1. (a) Solve the system of linear equations over the complex numbers

\[
\begin{align*}
x_1 + (2 + i)x_2 &= 7 - 3i \\
(3 + i)x_1 + (6 + 6i)x_2 &= -2 + 8i
\end{align*}
\]

(b) Express the matrix

\[
A = \begin{pmatrix} 1 & 2 + i \\ 3 + i & 6 + 6i \end{pmatrix}
\]

as a product of elementary matrices.

(c) Find the inverse of the matrix \(A \) from part (b).

Solution: We will solve all three parts simultaneously by row-reducing the doubly-augmented matrix

\[
M := \begin{pmatrix} 1 & 2 + i & 7 - 3i & 1 & 0 \\ 3 + i & 6 + 6i & -2 + 8i & 0 & 1 \end{pmatrix}
\]

We obtain:

\[
M \xrightarrow{R_2-(3+i)R_1-R_2} \begin{pmatrix} 1 & 2 + i & 7 - 3i & 1 & 0 \\ 0 & 1 + i & -26 + 10i & -3 - i & 1 \end{pmatrix}
\]

\[
\xrightarrow{(\frac{1}{1+i})R_2-R_2} \begin{pmatrix} 1 & 2 + i & 7 - 3i & 1 & 0 \\ 0 & 1 & -8 + 18i & -2 + i & \frac{1-i}{2} \end{pmatrix}
\]

\[
\xrightarrow{R_1-(2+i)R_2-R_1} \begin{pmatrix} 1 & 0 & 41 - 31i & 6 & \frac{-3+i}{2} \\ 0 & 1 & -8 + 18i & -2 + i & \frac{1-i}{2} \end{pmatrix}
\]

(a) From our work above, we read off the unique solution \(x_1 = 41 - 31i \) and \(x_2 = -8 + 18i \).

(b) Note that many solutions are possible; we present one. Denoting by \(e_1, e_2, e_3 \) the three elementary row operations above, we have \(e_3(e_2(e_1(A))) = I_2 \), or what is the same thing

\[
A = e_1^{-1}(e_2^{-1}(e_3^{-1}(I))) = E'_1E'_2E'_3,
\]
where \(E'_i := e_i^{-1}(I) \). From this definition of \(E'_i \), we readily compute

\[
E'_1 = \begin{pmatrix} 1 & 0 \\ 3 + i & 1 \end{pmatrix} \quad E'_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 + i \end{pmatrix} \quad E'_3 = \begin{pmatrix} 1 & 2 + i \\ 0 & 1 \end{pmatrix}
\]

and so

\[
A = \begin{pmatrix} 1 & 0 \\ 3 + i & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 + i \end{pmatrix} \begin{pmatrix} 1 & 2 + i \\ 0 & 1 \end{pmatrix}.
\]

(c) We read off the inverse from our initial work:

\[
A^{-1} = \begin{pmatrix} 6 & \frac{-3+i}{2} \\ -2 + i & \frac{1-i}{2} \end{pmatrix}.
\]

2. Let \(V = P(t) \) be the real vector space of polynomials with real coefficients. For each of the following subsets of \(P(t) \), decide whether it is or is not a subspace of \(V \). Justify your answers.

(a) \(S_1 = \{ p \in V \mid p(7) = 0 \} \).

(b) \(S_2 = \{ p \in V \mid p(0) = 7 \text{ or } p \text{ is the zero polynomial} \} \).

(c) \(S_3 = \{ p \in V \mid p \text{ is odd} \} \). [N.B. an odd polynomial \(p(t) \) is one that satisfies \(p(-t) = -p(t) \) for every real number \(t \).]

Solution:

(a) We claim that \(S_1 \) is a subspace. Indeed, \(0 \in S_1 \) since the zero polynomial has value 0 everywhere (so in particular at 7). If \(p, q \in S_1 \) and \(k \in \mathbb{R} \) then we have

\[
(p+kq)(7) = p(7) + (kq)(7) = p(7) + k(q(7)) = 0 + k \cdot 0 = 0 + 0 = 0,
\]

so \(p + kq \in S_1 \). Thus, \(S_1 \) contains the zero vector and is closed under addition and scalar multiplication, so is a subspace.

(b) Observe that the constant polynomial \(p(t) = 7 \) is in \(S_2 \), but \(2p(t) = 14 \) is not. Thus, \(S_2 \) is not a subspace.
(c) The set S_3 is a subspace. Indeed, since $0(-t) = 0 = -0 = -0(t)$
we see that $0 \in S_3$. Moreover, we have
\[
(p + kq)(-t) = p(-t) + (kq)(-t) = p(-t) + k(q(t)) = -p(t) - kq(t)
\]
for any $p, q \in S_3$ and any $k \in \mathbb{R}$. It follows at once that S_3 is a
subspace.

