Study of Preconditioners for Edge FEM Applied
to Frequency Domain in Maxwell’s Equations

University of Arizona / VIGRE
Summer 2009 Research Program in Computational Photonics

Team Leader: Robert Muth
Team Members: Matthew Hom and Daniel Rorabaugh

Program Director: Moysey Brio
Project Managers: Paul Dostert and Jinjie Liu

1 Introduction

Preconditioning is a method of modifying a linear system in order to reduce the
costs associated with solving the system numerically. By applying a specifically-
designed preconditioning algorithm before or during solving, it is possible to
speed convergence and improve solution accuracy. Finding a maximally-effective,
minimally-taxing preconditioning algorithm for a given iterative solving process
is extremely important in application.

Our team’s particular area of research is in physics-based preconditioners
designed for the edge finite element method (FEM) of approximating solutions
to Maxwell equations of electromagnetics. Krishna Gundu, former UA grad-
uate student, reports encountering significant problems in attempting to solve
systems that result from edge FEM discretization. He relates that a variety
of iterative solvers (LSQR, GMRES, BICGSTAB), combined with extant pre-
conditioning schemes (ILU, GMM, scaling) are only successful at solving for
relatively small (less than 1500 x 1500) matrices. MUMPS, a direct solver, is
successful at more reasonable 10,000 x 10,000 matrices, but involves potentially
prohibitive 40 GB memory costs [1].

Comparatively, numerous recent papers report success in preconditioning
FEM systems [3]. In light of these papers, our team attempted to verify Kr-
ishna Gundu’s results, comparing the results of available preconditioners, and
analyzing the properties of these specific matrices which cause the poor behav-
ior when iterative solvers are applied. The goal was to find, adapt, or design an
effective preconditioner that allows robust convergence and requires reasonable
memory and CPU usage.

2 Background

Jinjie Liu and Paul Dostert, postdoctoral fellows at UA, produced for study a
number of matrices using Krishna Gundu’s Edge FEM code. The discretizations
vary in coarseness so as to produce matrices of varying sizes, ranging from 2756
x 2756 to 33668 x 33668. All the matrices are sparse, square, complex, and
symmetric (non-Hermitian), with complex positive and negative eigenvalues.

Before delving into the practical methods of handling large FEM matrices via
matrix preconditioning, our group had to become familiar with the theoretical
underpinnings of matrix norms, condition numbers, and direct and iterative
solution methods. Given a linear system

and the system that results from slight perturbations or uncertainty in the
entries of the b vector,

Alz + Az) = (b+ Ab),
it is possible to derive the following inequality via matrix norms:

[|Az]]
||

140
I

< 1Al 1A=

The quantity ||A]| - [|A7!]| is known as the matrix condition number. From
a practical standpoint, the condition number represents an upper bound on the
relative error introduced into the solution vector [8]. This is of particular impor-
tance when solving large “ill-conditioned” matrices — matrices in which a small
perturbation in the input vector, b, yields a large change in the solution vector,
x. Consideration of condition is of great importance in numerical analysis of
physical systems. Precise measurement of input elements can be for naught if
the condition of the system is poor, since in general, systems with a condition
number xk may, in the worst cases, expect a loss of log;, x digits of solution ac-
curacy, regardless of method. The condition number must be considered when
truncating solution data to reliable values. MATLAB’s condition number es-
timator condest places the condition number of the matrices under study (up
through 7868 x 7868, as the larger matrices could not be calculated by MAT-
LAB) in the range of 10° [3]. One might expect a staggering loss of 9 digits in
solution accuracy, but this is an upper bound, and in practice, the loss is not so
steep. The effective relative error magnification our group saw in practice, by
repeatedly perturbing the data vector, are in the range of 10%, much less than
the worst-case scenario provided by the condest condition number. The loss of
four digits of accuracy is still undesired, and an effective preconditioner would
reduce the condition number and the error magnification in practice.

