MATH 223, Linear Algebra Fall, 2007

Assignment 5, due in class October 15, 2007

1.
$$W_1 = span \left\{ \begin{pmatrix} 1 \\ 0 \\ 5 \\ -2 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \\ 15 \\ 4 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 5 \\ -12 \end{pmatrix} \right\}$$
 and $W_2 = span \left\{ \begin{pmatrix} 5 \\ 0 \\ 25 \\ -9 \end{pmatrix}, \begin{pmatrix} 13 \\ 2 \\ 65 \\ -5 \end{pmatrix}, \begin{pmatrix} -11 \\ -4 \\ -55 \\ -17 \end{pmatrix} \right\}$ are subspaces of \mathcal{R}^4 . Find a basis for each of W_1 , W_2 , $W_1 + W_2$ and $W_1 \cap W_2$.

- 2. Let $V = M_3(\mathcal{R})$ be the real vector space of 3×3 matrices with real entries. Let $A = \begin{pmatrix} 3 & 5 & 2 \\ 1 & 0 & -1 \\ 7 & 5 & -2 \end{pmatrix}$. Now let $T: V \longrightarrow V$ be defined by $T(X) = AXA^T$ for any $X \in V$.
 - (a) Show that T is a linear operator on V.
 - (b) Suppose that

$$B = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\},$$

$$\left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}$$

is the standard ordered basis for V. Find $[T]_B$.

- (c) Find a basis for each of ker(T) and im(T).
- 3. Show the exchange property for linear span. That is, suppose that V is a vector space over the field F and $S \cup \{\vec{v}, \vec{w}\}$ is a subset of F; also suppose that $\vec{w} \in span(S \cup \{\vec{v}\})$ but $\vec{w} \notin span(S)$. Show that (in this case) $\vec{v} \in span(S \cup \{\vec{w}\})$.
- 4. Find the inverse of the following matrix, and express it as a product of elementary matrices. (It is, of course, over C, the complex numbers.)

$$\left(\begin{array}{ccc} i & 0 & 2-i \\ 0 & 1 & 0 \\ 1+3i & 0 & 5-3i \end{array}\right).$$

5. Let $V = P_5(t)$ be the real vector space of polynomials of degree at most 5. Which of the following subsets of V are subspaces of it? Justify your answers.

- (a) $S_1 = \{ p \in V : \frac{1}{4}(p'(t))^2 = p(t) \}.$
- (b) $S_2 = \{ p \in V : p(2) = p(-2) = 0 \}.$ (c) $S_3 = \{ p \in V : tp'(t) = 5p(t) \}.$
- 6. Find a basis for each of the row space, column space, and null space of the following matrix. It is over \mathcal{Z}_2 . $\begin{pmatrix}
 1 & 0 & 1 & 0 & 1 \\
 1 & 1 & 1 & 1 & 0 \\
 0 & 1 & 1 & 1 & 0 \\
 0 & 0 & 1 & 0 & 1
 \end{pmatrix}$ What is the

dimension of each of these spaces, and how many elements does each have?