1. (a) Let \(V = \mathbb{R}^4 \) with its usual inner product \(\langle v, w \rangle = v \cdot w \). Let \(u = (1, 1, 1, 1) \), \(v = (2, 3, -1, 2) \), and \(w = (3, 4, 0, 3) \). Determine each of \(\| u \| \), \(\| v \| \), \(\| w \| \), \(\langle u, v \rangle \), \(\langle u, w \rangle \), \(\langle v, w \rangle \).

(b) Let \(V = \mathbb{C}^n \). Show that \(\langle v, w \rangle = v \cdot w \) is not an inner product on \(V \).

(c) Now let \(V = \mathbb{C}^3 \), equipped with its usual inner product \(\langle v, w \rangle = v \cdot \overline{w} \). Set \(u = (1 + i, 2, -3 - i) \) and \(v = (i, 3i, 5 - 2i) \). Find \(\| u \| \), \(\| v \| \), \(\langle u, v \rangle \).

2. Let \(V \) be any real inner product space, with inner product \(\langle \cdot, \cdot \rangle \). Prove that for all \(u, v \in V \)
\[
\langle u + v, u - v \rangle = \| u \|^2 - \| v \|^2.
\]

3. Let \(V = M_n(\mathbb{R}) \) be the real vector space of \(n \times n \) real matrices, let \(T \) be the subspace of \(V \) consisting of upper triangular matrices, and let \(W \) be the subspace of \(T \) consisting of diagonal matrices. For any two matrices \(A, B \in V \), let
\[
\langle A, B \rangle = \text{tr}(AB).
\]
Show that \(\langle \cdot, \cdot \rangle \) is not an inner product on \(V \), but that its restriction to \(W \) is an inner product on \(W \). Justify your answer.

4. Let \(V = M_2(\mathbb{C}) \) be the complex vector space of \(2 \times 2 \) complex matrices, equipped with the inner product
\[
\langle A, B \rangle = \text{tr}(B^T A).
\]
Let \(W \subseteq V \) be the subspace of diagonal matrices. Find a basis for \(W^\perp \).

5. Let \(V = P_3(t) \) be the real vector space of polynomials of degree at most 3 with real coefficients. For all \(f, g \in V \) let
\[
\langle f, g \rangle := \int_{-1}^{1} f(t) g(t) \, dt.
\]

(a) Show that this defines an inner product on \(V \).

(b) Let \(p_1(t) = 1, p_2(t) = t, p_3(t) = 3t^2 - 1, p_4(t) = 5t^3 - 3t \). Show that \(B = \{p_1, p_2, p_3, p_4\} \) is an orthogonal basis of \(V \). Is \(B \) an orthonormal basis of \(V \)?

6. Let \(V \) be the real vector space of continuous real-valued functions on the interval \([1, 2]\), and for any \(f, g \in V \) let
\[
\langle f, g \rangle = \int_{1}^{2} tf(t) g(t) \, dt.
\]
Show that this defines an inner product on \(V \), and that for any \(f \in V \) we have
\[
\left(\int_{1}^{2} t^2 f(t) \, dt \right)^2 \leq \frac{15}{4} \left(\int_{1}^{2} f(t)^2 \, dt \right).
\]