When dealing with large matrices of the order of magnitude 10° x 10° it
is important to distinguish between direct methods and iterative methods of
solving such systems. Direct methods, which generally involve some form of

Gaussian Elimination, are computationally intensive. For an n X n matrix, the
number of required computations has an order of magnitude of n?, and requires
vast amounts of memory storage. Direct methods lie in stark contrast with
iterative methods of solving systems of equations, which find solutions within
a given tolerance via a converging series of approximations. These methods
take advantage of the matrix-vector products which can be performed relatively
quickly in sparse systems. In Robert Muth’s preliminary research [3], only the
general iterative solver GMRES was found to converge to a solution for the
matrices under study. The fact that the matrices are non-Hermitian and not
positive definite perhaps makes the system untenable for the other solvers. The
GMRES convergence is very slow however, and for every n x n matrix tested,
nearly n iterations were needed in order to converge to a modest relative resid-
ual of 1076, For GMRES to be effective in solving the large systems that result
from sufficiently fine FEM discretizations, the number of iterations should be
far less than n. Our research therefore additionally focuses on accelerating GM-
RES convergence through preconditioning.

Preconditioning is a method of decreasing the condition number of the sys-
tem under study and accelerating convergence. In general methods, this is
achieved by transforming the original problem into

M~ 'Az = M b,

which gives the same solution as Az = b, but the new matrix M ~'A is en-
gineered to converge faster and be better conditioned. An M “close” to A is
sought, as preconditioning by the exact inverse of A would have optimal qualities
of convergence and condition. Since working with the inverse of A is computa-
tionally impractical, a sparse approximation of A is sought in defining M, for
which My = x type problems can be solved inexpensively.

3 ILU Preconditioning

One method of direct solving is known as LU factorization, which involves fac-
toring A, via Gaussian elimination, into the product of two triangular matrices
LU, where L is lower triangular, and U is upper triangular. Thus the original
Az = b problem is transformed into (LU)z = b, which can be solved via one
step each of forward- and back-substitution. For use as a preconditioner, LU
factorization is impractical and memory intensive, since the L and U matrices
are in general much more dense than A. In order to cope with this, a variant
of the method known as incomplete LU (ILU) was developed [5]. Designed to
find approximate L and U factors that maintain some degree of sparsity, ILU
has many variations and options, ranging from the “No-Fill” variation which
mandates that L and U only have nonzero values in the same location as A,
to ILUT (ILU with thresholding) in which small entries in L and U that are
under a certain ratio (called the drop tolerance) with respect to the column
and row norms are changed to zero in an attempt to increase sparsity, saving

computation steps and minimizing storage.

Preliminary research into ILUT showed that it may be promising in the case
of edge FEM systems [3], particularly the “crout” variant of ILU available in
MATLAB, which returns a unit upper triangular matrix. Preliminary results
also showed that symmetric reverse Cuthill-McKee permutation of elements,
which reorders the matrix so that elements are closer to the diagonal, is ex-
tremely effective in combination with ILUT techniques, since it leads to less
fill-in, even under full LU factorization. So our group experimented with ILUT,
exploring the variety of available options in MATLAB. We focused primarily
on varying the drop tolerance parameter, which controls the amount of sparsity
and the closeness to the full LU factorization, and also investigated pivoting
and modified ILU options which attempt to add stability and preserve row or
column sums. The effect these parameters had on condition numbers, as well
as required memory storage, time, and convergence in GMRES were recorded
for the 2756 x 2756 through 7868 x 7868 size matrices.

For the matrices studied, the introduction of dense ILU preconditioning
(corresponding to a low drop tolerance and close approximation to the full LU
factorization) greatly improves the condition number of the matrix, whereas the
introduction of very sparse ILU preconditioning (corresponding to a high drop
tolerance) adversely affects the condition number of the matrix. This trend is
best captured graphically in the chart below, which shows condition numbers
for the preconditioned system with various drop tolerance levels, for the repre-
sentative 2756 x 2756 matrix. The condest approximations are shown, along
with the ratio of the largest and smallest singular values of A, which constitutes
the actual 2-norm condition number, and the ratio of the largest and smallest
eigenvalues of A, which presents another rough approximation of the condition
number.

