

Summer 2009 REU: Introduction to Some Advanced Topics in Computational Mathematics

Moysey Brio & Paul Dostert

July 4, 2009

Sparse Matrices

In many areas of applied mathematics and modeling, one comes across sparse matrix problems, where we need to solve $A\mathbf{x} = \mathbf{b}$ with A containing primarily zeros.

Storage of $n \times n$ linear system with m nonzero entries:

- Full Matrix Storage: n^2 elements. For n=10,000 a double precision matrix takes approx 763 Mb.
- Matlab-like (i,j,A_{ij}) Storage: 3m elements. For n=10,000 and m=50,000 a double precision matrix takes approximately $\frac{1}{2}$ Mb.

An example problem would be solving an elliptic PDE on a 2D mesh. Using a 2D mesh and simple finite differences, one would want an approximation to the solution of a PDE at each point in the mesh. For a 1000×1000 mesh, which is quite small in practical problems, we have a resulting $1,000,000 \times 1,000,000$ matrix. Having 5,000,000 nonzeros would result in approximately 76 Mb for (i,j,A_{ij}) storage.

CSR & CSC

For (i, j, A_{ij}) , generally all the i = 1 values come first, then i = 2, and so in. Instead of saving each i value, we save how many entries come before we transition from row i to row i + 1. This is the idea behind compressed sparse row (column) format.

Consider storing the following matrix:

$$\begin{pmatrix} 6 & 1 & 0 & 1 & 0 & 0 & 2 & 0 \\ 1 & 6 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 6 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 6 & 0 & 3 & 0 & 0 \\ 5 & 0 & 0 & 1 & 6 & 0 & 0 & 1 \\ 2 & 0 & 0 & 3 & 0 & 6 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 6 \end{pmatrix}.$$

We keep

$$a = [6 1 1 2 1 6 1 1 1 1 1 6 1 1 6 3 5 1 6 1 2 3 6 1 6 1 6]$$

$$J = [1 2 4 7 1 2 4 6 1 2 3 4 7 4 6 1 4 5 8 1 4 6 1 7 7 8]$$

$$I = [1 5 9 14 16 20 23 25 27]$$

which is only 2m + n + 1 entries.

CSR & CSC

Storage of $n \times n$ linear system with m nonzero entries:

- Full Matrix Storage: n^2 elements. For n=1,000,000 a double precision matrix takes approx 7 Tb.
- Matlab-like (i, j, A_{ij}) Storage: 3m elements. For n = 1,000,000 and m = 5,000,000 a double precision matrix takes approximately 76 Mb.
- CSR & CSC Storage: 2m + n + 1 elements. For n = 1,000,000 and m = 5,000,000 a double precision matrix takes approximately 61 Mb.

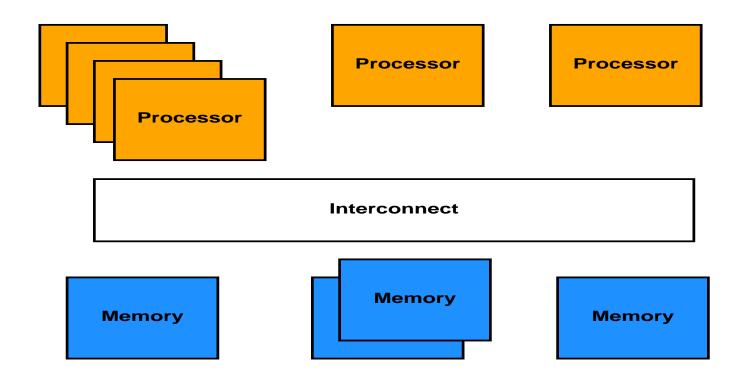
Issues:

- CSR does not save a huge amount of space, but in applications > 2D, matrix sizes are well into the trillions. This could be a savings in a few terabytes.
- CSR does not take advantage of symmetry, or repeated patterns.
- Matrix-vector, matrix-matrix multiplication routines should be rewritten to use CSR.
- In a practice, a full matrix is stored only if completely necessary. Often, we only need to know how matrices act, rather than every element of a matrix. For example, to use a Conjugate Gradient routine one only needs to know how to compute Ax for any x.

