
MATH 223, Linear Algebra
Fall, 2007

Solutions to Assignment 1

1. Let z = 2− 7i and w = 3 + 4i. Find z̄, w̄, z + w, z − w, z · w and z
w (all

in the form a + bi with a and b real numbers). Find the absolute value of
each of these 6 numbers.

Solution: z̄ = 2 + 7i, w̄ = 3 − 4i, z + w = 5 − 3i, z − w = −1 − 11i,
z·w = (2−7i)·(3+4i) = 2·3+2·4i−7i·3−7i·4i = 6+8i−21i+28 = 34−13i
and

z

w
=

2− 7i

3 + 4i
=

(2− 7i)(3− 4i)
(3 + 4i)(3− 4i)

=
6− 8i− 21i− 28

32 + 42
=
−22
25

+
−29
25

i.

The absolute vales are, in order,
√

22 + 72 =
√

53,
√

32 + (−4)2 =
√

25 =
5,

√
52 + (−3)2 =

√
34,

√
(34)2 + (−13)2 =

√
1325 = 5

√
53 and

√
(
−22
25

)2 + (
−29
25

)2 =
1
25

√
222 + 292 =

√
1325
25

=
√

53
5

.

(Full marks for the second-last answer.)

2. Show that if z and w are any two complex numbers, then z · w = z̄ ·w̄. Use
this to show that if A and B are any complex matrices, then A ·B = Ā ·B̄.
[N.B. The conjugate Ā of a matrix A is the most obvious thing — you
just replace each entry of A by its conjugate. Also, we of course assume
here that A ·B is defined.]

Solution: Suppose that z = a + bi and w = c + di, where a, b, c, d are real.
Then z · w = (ac − bd) + (ad + bc)i, so z · w = (ac − bd) − (ad + bc)i.
z̄ = a− bi and w̄ = c− di, so z̄ · w̄ = ac− (−b)(−d) + (a(−d) + (−b)c)i =
ac− bd− (ad + bc)i; that does the first part.

Obviously, all of the matrices A ·B, A ·B and Ā ·B̄ have the same number
of rows and columns. We must check that the (j, k)-entry of A ·B is
the same as the (j, k)-entry of Ā · B̄ for every j and k. Suppose that
A has n columns and therefore B has n rows. The (j, k)-entry of A · B
is then

∑n
m=1 aj,mbm,k where of course aj,m is the (j, m)-entry of A and

bm,k is the (m, k)-entry of B. The (j, k)-entry of A ·B is the conjugate of∑n
j=1 aj,mbm,k.

We haven’t shown that the conjugate of a sum is the sum of the conjugates,
but this is very easy. (Try it yourself, or ask. Don’t just take my word
for it.) So the entry we’re interested in is

∑n
m=1 aj,mbm,k and by the first

part of the problem, this is
∑n

m=1 āj,mb̄m,k. This is indeed the (j, k)-entry
of Ā · B̄.
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3. Solve each of the following systems of equations. That is, find the unique
solution if there is one, the general solution in vector parametric form if
there is more than one solution, or explain why there is no solution if that
is the case. Use augmented matrices.

(a) This one’s over the fieldR, the reals.
x1 −3x2 +2x4 +5x5 = 7

3x1 −6x2 +2x3 +x4 −2x5 = 1
5x1 −12x2 +2x3 +5x4 +8x5 = 15

Solution: We start by row-reducing the augmented matrix




1 −3 0 2 5 | 7
3 −6 2 1 −2 | 1
5 −12 2 5 8 | 15


.

The elementary row operations R2 7→ R2 − 3R1 and R3 7→ R3 − 5R1

turn it into




1 −3 0 2 5 | 7
0 3 2 −5 −17 | −20
0 3 2 −5 −17 | −20


. Before we start in-

troducing (horrors!) fractions, let’s perform R1 7→ R1+R2 and R3 7→

R3 − R2. This coughs up




1 0 2 −3 −12 | −13
0 3 2 −5 −17 | −20
0 0 0 0 0 | 0


. Fi-

nally, R2 7→ 1
3R2 doles out the RREF matrix




1 0 2 −3 −12 | −13
0 1 2

3 − 5
3 − 17

3 | − 20
3

0 0 0 0 0 | 0


.