Condition Number Comparison - 2758 x 2756 ILU Preconditioning - Varying ILU Drop Tolerance

—&— condest(PA)

—e— maxsig(PAYmineig(PA)

10 o maxSVIPA)minSV(RA)
condest(A)

- maxeig(PA)Ymineig(PA)

axSVIPAYminS (PA)

Result

1 1 I L |
10° 10° 10t 10’ 100
ILU Drop Tolerance

As was shown in the preliminary report, ILU preconditioning can be used
to arbitrarily lower the number of required GMRES iterations, so we sought to
find an optimal drop tolerance which weighs the memory needs of ILU versus
GMRES, and minimizes the amount of computation time. In order to do this,

our group researched the GMRES algorithm, with an eye towards storage re-
quirements.

At each successive iteration k, GMRES approximates the solution x as a
vector x in the orthogonalized Krylov subspace

Ki = span{b, Ab, A%, ..., A*¥~1b}.

Unlike other Krylov-based methods, this entire basis must be saved in mem-
ory, so at the kth iteration, an n x k dense matrix must be stored. Additionally,
an upper Hessenberg matrix (a by-product of the orthogonalization process) of
size k x (k + 1), which is used in solving the least squares problem

lIrxll = min [[Azy — 0]
.’L'kEKk

must also be stored. If GMRES is allowed to take (as in the un-preconditioned
case) n iterations to solve, two dense matrices — one with n? elements and one
with %nQ elements — must exist in memory. This is not feasible for application.

So, we weigh these storage needs against those of ILUT. Complex valued el-
ements in double precision in a dense matrix require 16 bytes each. If GMRES
takes k iterations to converge (without restarting), the dense Krylov subspace
matrix of dimension n x k and the dense upper Hessenberg k x (k 4+ 1) matrix
must be stored, requiring 16 * [nk + % (k* + 3k)] bytes. Complex valued nonzero
elements in MATLAB’s A;j,1,j sparse format require 20 bytes. A, L, and U
are stored in this format, requiring 20 * [nnz(A) +nnz(L) +nnz(U)] bytes. The
sum of these values gives a very rough idea of the memory required to solve via
GMRES for given ILU settings on a single processor.

For the 2756 x 2756 through 7868 x 7868 size matrices tested, small drop tol-
erances were seen to effectively lower GMRES iterations to very small numbers.
As the drop tolerance increased, up until around 10~3, GMRES performance did
not significantly worsen. When the drop tolerance grows past this point, GM-
RES performance rapidly degrades, requiring more iterations and subsequently
more time and storage. Therefore, there exists an optimal ILUT drop tolerance
which creates a preconditioner effective enough to minimize GMRES iterations,
while maximizing sparsity. For the matrices we studied, the optimal drop tol-
erance fell between 1072 and 10~4. A representative graph of the 4860 x 4860
memory requriments is shown below, along with a graph of time requirements
for each drop tolerance, which mirrors the same trend. Denser ILUT factors
require more time to construct, and additional GMRES iterations require more
time as well. There does not seem to be any significant time/memory trade
off for the matrices tested, as the optimal memory drop tolerance corresponds
nicely to minimal solve time.

Memory Requirements for Varying ILU Drop Tolerance Time Requirements for Varying ILU Drop Tolerance

<A 4660 X 4850 4860 % 4850
15 140
ILU memary — LV Time
GMRES memary g GMRES Time
Total Memory Total Time
120 1

Seconds

Mermory Requirements (bytes)

i 0
0* 10 [10* 10° 10* 10t 10

ILU Drop Tolerance ILU Drop Tolerance

Trends established for smaller sized matrices (2000 x 2000 to 8000 x 8000)
suggest that minimal ILUT memory requirements are roughly half of full LU (see
below). This level of storage savings may not be enough when projected out-
wards for larger matrices. For instance, a sufficiently fine mesh for approaching
Maxwell’s equation would likely result in a 10¢ x 10° or larger matrix. Storing
this matrix alone in sparse format would require around 20 GB. A reasonably
effective ILU preconditioner which requires 100 to 200 GB would likely not be
tenable on a single processor. So, the group sought ways to reduce memory
demands.