Parallel Computing Architectures

Some problems simply cannot be done on a single computer or single processor. For these problems, we must use some special techniques. First, let us discuss different type of parallel computing environments.

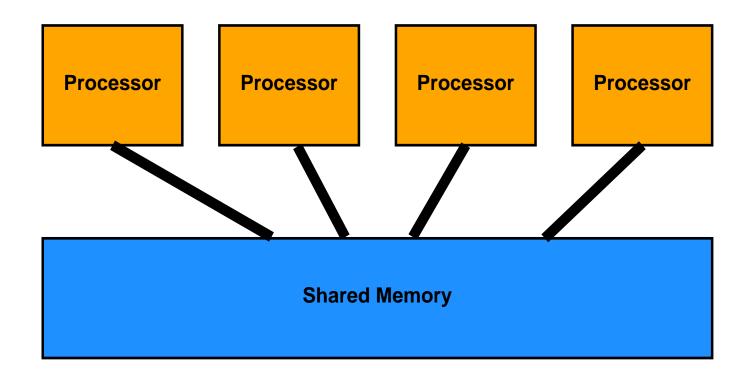
In a general environment, we have a set of processors, a set of memory banks, and some way to connect between them. The way this is set up defines different types of parallel machines



Shared Memory

Examples of shared memory computers would be your multicore desktop, some SGI Power Challenge servers, and some Cray machines. Properties often include:

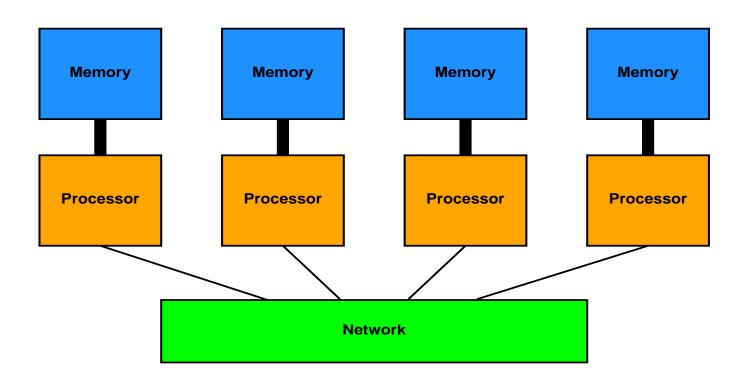
- A single memory bank, which each processor has relatively fast access to.
- Few processors or cores. Usually, at most, 1000 or so processors.
- Very expensive. Fast interconnects between processor are extremely expensive.



Distributed Memory

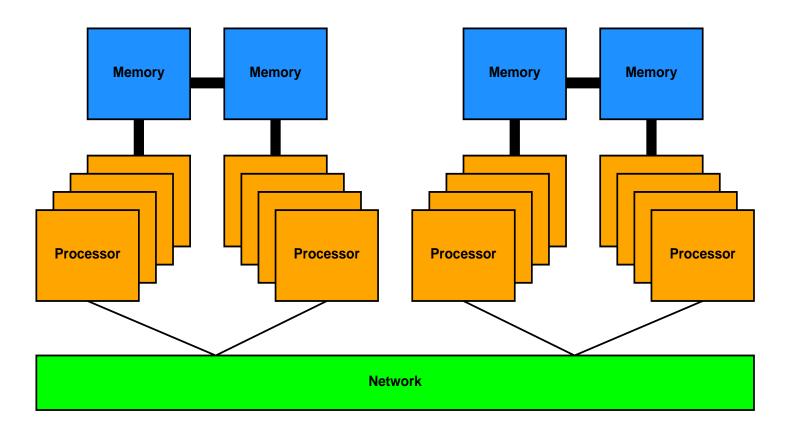
Examples of distributed memory computers would be a traditional Beowulf cluster. Properties often include:

- Each processor has it's own local memory bank.
- Relatively slow interconnect between processors.
- Inexpensive. In it's simplest form, this can simply be PCs linked together over a network.
- Can be many processors (IBM *Roadrunner* has 19,440 processors, with 129,600 cores).



