1. Let R be a ring.

(a) Let I be an ideal of R and denote by $\pi : R \to R/I$ the natural ring homomorphism defined by $\pi(x) := x \mod I (= x + I$ using coset notation). Show that an arbitrary ring homomorphism $\phi : R \to S$ can be factored as $\phi = \psi \circ \pi$ for some ring homomorphism $\psi : R/I \to S$ if and only if $I \subseteq \ker(\phi)$, in which case ψ is unique.

(b) Suppose that R is commutative with 1. An R-algebra is a ring S with identity equipped with a ring homomorphism $\phi : R \to S$ mapping 1_R to 1_S such that $\operatorname{im}(\phi)$ is contained in the center of S (i.e. the set $c(S) := \{z \in S \mid zs = sz \text{ for all } s \in S\}$ of all elements of S that commute with every other element). If (S, ϕ) and (S', ϕ') are two R-algebras then a ring homomorphism $f : S \to S'$ is called a homomorphism of R-algebras if $f(1_S) = 1_{S'}$ and $f \circ \phi = \phi'$. For an R-algebra (S, ϕ) we will frequently simply write rx for $\phi(r)x$ whenever $r \in R$ and $x \in S$. Prove that the polynomial ring $R[X]$ in one variable is naturally an R-algebra, and that if S is an R-algebra then for any $s \in S$ there exists a unique R-algebra homomorphism $f : R[X] \to S$ such that $f(X) = s$. In other words, mapping $R[X]$ to S is the “same” as choosing an element s of S.

Solution:

(a) One direction is obvious. For the other direction, assume that $I \subseteq \ker(\phi)$ and define $\psi : R/I \to S$ by the rule $\psi(r + I) := \phi(r)$.

Note that this is well-defined since it doesn’t depend on the choice of coset representative as $\phi(I) = 0$. Clearly $\phi = \psi \circ \pi$ and if $\psi' : R/I \to S$ is another ring map with this property then we must have $\psi = \psi'$ as π is surjective. Hence ψ is unique.

(b) That $R[X]$ is an R-algebra via the map $R \to R[X]$ sending $r \in R$ to the constant polynomial $r \in R[X]$ is obvious. If S is any R-algebra and $s \in S$, we define $f : R[X] \to S$ as $f(a_0 + a_1 X + a_2 X^2 + \cdots + a_n X^n) := a_0 + a_1 s + \cdots + a_n s^n$.

It is easy to check that f is an R-algebra homomorphism. On the other hand, if $f : R[X] \to S$ is any homomorphism of R-algebras with $f(X) = s$ then we must have $f(X^n) = f(X)^n = s^n$ and hence $f(a_0 + a_1 X + a_2 X^2 + \cdots + a_n X^n) = f(a_0) + f(a_1)s + \cdots + f(a_n)s^n = a_0 + a_1 s + \cdots + a_n s^n$.

Honors Algebra 4, MATH 371 Winter 2010

Solutions 2
We conclude that f exists and is uniquely determined by the requirement that $f(X) = s$.

2. Let R be a ring with 1.

(a) Prove that there is a unique map of rings $f_R : \mathbb{Z} \to R$. Conclude that every ring with 1 is a \mathbb{Z}-algebra in a unique way.

(b) For a ring R with 1, the kernel of the ring homomorphism f_R as in (2a) is an ideal of \mathbb{Z} so it has the form $c(R)\mathbb{Z}$ for a unique $c(R) \in \mathbb{Z}$ satisfying $c(R) \geq 0$. By definition, the characteristic of R is this integer $c(R)$. Convince yourself that when $c(R) > 0$, this number is the least number of times we have to add $1 \in R$ to itself to get $0 \in R$. Now prove that if R is a ring with 1 that is an integral domain, then the characteristic of R is either 0 or a prime number.

(c) Prove that for $g : R \to S$ a homomorphism of rings with 1 taking 1_R to 1_S the characteristic of S divides the characteristic of R.

(d) Let $g : R \to S$ be a homomorphism of rings with 1 taking 1_R to 1_S. If g is injective, prove that $c(R) = c(S)$. Give an example with g not injective where $c(R) \neq c(S)$.

Solution:

(a) In general, one wants maps of rings with 1 to take 1 to 1, but I should have explicitly demanded this. In this situation, for $n > 0$

$$f(n) = f(1) + f(n-1) = 1 + f(n-1)$$

and it follows by induction that $f(n)$ for $n > 0$ is uniquely determined. Using the existence of additive inverses in R, we must have $f(0) = 0$ as $f(0) = f(0 + 0) = f(0) + f(0)$. We conclude that for $n > 0$ we have

$$0 = f(0) = f(n + (-n)) = f(n) + f(-n)$$

and hence that $f(-n) = -f(n)$ is again uniquely determined. Thus, there is a unique map of rings $\mathbb{Z} \to R$ (provided we require 1 maps to 1).