Condition Number Comparison - 2755 x 2756 ILU Preconditioning - Varying ILU Drop Tolerance

—e— condest(PA)

—e— maxeig(PAYmineig(PA)

ok —#— maxSV[PA)minSV(PA)
condest(A)

+ maxeig(PAYmineig(PA)

 maxSVIPAYmInSV(PAY

Result

o 1 L L I}
10° 10° 10° 10 107
ILU Drap Tolerance

4 GMRES with Restarts

To lower memory requirements, we tested ILU preconditioning with restarted
GMRES. After a set number of iterations, the Krylov subspace is cleared and the

process builds a new subspace beginning with the last residual vector, repeating
as many times as needed. This process requires only as much storage space as
we allow, but the disadvantage to restarts is that more iterations are required
for GMRES to converge to the solution, since there is no longer a guarantee that
new vectors added to the subspace are orthogonal to all previous vectors, and
(since our matrices are not symmetric positive definite) there is a chance it may
never converge. We tested GMRES with restarts with our 2756 x 2756 matrix
preconditioned with various ILUT drop tolerances. The goal is to save memory
by operating with a sparse ILU preconditioner that would lead to many GMRES
iterations in the non-restarted case, but cap memory demands by restarting as
many times as necessary. As the following graph shows, restarting saves some

memory for a small range of drop tolerances but quickly loses the ability to
converge.

Over Various GMRES Restart Frequencies

40MB - = Restart every 40 iteration
T Reatirl avery B0 iteration
T Restart every 120 iteration
Resstart every 160 iteration
" FRestart every 200 iteralion
35ME Pestart every 240 iteration
=" Restart every 280 iteration

No Restarts

30 MB

Tetal Required Memory

R

Drop Tolerance
The rate of GMRES convergence is closely related to eigenvalue distribu-
tion. Studies show that GMRES convergence is slow if many eigenvalues of A
are near zero or scattered elsewhere [7]. This accurately describes the eigenvalue
distribution of the matrices under study and explains the slow convergence of

the un-preconditioned system, as we see in this image of the eigenvalues of our
2888 x 2888 matrix.

Eigenvalues of 2888 x 2888 FEM 3D with PML Matrix
T

200 T T T

150~ * b
100 . N

50

Imaginary Part

. .
-40 -20 0 20 40 60 80 100
Real Part

To better understand GMRES convergence with restarts, we examined the
minimum number of iterations required before restarting for a matrix to con-
verge compared to the number of eigenvalues that lie within some radius of
zero. The next image shows the eigenvalues of a poorly conditioned 100 x 100
complex matrix within a circle of radius .5 before and after preconditioning the
matrix.

No Preconditioning

ILU Preconditioning
10-4 Drop Tolerance

Testing on smaller matrices designed to mimic the eigenvalue structure of
our larger matrices, we witnessed a general trend between the number of eigen-
values within a .5-radius circle (achieved via preconditioning with various drop
tolerances) and the minimum restart number with which GMRES was able to
converge to a solution. In the case of the small matrices tested, it appears that
GMRES is not likely to converge with restarts if over half of the eigenvalues are
“close” to zero (see below). Since GMRES is not guaranteed to converge with
restarts, its application seems limited to a case-by-case basis. If operating at
maximum memory capacity, restarts can be utilized as a memory cap. But for
the purposes of optimizing all other aspects of solving our matrices, we avoided

that minimum-gain risk and proceeded without using restarts.

——

5 ILDLT Preconditioning

If an LU decomposition exists for a given matrix, then a unique LDU factor-
ization does as well, where L and U are unit triangular matrices, and D is a
diagonal matrix. If the matrix is symmetric, then LDU = LDL". In practical
terms, this LDLT factorization requires storage of only one triangular matrix,
equivalent to half of LU storage needs. MATLAB has a full LDLT factorization
function, but it only works on Hermitian matrices, so we constructed our own
MATLAB ILDLT function, using Yousef Saad’s pseudocode algorithm [5] and
adding a dropping step to maintain sparsity. For the 2756 x 2756 through 7868
X 7868 size matrices tested, ILDLT for a given drop tolerance was comparable
to ILU in regards to GMRES performance, but required half as much storage
(see below). However, the program is currently not as fully optimized and in-
tegrated as ILU in MATLAB, and still takes around 10 to 20 times as long to
complete. Once optimized, ILDLT presents a more realizable option for large
matrices than ILU, given the symmetric nature of our problem.