Realistic and Modern Designs

Nearly all powerful clusters are a combination of shared and distributed memory. Essentially, think of this as series of shared memory machines linked to each other in a distributed network.



Parallelization of Linear Systems

Let us consider a matrix problem $A\mathbf{x} = \mathbf{b}$ where A is a tridiagonal matrix, with -2 on the diagonal and 1 on the upper and lower diagonals. Suppose we are given a vector \mathbf{y} and wish to compute $A\mathbf{y} = \mathbf{z}$. (Note: In a practical application, we'd never store this matrix, since it's matrix-vector result can be easily computed without keeping each entry of A).

We must compute:

$$\begin{pmatrix} -2 & 1 & 0 & \dots & 0 \\ 1 & -2 & 1 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & \dots & 1 & -2 & 1 \\ 0 & \dots & 0 & 1 & -2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{n-1} \\ y_n \end{pmatrix} = \begin{pmatrix} -2y_1 + y_2 \\ y_1 - 2y_2 + y_3 \\ \vdots \\ y_{n-2} - 2y_{n-1} + y_n \\ y_{n-1} - 2y_n \end{pmatrix}$$

Suppose that we would like to compute the result using two processors, by letting the first processor compute the first half of \mathbf{z} and the second processor the second half.

Linear Systems on Shared Memory

On a shared memory machine, each processor has direct access to each part of A and y. We simply let each processor do the required work. We denote the work done on the first processor in red, and the second in green.

$$\begin{pmatrix} -2 & 1 & 0 & \dots & 0 \\ 1 & -2 & 1 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & \dots & 1 & -2 & 1 \\ 0 & \dots & 0 & 1 & -2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{n-1} \\ y_n \end{pmatrix} = \begin{pmatrix} -2y_1 + y_2 \\ y_1 - 2y_2 + y_3 \\ \vdots \\ y_{n-2} - 2y_{n-1} + y_n \\ y_{n-1} - 2y_n \end{pmatrix}$$

We can easily extend this idea to many more processors. Note that we can split the matrix any way desired, as long as we balance work to reach processor evenly.

Linear Systems on Distributed Memory

On a distributed memory machine, different parts of the matrix and vectors are stored locally on different memory/processor locations. For example, we could multiply using the coloring below, where entries in cyan are needed by both processors (we ignore zeros):

$$\begin{pmatrix} -2 & 1 & 0 & \dots & 0 & 0 & 0 & 0 \\ 1 & -2 & 1 & \dots & 0 & 0 & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 & 0 & 0 \\ 0 & \dots & 1 & -2 & 1 & 0 & 0 & 0 \\ 0 & \dots & 0 & 1 & -2 & -1 & 0 & 0 \\ 0 & \dots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 0 & 0 & 1 & -2 & 1 \\ 0 & \dots & 0 & 0 & 0 & 0 & 1 & -2 & 1 \\ 0 & \dots & 0 & 0 & 0 & 0 & 1 & -2 & 1 \\ y_{n/2-1} & y_n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{n/2-1} \\ y_{n/2-1} \\ y_{n/2-1} \\ \vdots \\ y_{n/2-1} - 2y_{n/2} + y_{n/2+1} \\ \vdots \\ y_{n/2-1} - 2y_n \end{pmatrix}$$

Linear Systems on Distributed Memory

Issues in using distributed memory systems:

- BOTH CPUs need $y_{n/2}$ and $y_{n/2-1}$.
- Usually, CPU 1 would store y_1 to $y_{n/2-1}$ while CPU 2 stores the rest.
- This means for CPU 1 to use $y_{n/2}$, the value needs to be PASSED from CPU 2 to CPU 1.
- Intead of splitting the matrix as above, what happens if each odd row is stored on CPU 1 and each even row on 2?
- It is harder to write good code for distributed memory machines, but the same code would run very well on shared memory as well.