3. The following matrix is over the reals. Find a basis for its row space,
its column space, and its null space.
\[
\begin{pmatrix}
1 & -3 & 4 & 0 & 3 \\
3 & -9 & 11 & 6 & 8 \\
-2 & 6 & -7 & -6 & -5
\end{pmatrix}
\]

Solution: Row reducing, we find
\[
\begin{pmatrix}
1 & -3 & 4 & 0 & 3 \\
3 & -9 & 11 & 6 & 8 \\
-2 & 6 & -7 & -6 & -5
\end{pmatrix} \sim \begin{pmatrix}
1 & -3 & 0 & 24 & -1 \\
0 & 0 & 1 & -6 & 1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}.
\]

It follows immediately that a basis for the row and column spaces are
\[
\{\begin{bmatrix} 1 & -3 & 0 & 24 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & -6 & 1 \end{bmatrix}\}
\]
and
\[
\left\{\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix}\right\}
\]
respectively. Using the reduced echelon form found above, we see that
the null space is determined by the system of equations
\[
x_1 - 3x_2 + 24x_4 - x_5 = 0 \quad x_3 - 6x_4 + x_5 = 0.
\]
Clearly, x_2, x_4, x_5 are free variables, so the parametric form of a general
solution to this system is
\[
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5
\end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} -24 \\ 0 \\ 6 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}
\]
so a basis of the nullspace is

\[
\begin{bmatrix}
1 \\
0 \\
-1 \\
0 \\
1
\end{bmatrix}, \begin{bmatrix}
-24 \\
6 \\
1 \\
0 \\
0
\end{bmatrix}, \begin{bmatrix}
3 \\
0 \\
0 \\
0 \\
0
\end{bmatrix}.
\]

4. Let \(W_1 \) and \(W_2 \) be the subspaces of \(\mathbb{R}^4 \) defined by

\[
W_1 = \text{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 3 \\ 2 \end{pmatrix} \right\} \quad \text{and} \quad W_2 = \text{span} \left\{ \begin{pmatrix} 4 \\ 2 \\ 8 \\ 4 \end{pmatrix}, \begin{pmatrix} 4 \\ 1 \\ 3 \\ 2 \end{pmatrix} \right\}.
\]

(a) Find a basis for \(W_1 + W_2 \).
(b) Find a basis for \(W_1 \cap W_2 \).
(c) Compute \(\dim(W_1 + W_2) \) and \(\dim(W_1 \cap W_2) \).

Solution: We row reduce the block matrix whose columns are the spanning vectors in \(W_1, W_2 \):

\[
\begin{pmatrix}
1 & 2 & 4 & 4 \\
0 & 1 & 2 & 1 \\
1 & 3 & 8 & 3 \\
0 & 2 & 4 & 2
\end{pmatrix} \sim \begin{pmatrix}
1 & 2 & 4 & 4 \\
0 & 1 & 2 & 1 \\
1 & 3 & 8 & 3 \\
0 & 2 & 4 & 2
\end{pmatrix} \sim \begin{pmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 2 & 1 \\
0 & 0 & 2 & -2 \\
0 & 0 & 0 & 0
\end{pmatrix} \sim \begin{pmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{pmatrix}.
\]

By looking at the columns in which the leading ones occur, we deduce that a basis for \(W_1 + W_2 \) is

\[
\left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ 2 \\ 8 \\ 4 \end{bmatrix} \right\}.
\]

It follows that \(\dim(W_1 + W_2) = 3 \). Since \(\dim(W_1) = \dim(W_2) = 2 \) by inspection, we conclude from the relation

\[
\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)
\]
that the intersection $W_1 \cap W_2$ has dimension 1. Therefore, any nonzero vector in $W_1 \cap W_2$ will form a basis. To find a nonzero vector in the intersection we seek a nonzero w of the form

$$w = aC_1 + bC_2 = dC_3 + eC_4,$$

where C_i is the ith column of the matrix above. Since row reducing does not change the relationship between the columns, we easily see (by looking at the row-reduced matrix) that

$$2C_1 + 3C_2 - C_3 = C_4,$$

and hence that the vector

$$C_3 + C_4 = \begin{bmatrix} 8 \\ 3 \\ 11 \\ 6 \end{bmatrix}$$

is in $W_1 \cap W_2$; since it is visibly nonzero, a basis of $W_1 \cap W_2$ is the set

$$\left\{ \begin{bmatrix} 8 \\ 3 \\ 11 \\ 6 \end{bmatrix} \right\}.$$

5. Suppose that A is a fixed $n \times n$ matrix, $V = M_n(F)$ is the vector space of $n \times n$ matrices over the field F, and $T : V \longrightarrow V$ is the following function.

$$T(X) = AX -XA$$

for each $X \in V$.