x 10° Comparison of Preconditioner Effectiveness —— ILU vs. ILDLT -- 2756 x 2756 Matrix
6 T

T T T T T T T
O ILDLT]
O 1 7
5 i
5
= o
k=] o [} [}
¢} @
553 %% Sooo ¥ ° °© o g
a
£
o 8r q
o
[
1S
o
S i
o O
o [o)¥e) > o]
2 Il Il Il Il Il Il Il Il
0 50 100 150 200 250 300 350 400 450

Number of GMRES iterations required to solve

6 Block Jacobi Preconditioning

For larger matrices, where ILU preconditioning on a single processor is not
feasible, we seek a preconditioner with better parallelization capability than
ILU alone. Our group chose to research Block Jacobi preconditioning. The
Block Jacobi preconditioner M consists of the union of j overlapping block
submatrices Ay, Aa, ... A; that exist along the diagonal of A (see below). We
apply this matrix as a right preconditioner, so the condition and convergence
properties depend upon AM ~! instead of A.

With right preconditioning, at the kth iteration, the Krylov subspace at the
root of the GMRES method consists of

Kr = span{v, (AM Yo, (AM 1), .., (AM~ 11y},

where at each iteration, a new subspace vector viyi is added to the Krylov
subspace. It is formed by calculating

AMilvk = Uk41-

We avoid explicitly calculating the inverse of M, as doing so would be time-
and memory-intensive. Instead we construct the inverse implicitly by letting
M~1v;, = 2, so that Az = vy, 1. Dropping the subscript for simplicity, we then
have a new system to solve in order to compute the next vector in our subspace:

Mz = w.

We seek an approximation to z via Block Jacobi. If we make a guess at a
solution zx, we will be left with some residual vector r:

r = v— Mz.

10

So we correct our subsequent guess by some vector g:

Zk+1 = 2k tgq
It follows that:
r = v—M(zkt1 — Q)
r = v— Mz + Mg

If Mq =r, then Mz, = v, which gives our solution and the next entry in our
Krylov subspace. So, we can rewrite our problem one more time as:

Mq = r

We construct an approximate ¢ by solving the submatrix and subvector
systems independently, either directly or via GMRES (see below). We then
recombine, adding the resulting solutions, applying a weight factor 1/k for each
element of the vector where k£ submatrix solutions overlap. Since the resulting
q would only be exact if the submatrices were disjoint, we only seek an approx-
imation for g. We use ¢ as a correction vector to find a new approximate z and
resulting r, and repeat the process as needed.[5]

M r
I Processor 1 A, X = Solve forq, \ H
X = Processor 2 . X I = Solve forq, ——
/

Processor 3 A X |95| = |f5| Solve for qa,

We felt Block Jacobi represented a good fit for our problem. With the re-
ordering scheme implemented in the ILU section, we were able to move the
matrix elements very close to the diagonal, so that we could include all of the
elements of A within our preconditioner without resorting to overly large sub-
matrices or excess overlap. Additionally, since all the submatrices can be solved
independently, this method presents a good opportunity for parallelization, as
each submatrix system can be stored and solved on separate processors.

We wrote a script in MATLAB, which, given a certain number of submatri-
ces in the desired splitting, chooses an optimal size for the submatrices relative
to the bandwidth of the reordered matrix, so that all the elements of A are
guaranteed to be included in M, with as little overlap as possible. These sub-
matrices are then integrated into the Block Jacobi MATLAB script we created,
following the methods described by Saad, which behaves as described above [5].

Preliminary testing results of the performance of the Block Jacobi precondi-
tioner for larger matrices are shown below. The number of GMRES iterations

11

required for convergence is shown, for corresponding numbers of submatrices in
the splitting. Performance tends to degrade somewhat for greater numbers of
submatrices and hence more overlapping, but in general, since the number of
GMRES iterations is around 1% of the matrix dimension, results are promising.

| Number of Submatrices | 3 | 4 | 5 | 6 | 7
64 153 197 196 253
(33668 » 33668 warx [REINIEEY

There are numerous parameters included within this code that can be op-
timized, and the group very briefly experimented with altering each of these.
A relaxation parameter w was incorporated into the code, which allowed that
the correction vector ¢ could be weighted in order to smooth out convergence,
and delay divergence during Jacobi iterations. Typical results of variations in
this parameter are shown below. In general, lower ¢ values tended to allow
the Jacobi process to converge to a smaller residual, over a greater number of
iterations, while higher ¢ values caused quick, shallower convergence. So, the
cost in time of performing more Jacobi iterations for low w must be weighed
against the less effective preconditioning of high w, which results in more GM-
RES iterations and memory usage.