Application programming interfaces (APIs) for parallel machines:

- For distributed memory machines, Message Passing Interface (MPI) and Parallel Virtual Machine (PVM) are the most used.
- For shared memory machines, there are many choices:
 - OpenMP: Often works with MPI in practical machines.
 - Intel Threading Building Blocks (TBB): Relatively new.
 - ♦ POSIX Threads (Pthreads): usually C only.

Parallelization in Matlab

Many Matlab functions are already built to use multicore processors:

- » maxNumComThreads(n) sets the number of cores to use.
- Enabling parallel computations usually comes through function options:

```
options = optimset('UseParallel','always');
```

There is also a *Parallel Computing Toolbox* allowing you to parallelize your own codes:

- Use *matlabpool open n* to enable *n* machines/cores (if there are *n* available).
- Change for to a parfor to indicate a loop can be done in any order.
- Use matlabpool close to indicate parallel code is done.
- Arrays can be split for distributed clusters using the codistributed command:

```
 >A = rand(80, 1000); \quad D = codistributed(A, 'convert');
```

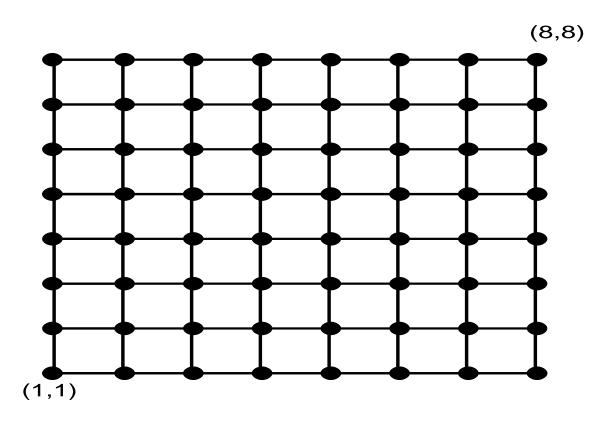
This distributes the array to each process in the Matlab pool, as D. This requires everyone to already have A stored.

• The above does not save on memory. To do that, we use something like: L = magic(5) + labindex; A = codistributed(L, codistributor());

Mesh Partitioning

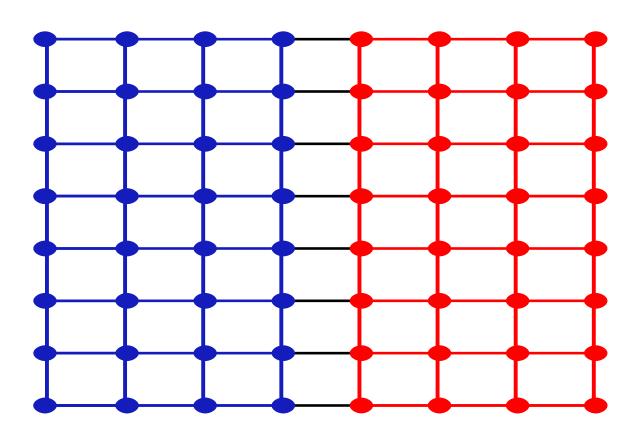
Often a nonzero entry A_{ij} implies a geometric relationship between i and j. This can be used to distribute loads evenly to CPUs. This process is often called *mesh partitioning*.