In a solution, x3 can be any real r, x4 any real s, and x5 and real t.
Then x1 = −13−2r+3s+12t and x2 = − 20

3 − 2
3r+ 5

3s+ 17
3 t. In vec-

tor parametric form, the general solution is




x1

x2

x3

x4

x5




=




−13
− 20

3
0
0
0




+

r




−2
− 2

3
1
0
0




+ s




12
17
3
0
1
0




+ t




12
17
3
0
0
1




.

(b) This one’s also over the fieldR.
x1 −3x2 +2x4 +5x5 = 4

3x1 −6x2 +2x3 +x4 −2x5 = −3
5x1 −12x2 +2x3 +5x4 +8x5 = 7

Solution: The astute among you will have noticed that you could
have done this at the same time as the previous part. But since I
have a word processor, start by row-reducing the augmented matrix


1 −3 0 2 5 | 4
3 −6 2 1 −2 | −3
5 −12 2 5 8 | 7


. The elementary row operations
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R2 7→ R2−3R1 and R3 7→ R3−5R1 turn it into




1 −3 0 2 5 | 4
0 3 2 −5 −17 | −15
0 3 2 −5 −17 | −13


.

Before we start introducing (horrors!) fractions, let’s perform R1 7→

R1+R2 and R3 7→ R3−R2. This coughs up




1 0 2 −3 −12 | −11
0 3 2 −5 −17 | −15
0 0 0 0 0 | 2


.

It is clear that there are no solutions, as the last line of this matrix
corresponds to the equation 0x1 + 0x2 + 0x3 + 0x4 + 0x5 = 2.

(c) This one’s over the field C, the complex numbers.
(1 + i)x1 +(3− i)x2 = 6 + i

(2 + 2i)x1 +(1− 5i)x2 = −2i

Solution: Start with
(

1 + i 3− i | 6 + i
2 + 2i 1− 5i | −2i

)
. After perform-

ing R2 7→ R2−2R1, we get
(

1 + i 3− i | 6 + i
0 −5− 3i | −12− 4i

)
. Then

R2 7→ 1
−5−3iR2 gives us

(
1 + i 3− i | 6 + i

0 1 | 36
17 − 8

17 i

)
. Now

R1 7→ R1 + (−3 + i)R2 donates
(

1 + i 0 | 2
17 + 77

17 i
0 1 | 36

17 − 8
17 i

)
. Finally,

R1 7→ 1
1+iR1 yields the RREF matrix

(
1 0 | 79

34 + 75
34 i

0 1 | 36
17 − 8

17 i

)
. The

unique solution is
(

x1

x2

)
=

(
79
34 + 75

34 i
36
17 − 8

17 i

)
.

(d) This one’s over the two-element field Z2.

x1 +x3 +x5 = 1
x1 +x2 +x3 +x4 +x5 = 1

x2 +x4 +x5 = 1
x1 +x3 = 0

In this case, explicitly list all the solutions.

Solution: Start with




1 0 1 0 1 | 1
1 1 1 1 1 | 1
0 1 0 1 1 | 1
1 0 1 0 0 | 0


 and the operations

R2 7→ R2+R1, R4 7→ R4+R1, bringing forth




1 0 1 0 1 | 1
0 1 0 1 0 | 0
0 1 0 1 1 | 1
0 0 0 0 1 | 1


 .

Next, R3 7→ R3 + R2 allots us




1 0 1 0 1 | 1
0 1 0 1 0 | 0
0 0 0 0 1 | 1
0 0 0 0 1 | 1


. To find

the RREF, we now just need to do R1 7→ R1+R3 and R4 7→ R4+R3;
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


1 0 1 0 0 | 0
0 1 0 1 0 | 0
0 0 0 0 1 | 1
0 0 0 0 0 | 0


 results. We must needs have x5 = 1, but

x3 = s and x4 = t are parameters. Then we have x1 = −s = s
and x2 = −t = t (we’re in Z2 here). In vector parametric form, the

solution is




x1

x2

x3

x4

x5




=




0
0
0
0
1




+ s




1
0
1
0
0




+ t




0
1
0
1
0




. Now s and t

must be either 0 or 1, so we have four solutions; s = t = 0 gives us


0
0
0
0
1




; s = 0, t = 1 yields




0
1
0
1
1




; s = 1, t = 0 proffers




1
0
1
0
1




,

and finally with s = t = 1 we locate




1
1
1
1
1




.

