MATH 223, Linear Algebra Fall, 2007

Assignment 6, due in class Friday November 2, 2007

- 1. Diagonalize the following matrices over \mathcal{R} :
 - (a) $\begin{bmatrix} 4 & 2 \\ 3 & -1 \end{bmatrix}$
 - (b) $\begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$
- 2. Let $A = \begin{bmatrix} 4 & -5 \\ 5 & -4 \end{bmatrix}$.
 - (a) Explain why A can not be diagonalized over \mathcal{R} .
 - (b) Diagonalize A over \mathcal{C} .
- 3. Let V be a finite dimensional vector space over a field K, and suppose that $T: V \to V$ is a linear operator on V with eigenvalues $\lambda_1, \ldots, \lambda_m \in K$. For any nonnegative integer j, show that the linear operator $T^j: V \to V$ has eigenvalues $\lambda_1^j, \ldots, \lambda_m^j$.
- 4. Let $V = P_2(\mathcal{C})$ be the complex vector space of polynomials with coefficients in \mathcal{C} of degree at most 2, and consider the linear operator

$$L: V \to V$$

defined by

$$L(a_0 + a_1t + a_2t^2) = (a_0 - a_1) + (a_1 - a_2)t + (a_2 - a_0)t^2.$$

- (a) Find all the eigenvalues of L (note that V is a complex vector space!).
- (b) For each eigenvalue found in part a), determine a basis of eigenvectors for the corresponding eigenspace.
- (c) Find a basis B such that $[L]_B$ is a diagonal matrix and determine $[L]_B$.
- 5. Consider the Fibonacci sequence defined recursively by $F_0=0, F_1=1$ and

$$F_{n+2} = F_{n+1} + F_n$$
 for $n \ge 0$.

- (a) Compute F_n for $n \leq 10$.
- (b) Show that the F_n satisfy the matrix equation

$$\left[\begin{array}{c} F_{n+2} \\ F_{n+1} \end{array}\right] = \left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right] \left[\begin{array}{c} F_{n+1} \\ F_n \end{array}\right].$$

(c) Diagonalize the matrix

$$A = \left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right].$$

(d) Show that for all n, we have the formula

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$