6992 X 6992
Block Jacobi with 3 Submatrices
Relative Residual of Various Relaxation Parameter

Relative Residual

1
0 S 10 15 20 25 30 35 40 45 50
Jacabi lterations

Additionally, experimentation showed that when we combine different sub-
matrix splittings, alternating between them at each Jacobi step, we can increase
convergence. We have not seen suggestion of this behavior in Block Jacobi lit-
erature, so we lack a theoretical basis for why this occurs, but the general idea
is that inherent errors that result in solving via a certain splitting may be mit-
igated or smoothed out by solving with a different splitting, with a different
set of inherent errors. As an example, the splitting of the 21368 x 21368 into
five and six submatrices (shown below), alternating solving with each splitting,
resulted in GMRES convergence in 85 iterations, whereas alone, each method
required 197 and 196 iterations, respectively. Much experimentation remains to
be done on optimizing the combination of splittings, perhaps combining three
or more, or performing iterations in ‘V’ or ‘W’ cycles, a la multigrid techniques.

12

w10t 5 submatrix splitting w10 B submatrix splitting

0

s

0 048 1 15 2 0 0.5 1 14 2
nz = 133292 T nz = 145235

In general, for the matrix sizes tested, when splitting methods are alternated
(only neighboring splittings were tested as yet, such as 5/6, 6/7, and so forth)
up through 33668 x 33668, the residual at each Jacobi step is as small as, or
smaller than either splitting method alone. A representative plot, for the 6992
X 6992 matrix, is shown below.

Block Jacobi Convergence —- Single Splitting vs. Combined —- 6992 x 6992 Matrix
80 T T T T T T T T T

= 3 submatrices
70r 4 submatrices
= 3/4 alternating

60

50

40t

Relative Residual

301

201

101

Il Il Il Il Il
0 5 10 15 20 25 30 35 40 45 50
Jacobi Iterations

0 I I I I

The results shown above are for a static number of Jacobi iterations. The
residual tends to increase after a minimum has been reached, so additional Ja-
cobi steps after that point are extraneous. Seeing this behavior, we added to
our Jacobi script an option to proceed with more iterations if the process is
still converging, or to cut the process short if the residual has increased for a
certain number of iterations. All of the residual plots seemed to behave in the
same manner, so once divergence (after the initial steps) starts occurring, there
is little danger of losing later convergence. As is seen in the chart below, by dy-

13

namically changing the number of Jacobi iterations, we can decrease the solving
time substantially, spending a few extra GMRES steps while greatly reducing
the number of inner Jacobi iterations.

21368 x 21368 Matrix

GMRES
Preconditioner Type Iter Time
20 lterations - Static, w=0.5 85 3.02 hrs
\Varying # of Iterations, w=0.5 87 0.87 hrs
One step of each splitting, w=1 77 0.26 hrs

The third entry in the chart above points to another, more straightforward
option. We can choose to only perform one iteration on each splitting, taking
that result as “close enough” and moving onto the next GMRES iteration. By
combining this with an increased relaxation parameter to speed convergence
during those steps, we can save even more time, and in the case above, this
speedy convergence actually performed better than the smoother, lower w cases
above. In subsequent testing, this was our preferred option, as it seemed to
perform much faster, and the increase in GMRES iterations, if any, was not
substantial enough to cause memory concerns.

As it stands, the MATLAB Block Jacobi script we wrote merely imitates
parallelization, as all of the submatrix solving steps are currently done sequen-
tially. Our group wanted to verify the effectiveness of the procedure before
delving into parallelization coding. So, the GMRES iteration data would still
apply in the parallel case, but the times recorded would be substantially lower.
For instance, the 33668 x 33668 matrix (solved via GMRES/Block Jacobi in 153
outer iterations, with the alternating 6/7 submatrix splitting) finished in 1.09
hours. Since the average submatrix solve time for 6-splitting was 1.72 seconds,
and 1.69 seconds for the 7-splitting, if these solves were performed in parallel,
the total process would be finished in 16.8 minutes (plus some additional time
for passing data between processors). As the number of submatrices increases,
the time saved by parallelizing increases accordingly.