4. (a) Let A =
(

a b
c d

)
be any 2×2 matrix. Show that there is a nonzero

vector ~v with A~v = ~0 if and only if ad− bc = 0.
Solution: You should note that what I am about to do works over any

field. We consider row-reducing the augmented matrix
(

a b | 0
c d | 0

)
.

We distinguish two cases — if a 6= 0 and if a = 0.

Suppose that a 6= 0. Then R1 7→ 1
aR1 turns our matrix into

(
1 b

a | 0
c d | 0

)
.

Next R2 7→ R2−cR1 gives us
(

1 b
a | 0

0 d− bc
a | 0

)
. The entry d− bc

a

is also ad−bc
a . This is zero if and only if ad− bc = 0, and in that case

we get the nonzero solution ~v =
( − b

a
1

)
. If ad − bc is not zero,

we can multiply the second row by a
ad−bc and then replace R1 by

R1 − b
aR2 and get

(
1 0 | 0
0 1 | 0

)
; clearly this has only the trivial

solution x1 = x2 = 0.

Now suppose that a = 0 and our augmented matrix is
(

0 b | 0
c d | 0

)
.

The only way ad−bc = 0 is possible is if b or c is zero. If c = 0, we can
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take ~v =
(

1
0

)
, and if c 6= 0 but b = 0, we can choose ~v =

(
d
−c

)

— either way we get a nontrivial solution. Otherwise, b and c are
both nonzero, and we can perform the row operations R1 7→ 1

b R1 and

R2 7→ 1
cR2 to get

(
0 1 | 0
1 d

c | 0

)
. If we then switch rows and do

R1 7→ R1 − d
c R2, we again get

(
1 0 | 0
0 1 | 0

)
. This shows that if

a = 0 and ad− bc 6= 0, we only have the trivial solution.
[There are other ways to do this. For instance, in case ad − bc 6= 0,

it’s not hard to see that A−1 exists (and equals 1
ad−bc

(
d −b
−c a

)
).

So if ad − bc 6= 0 but A~v = ~0, then A−1(A~v) = A−1~0 = ~0, and so
on. The scalar ad− bc is known as the determinant of A, and we will
look at determinants more closely later.]

(b) Find all complex numbers λ (if any) such that
(

3 −2
2 3

)
~v = λ~v

has a nonzero solution ~v.
Solution: To say A~v = λ~v is the same thing as saying that A~v = λI~v,
which is equivalent to (A−λI)~v = ~0. To say that this has a nontrivial
solution is thus to say that A−λI has zero determinant. For the given

A, A−λI =
(

3− λ −2
2 3− λ

)
. By the first part of this problem, this

has a nontrivial solution if and only if (3− λ)(3− λ)− (−2)(2) = 0.
I’m sure that some of you then wrote λ2 − 6λ + 13 = 0, but why
not go straight to (3 − λ)2 = −4? From there, 3 − λ = ±2i and
λ = 3 ± 2i. (Incidentally, the numbers 3 + 2i and 3 − 2i are known

as the eigenvalues of the matrix
(

3 −2
2 3

)
. Coming attractions.)

(c) For each λ you found in the previous part, find all vectors ~v such

that
(

3 −2
2 3

)
~v = λ~v.

Solution: We solve (A − λI)~v = ~0 for each of our two λ’s, where

A =
(

3 −2
2 3

)
. For λ = 3 + 2i, we consider the augmented matrix

( −2i −2 | 0
2 −2i | 0

)
. This row-reduces quickly to

(
1 −i | 0
0 0 | 0

)
.

The solutions are t

(
i
1

)
, one for each complex t.

For λ = 3−2i, we consider the augmented matrix
(

2i −2 | 0
2 2i | 0

)
.
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This row-reduces quickly to
(

1 i | 0
0 0 | 0

)
. The solutions are

t

( −i
1

)
, one for each complex t.
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