MATH 223, Linear Algebra
Fall 2007
Midterm exam, Wednesday, October 17, 2007

Instructions:

• No notes, books or calculators permitted.

• This exam has six questions. All questions are worth the same number of marks.

• Do all of your work on the sheets provided. Do not separate sheets that have been stapled together. If you need more space for a question, use the pages at the end of each part; please indicate on those pages which question you are continuing.

• The questions have been divided into two parts, purely to facilitate marking. Make sure you have a “white” and a “blue” set of questions. Make sure that your name, student number, and section number are on both parts. (If your instructor is Bryden Cais, you are in section 1; if your instructor is Jim Loveys, you are in section 2.)

• Have fun!
PART 1.

. Name (Please PRINT clearly):

. Student number:

. Section number:
1. (a) Solve the system of linear equations over the complex numbers

\[
\begin{align*}
 x_1 + (2 + i)x_2 &= 7 - 3i \\
 (3 + i)x_1 + (6 + 6i)x_2 &= -2 + 8i
\end{align*}
\]

(b) Express the matrix

\[
A = \begin{pmatrix}
 1 & 2 + i \\
 3 + i & 6 + 6i
\end{pmatrix}
\]

as a product of elementary matrices.

(c) Find the inverse of the matrix \(A\) from part (b).
2. Let \(V = P(t) \) be the real vector space of polynomials with real coefficients. For each of the following subsets of \(P(t) \), decide whether it is or is not a subspace of \(V \). Justify your answers.

(a) \(S_1 = \{ p \in V \mid p(7) = 0 \} \).

(b) \(S_2 = \{ p \in V \mid p(0) = 7 \text{ or } p \text{ is the zero polynomial} \} \).

(c) \(S_3 = \{ p \in V \mid p \text{ is odd} \} \). [N.B. an odd polynomial \(p(t) \) is one that satisfies \(p(-t) = -p(t) \) for every real number \(t \).]
3. The following matrix is over the reals. Find a basis for its row space, its column space, and its null space.

\[
\begin{pmatrix}
1 & -3 & 4 & 0 & 3 \\
3 & -9 & 11 & 6 & 8 \\
-2 & 6 & -7 & -6 & -5 \\
\end{pmatrix}
\]
This page is used for the continuation of problem .
(If you don’t need it, just leave it blank.)
This page is used for the continuation of problem .
(If you don’t need it, just leave it blank.)
(This page is used for the continuation of problem .
If you don’t need it, just leave it blank.)
PART 2.

. Name (Please PRINT clearly):

. Student number:

. Section number:
4. Let W_1 and W_2 be the subspaces of \mathbb{R}^4 defined by

\[W_1 = \text{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 3 \\ 2 \end{pmatrix} \right\} \quad \text{and} \quad W_2 = \text{span} \left\{ \begin{pmatrix} 4 \\ 2 \\ 8 \\ 4 \end{pmatrix}, \begin{pmatrix} 4 \\ 1 \\ 3 \\ 2 \end{pmatrix} \right\}. \]

(a) Find a basis for $W_1 + W_2$.
(b) Find a basis for $W_1 \cap W_2$.
(c) Compute $\dim(W_1 + W_2)$ and $\dim(W_1 \cap W_2)$.
5. Suppose that A is a fixed $n \times n$ matrix, $V = M_n(F)$ is the vector space of $n \times n$ matrices over the field F, and $T : V \rightarrow V$ is the following function.

$$T(X) = AX -XA \quad \text{for each } X \in V.$$

(a) Show that T is a linear operator on V (i.e., that $T : V \rightarrow V$ is a linear mapping).

(b) Now suppose that $n = 2$ and that

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}.$$

Let B be the standard ordered basis

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

of V. Find $[T]_B$.

(c) Find a basis for each of $\ker(T)$ and $\text{im}(T)$ (using the matrix A from part (b)).
6. Suppose that A is an $n \times n$ matrix over a field F. Show that the following conditions on the matrix A are equivalent.

(a) A is invertible.
(b) For every $n \times n$ matrix B over F, there is a solution to the matrix equation $AX = B$.
(c) For every $n \times n$ matrix B over F, there is a unique solution to the matrix equation $AX = B$.
This page is used for the continuation of problem .
(If you don’t need it, just leave it blank.)
This page is used for the continuation of problem .
(If you don’t need it, just leave it blank.)