It is rather difficult to extrapolate to the effectiveness of Block Jacobi on
10% x 10° size matrices, which might require 40+ submatrices. Experiments on
smaller matrices point to it being a workable method, which is perhaps more
than we can say for ILU, but we have no way of knowing whether convergence
would take hours or weeks. Currently we lack the facilities for parallelizing on
that scale in MATLAB, so a program would most likely have to be implemented
in C, perhaps in conjunction with GMM, PETSc, or other linear algebra pack-
ages. Given more time, this would be the next step in testing Block Jacobi
preconditioning.

14

7 Conclusion

Our group delineated the limits of MATLAB’s ILU preconditioner as applied
to the edge FEM matrices under study. For appropriately small matrices, ILU
provides an effective option when direct solving strains memory limitations, and
if the preconditioner is near enough to full LU, the condition number is accord-
ingly lowered, placing a better bound on the amount of relative error introduced
when solving.

In order to widen the application of the ILU-style preconditioner, our group
created a MATLAB ILDLT script which demonstrated similar effectiveness in
aiding convergence for symmetric matrices, at a cost of half the memory of ILU.

Lastly, our group created a parallelizable Block Jacobi script in MATLAB,
for the purpose of solving systems larger than ILU/ILDLT could presently han-
dle on a single processor. Reasonable effectiveness was demonstrated on matri-
ces up through 33668 x 33668, and work remains to be done to determine its
usefulness on very large systems.

8 Future Work

Should our group, or anyone else, continue work on this project, paralleliza-
tion and implementation of the Block Jacobi script may be a worthwhile route.
In addition, there are other, more sophisticated preconditioning methods, such
as Helmholtz decomposition or multigrid [6] [4] [2], which remain to be tried.
One burgeoning option, algebraic multigrid, is also parallelizable and has the
advantage of working in a “black box” fashion, like ILU and Block Jacobi, as
it requires little manipulation of the FEM code or understanding of the physics
problem itself. Our group likely would have pursued this option next, but it
required more in-depth understanding than time availed us during this month-
long project.

9 Acknowledgments

Our group would like to thank the University of Arizona and VIGRE for provid-
ing and funding this valuable learning experience, as well as Program Director
Moysey Brio, and Project Directors Paul Dostert and Jinjie Liu for lending their
time and knowledge, helping us navigate this difficult problem and assisting in
the technical aspects.

References

[1] Krishna Mohan Gundu. Solving Sparse Linear Systems. ACMS Group
Meeting, October 2007. Presentation.

15

2]

[3]

[5]

(6]

Ralf Hiptmair and Jinchao Xu. Auxiliary Space Preconditioning for Edge
Elements. IEEE Transactions on Magnetics, 44(6), June 2008.

Robert Muth. A Preliminary Study of Preconditioners for Edge FEM Ap-
plied to Frequency Domain in Maxwell’s Equations. Preliminary Report for
UA VIGRE Summer Program, June 2009. Report.

Ronan Perrussel, Laurent Nicolas, and Franois Musy. An Efficient Pre-
conditioner for Linear Systems Issued from the Finite-Element Method for
Scattering Problems. IEEE Transactions on Magnetics, 40(2), March 2004.

Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for In-
dustrial and Applied Mathematics, 2003.

Olaf Schenk, Michael Hagemann, and Stefan Rollin. Recent Advances in
Sparse Linear Solver Technology for Semiconductor Device Simulation Ma-
trices. Simulation of Semiconductor Processes and Devices, 2003.

Josef Sifuentes. Preconditioning the Integral Formulation of the Helmholtz
Equation via Deflation. Master’s thesis, Rice University, Houston TX, 2006.

Lloyd N. Trefethen and David Bau III. Numerical Linear Algebra. Society
for Industrial and Applied Mathematics, 1997.

16