(a) Show that T is a linear operator on V (i.e., that $T : V \rightarrow V$ is a linear mapping).

(b) Now suppose that $n = 2$ and that

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}.$$

Let B be the standard ordered basis

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

of V. Find $[T]_B$.

5
(c) Find a basis for each of \(\ker(T) \) and \(\im(T) \) (using the matrix \(A \) from part (b)).

Solution:

(a) Let \(X, Y \) be arbitrary \(n \times n \) matrices and \(k \) any scalar. Then

\[
T(X + kY) = A(X + kY) - (X + kY)A \\
= AX + AkY -XA -kYA \\
= (AX -XA) + k(AY -YA) \\
= T(X) + kT(Y),
\]

where we have used repeatedly the usual rules of matrix and scalar multiplication. It follows at once that \(T \) is linear.

(b) To determine the matrix of \(T \) with respect to \(B \), we must evaluate \(T \) on each basis vector and write the result as a linear combination of the basis vectors. We find:

\[
T(e_1) = \left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array} \right) \left(\begin{array}{c} 1 \\ 0 \end{array} \right) - \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right) \left(\begin{array}{c} 1 \\ 2 \end{array} \right) \\
= \left(\begin{array}{c} 1 \\ 2 \end{array} \right) - \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \\
= \left(\begin{array}{c} 0 \\ -2 \end{array} \right) = \begin{pmatrix} -2 \\ 2 \end{pmatrix} e_2 + \begin{pmatrix} 2 \\ -2 \end{pmatrix} e_3.
\]

Similarly, we compute:

\[
T(e_2) = -2e_1 + 2e_4 \quad T(e_3) = 2e_1 - 2e_4 \quad T(e_4) = 2e_2 - 2e_3.
\]

Therefore, we have

\[
[T]_B = \begin{bmatrix}
0 & -2 & 2 & 0 \\
-2 & 0 & 0 & 2 \\
2 & 0 & 0 & -2 \\
0 & 2 & -2 & 0
\end{bmatrix}.
\]

(c) To find a basis of the kernel and image of \(T \), we first find a basis of the nullspace and column space of \([T]_B \). To do this, we row
reduce $[T]_B$:

\[
\begin{bmatrix}
0 & -2 & 2 & 0 \\
-2 & 0 & 0 & 2 \\
2 & 0 & 0 & -2 \\
0 & 2 & -2 & 0
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}.
\]

Accordingly, a basis of the column span of $[T]_B$ is

\[
\begin{bmatrix}
0 \\
-2 \\
2 \\
0
\end{bmatrix},
\begin{bmatrix}
-2 \\
0 \\
0 \\
2
\end{bmatrix}.
\]

Moreover, from the row reduction of $[T]_B$ above, we find that

\[
\begin{bmatrix}
1 \\
0 \\
0 \\
1
\end{bmatrix},
\begin{bmatrix}
0 \\
1 \\
1 \\
0
\end{bmatrix}
\]

is a basis of the nullspace of $[T]_B$. We conclude that

\[
\begin{bmatrix}
0 & -2 \\
2 & 0
\end{bmatrix},
\begin{bmatrix}
-2 & 0 \\
0 & 2
\end{bmatrix}
\]

is a basis of $\text{im}(T)$ and

\[
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix},
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\]

is a basis of $\ker(T)$.

6. Suppose that A is an $n \times n$ matrix over a field F. Show that the following conditions on the matrix A are equivalent.

(a) A is invertible.

(b) For every $n \times n$ matrix B over F, there is a solution to the matrix equation $AX = B$.

(c) For every $n \times n$ matrix B over F, there is a unique solution to the matrix equation $AX = B$.

7
Solution: First observe that if $AX = B$ has a unique solution, then in particular it has a solution, so $c) \implies b)$. Assuming $b)$ and taking $B = I_n$, we conclude that $AX = I$ has a solution; this implies that A is invertible so $b) \implies a)$. Now assume that $a)$ holds. Then if B is any $n \times n$ matrix, $X = A^{-1}B$ is a solution to $AX = B$. Given another solution X', we have $AX = B = AX'$ so $A^{-1}AX = A^{-1}AX'$ whence $X = X'$, and it follows that $X = A^{-1}B$ is the unique solution to $AX = B$. Thus $a) \implies c)$. We conclude that all three statements are equivalent.