yn





























=





















−2y1 + y2

...
yn/2−2 − 2yn/2−1 + yn/2

yn/2−1 − 2yn/2 + yn/2+1

...
yn−1 − 2yn





















Linear Systems on Distributed Memory

12 / 18

Issues in using distributed memory systems:

● BOTH CPUs need yn/2 and yn/2−1.
● Usually, CPU 1 would store y1 to yn/2−1 while CPU 2 stores the rest.
● This means for CPU 1 to use yn/2, the value needs to be PASSED from

CPU 2 to CPU 1.
● Intead of splitting the matrix as above, what happens if each odd row is

stored on CPU 1 and each even row on 2?
● It is harder to write good code for distributed memory machines, but the

same code would run very well on shared memory as well.

Application programming interfaces (APIs) for parallel machines:

● For distributed memory machines, Message Passing Interface (MPI) and
Parallel Virtual Machine (PVM) are the most used.

● For shared memory machines, there are many choices:

✦ OpenMP: Often works with MPI in practical machines.
✦ Intel Threading Building Blocks (TBB): Relatively new.
✦ POSIX Threads (Pthreads): usually C only.

Parallelization in Matlab

13 / 18

Many Matlab functions are already built to use multicore processors :

● » maxNumComThreads(n) sets the number of cores to use.
● Enabling parallel computations usually comes through function options:

options = optimset(’UseParallel’,’always’);

There is also a Parallel Computing Toolbox allowing you to parallelize your
own codes:

● Use matlabpool open n to enable n machines/cores (if there are n

available).
● Change for to a parfor to indicate a loop can be done in any order.
● Use matlabpool close to indicate parallel code is done.
● Arrays can be split for distributed clusters using the codistributed

command:
»A = rand(80, 1000); D = codistributed(A, ’convert’);

This distributes the array to each process in the Matlab pool , as D. This
requires everyone to already have A stored.

● The above does not save on memory. To do that, we use something like:
»L = magic(5) + labindex; A = codistributed(L, codistributor());

Mesh Partitioning

14 / 18

Often a nonzero entry Aij implies a geometric relationship between i and j.
This can be used to distribute loads evenly to CPUs. This process is often
called mesh partitioning.

Consider an 8 × 8 grid where each point is an entry in x. This results in a
64 × 64 matrix, A. Assume that row i contains an element in the jth column
iff i and j are connected in the mesh:

(1,1)

(8,8)

Mesh Partitioning - 2 Processors

15 / 18

There are many ways to decompose an 8 × 8 mesh into two parts with an
equal amount of unknowns. After a tiny bit of thinking, it is clear that splitting
through the middle horizontally or vertically will produce the configuration
requiring the smallest amount of communication:

Mesh Partitioning - 4 Processors

16 / 18

For four processors , things get slightly more complicated. Each of the
following are possibilities. Either situation may be optimal, depending on the
processor configuration:

Mesh Partitioning - General Case

17 / 18

Partitioning a general mesh so that the load given to each processor is
approximately the same, while still minimizing communication is an
extremely difficult task and an active area of research.

Future Directions

18 / 18

A fairly recent development in parallel computing is the use of GPUs.

● GPUs were developed to run advanced graphics and video games. They
have a huge number of processing threads.

● GPUs are hundreds to thousands of times faster at certain calculations
than a CPU, but struggle with general computing.

● Offloading certain calculations to a GPU can greatly speed up your
computations.

● Special coding environments (OpenCL and CUDA) must be used, and
codes need to written very carefully.

● An Intel Core i7 965 Extreme provides approximately 60 GFLOPS and
costs $1000.

● An AMD/ATI Firestream 9270 SP provides 270 GFLOPS and costs $1250.

Bottom line:

● Multicore processor are here to stay, and you will have to learn how to
use them properly.

● If you are interesting in computing, make sure to take a basic parallel
programming class.

● A faster algorithm won’t necessarily be better computationally, since it
may be very difficult to parallelize.

	Sparse Matrices
	CSR & CSC
	CSR & CSC
	Parallel Computing Architectures
	Shared Memory
	Distributed Memory
	Realistic and Modern Designs
	Parallelization of Linear Systems
	Linear Systems on Shared Memory
	Linear Systems on Distributed Memory
	Linear Systems on Distributed Memory
	Parallelization in Matlab
	Mesh Partitioning
	Mesh Partitioning - 2 Processors
	Mesh Partitioning - 4 Processors
	Mesh Partitioning - General Case
	Future Directions

