Honors Algebra 4, MATH 371 Winter 2010 ## Assignment 6 Due Wednesday, March 24 at 08:35 - 1. Let K/F be a degree 2 extension of fields. - (a) If the characteristic of F is not 2, prove that K = F(a) for some $a \in K \setminus F$ with $a^2 \in F$. - (b) Give a counterexample to (1a) if F has characteristic 2. - (c) Fix F of characteristic not 2 and let K_1, K_2 be quadratic extensions of F with $K_1 = F(a_1)$ and $K_2 = F(a_2)$ where $a_i^2 = b_i \in F$. Prove that $K_1 \simeq K_2$ as extensions of F (i.e. that there exists an isomorphism of fields $K_1 \simeq K_2$ restricting to the identity on F) if and only if $b_1/b_2 \in (F^{\times})^2$ is a square. Conclude that the isomorphism classes of quadratic extensions of F are in bijection with the group $F^{\times}/(F^{\times})^2$. - (d) Using (1c), give a complete list (without repetition) of all isomorphism classes of quadratic extensions of **Q**. - 2. For $a \in \mathbf{F}_p$, set $$f_a(x) := X^p - X - a \in \mathbf{F}_p[X].$$ - (a) If a = 0, show that $f_a(X) = \prod_{u \in \mathbf{F}_n} (X u)$. - (b) Suppose that $a \neq 0$ and let E_a be a splitting field of $f_a(X)$. If $r_1, r_2 \in E_a$ are roots of f_a , prove that $r_1 r_2 \in \mathbf{F}_p$. - (c) Show that $f_a(X)$ is irreducible for all $a \in \mathbf{F}_p^{\times}$. - (d) Prove that $f_b(X)$ splits completely over E_a for each fixed $a \in \mathbf{F}_p^{\times}$ and all $b \in \mathbf{F}_p^{\times}$. Conclude that E_a is independent of a. - 3. Find the minimal polynomials of $2\cos(2\pi/5)$ and $2\cos(2\pi/7)$ over **Q**. - 4. For each of the following extensions, determine [K:F] and an F-basis of K. - (a) $F = \mathbf{Q}$, $L = \mathbf{Q}(a, b)$ with $a^2 = 6$ and $b^3 = 2$. - (b) $F = \mathbf{C}(T)$ and L is the splitting field of $X^n T$ over F, with n a positive integer. - (c) $F = \mathbf{F}_p(T)$ and L is the splitting field of $X^p T$ over F, with p a prime. - 5. Let K/F be a finite extension of fields and let $\alpha \in K$. Then α induces an F-linear map of finite-dimensional F-vector spaces $$m_{\alpha}:K\to K.$$ - (a) Prove that α is a root of the characteristic polynomial of the linear map m_{α} . Hint: select a suitable F-basis of $F(\alpha)$. - (b) Use (5a) to find a monic degree 3 polynomial with **Q**-coefficients satisfied by $1+\sqrt[3]{2}+\sqrt[3]{4}$. - (c) Prove that if $K = F(\alpha)$, then the characteristic polynomial of m_{α} as a linear map $K \to K$ is in fact the minimal polynomial of α over F. - 6. For each of the following algebraic elements α of the given field extension K/\mathbf{Q} , express $1/\alpha$ and $1/(\alpha+1)$ as polynomials in α with \mathbf{Q} -coefficients. - (a) K is the splitting field of $f = X^3 3X + 1$ and α is a root of f. - (b) K is the splitting field of $f = X^4 + X^3 + x^2 + x + 1$ and α is a root of f. - (c) K is the splitting field of $f = X^5 3X + 3$ and α is a root of f. - 7. Prove that $X^4 5$ is irreducible over \mathbf{Q} and has splitting field K of degree 8 over \mathbf{Q} . Describe this splitting field explicitly as $\mathbf{Q}(a,b)$ where a is a root of $X^4 5$ and $b^2 \in \mathbf{Q}$. In terms of a and b, write down a \mathbf{Q} -basis for K. - 8. Describe the splitting fields of $f := X^3 5$ over \mathbf{F}_{11} and \mathbf{F}_7 and factor f into linear factors over each extension.