Consider an 8×8 grid where each point is an entry in \mathbf{x} . This results in a 64×64 matrix, A. Assume that row i contains an element in the j^{th} column iff i and j are connected in the mesh:



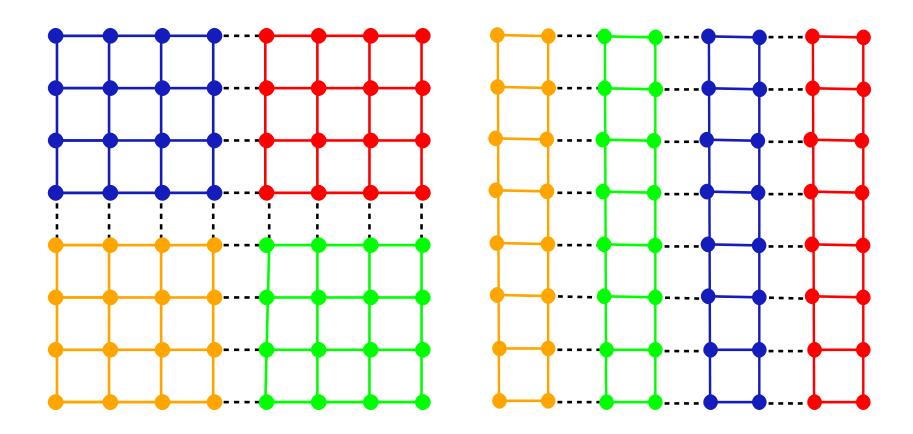
Mesh Partitioning - 2 Processors

There are many ways to decompose an 8×8 mesh into two parts with an equal amount of unknowns. After a tiny bit of thinking, it is clear that splitting through the middle horizontally or vertically will produce the configuration requiring the smallest amount of communication:



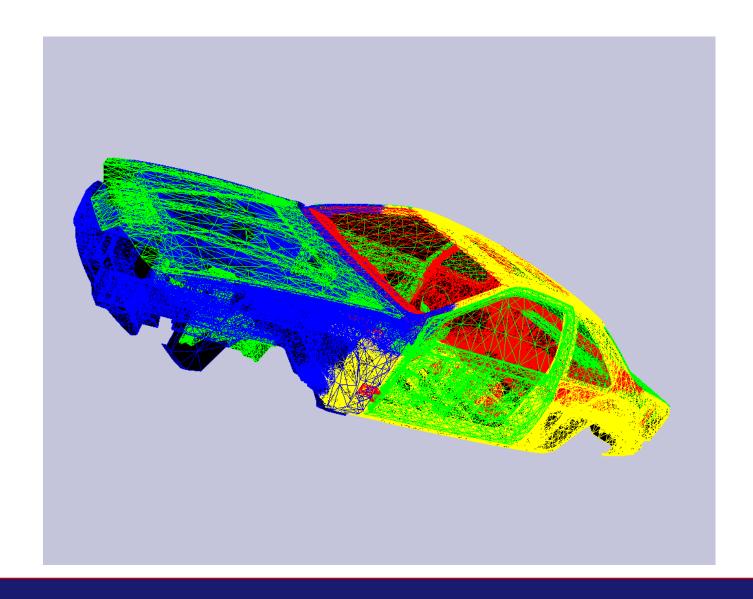
Mesh Partitioning - 4 Processors

For four processors, things get slightly more complicated. Each of the following are possibilities. Either situation may be optimal, depending on the processor configuration:



Mesh Partitioning - General Case

Partitioning a general mesh so that the load given to each processor is approximately the same, while still minimizing communication is an extremely difficult task and an active area of research.



Future Directions

A fairly recent development in parallel computing is the use of GPUs.

- GPUs were developed to run advanced graphics and video games. They
 have a huge number of processing threads.
- GPUs are hundreds to thousands of times faster at certain calculations than a CPU, but struggle with general computing.
- Offloading certain calculations to a GPU can greatly speed up your computations.
- Special coding environments (OpenCL and CUDA) must be used, and codes need to written very carefully.
- An Intel Core i7 965 Extreme provides approximately 60 GFLOPS and costs \$1000.
- An AMD/ATI Firestream 9270 SP provides 270 GFLOPS and costs \$1250.

Bottom line:

- Multicore processor are here to stay, and you will have to learn how to use them properly.
- If you are interesting in computing, make sure to take a basic parallel programming class.
- A faster algorithm won't necessarily be better computationally, since it may be very difficult to parallelize.