(b) In any case, we have an injective homomorphism of rings

$$\mathbb{Z}/c(R)\mathbb{Z} \hookrightarrow R.$$

If R is a domain then so is $\mathbb{Z}/c(R)\mathbb{Z}$ since any subring of a domain is a domain and it follows that $(c(R))$ must be a prime ideal. Hence either $c(R) = 0$ or it is a prime number.

(c) The composite homomorphism

$$\mathbb{Z} \xrightarrow{f_R} R \xrightarrow{g} S$$

coincides with f_S by uniqueness and hence $\ker(f_R) \subseteq \ker(f_S)$ as desired.
When \(g : R \to S \) is injective, the composite

\[
\begin{array}{ccc}
\mathbb{Z}/c(R) & \xrightarrow{f_R} & R \\
\downarrow & & \downarrow \\
& S
\end{array}
\]

is also injective and we deduce that \(c(S) := \ker(f_S) = c(R) \). As a counterexample to this equality when \(g \) fails to be injective, consider the quotient map \(\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z} \).

3. Let \(I \) and \(J \) be ideals of a ring \(R \). We define

\[
(a) \quad I + J := \{a + b \mid a \in I, \ b \in J\}
\]
\[
(b) \quad IJ := \{a_1b_1 + \cdots + a_nb_n \mid a \in I, \ b \in J\}
\]

Prove that \(I + J \) is the smallest ideal of \(R \) containing \(I \) and \(J \) and that \(IJ \) is an ideal contained in the intersection \(I \cap J \). Convince yourself that \(I \cap J \) (set-theoretic union) need not be an ideal.

Solution: It is easy to see that \(I + J \) is an ideal of \(R \). If \(K \) is any ideal of \(R \) containing \(I \) and \(J \) then it contains \(a \) for all \(a \in I \) and \(b \) for all \(b \in J \) and hence \(a + b \). Thus, \(K \) contains \(I + J \).

We obviously have \(IJ \subseteq I \cap J \). To get the reverse inclusion, we have to require that \(1 \in R \) (this should have been stated as an assumption in the problem). Suppose that \(r \in I \cap J \) and write \(1 = i + j \) for \(i \in I \) and \(j \in J \). Then \(r = ri + rj \) lies in \(IJ \). As for counterexamples, consider the ring \(R = 2\mathbb{Z} \) which does not have an identity and the ideals \(I = 6\mathbb{Z} \) and \(J = 8\mathbb{Z} \). These ideals clearly satisfy \(I + J = R \). We have \(I \cap J = 24\mathbb{Z} \) but \(IJ = 48\mathbb{Z} \). Now consider \(2\mathbb{Z} \) and \(3\mathbb{Z} \) as ideals of \(\mathbb{Z} \). Their set-theoretic union contains 2 and 3 but not 2 + 3 = 5 since 5 isn’t a \(\mathbb{Z} \)-multiple of either 2 or 3.

4. Let \(R \) be a commutative ring and \(I, J \) ideals of \(R \). If \(P \) is a prime ideal of \(R \) containing \(IJ \), prove that \(P \) contains \(I \) or \(P \) contains \(J \).

Solution: Suppose that \(P \) does not contain \(I \) and let \(j \in J \) be arbitrary. Since \(P \) does not contain \(I \), there exists \(i \in I \) with \(i \notin P \). But \(ij \in P \) whence \(j \in P \) as \(P \) is prime. Hence \(P \) contains \(J \).

5. Let \(R \) be a commutative ring.

\[
(a) \quad \text{Show that the set of all nilpotent elements of } R \text{ (called the nilradical of } R) \text{ is an ideal. Hint: this is basically 1(b) from assignment 1, but be careful about showing that this set is really an abelian group under addition.}
\]
\[
(b) \quad \text{Prove that the nilradical of } R \text{ is contained in the intersection of all prime ideals of } R.
\]
Let $G := \mathbb{Z}/p\mathbb{Z}$ as a group under addition (it is cyclic of order p). Let $F_p := \mathbb{Z}/p\mathbb{Z}$ as a ring, and note that this is a field with p elements. Let R be the group ring $R := F_pG$.

What is the nilradical of R?

Solution:

(a) Using assignment 1, it remains to show that if x is nilpotent then so is $-x$. Note that for any $r \in R$ we have

$$0 = 0 \cdot r = (x + (-x))r = xr + (-x)r$$

so $(-x)r = -xr$. We deduce that

$$(-x)^n = \begin{cases}
 x^n & n \in 2\mathbb{Z} \\
 -x^n & \text{else}
\end{cases}$$

and hence that $-x$ is nilpotent of x is. Note that we don’t need to assume that R has an identity.

(b) If $x \in R$ satisfies $x^n = 0$ for $n > 1$ and P is a prime ideal then $x^n = x \cdot x^{n-1} \in P$ so by induction $x \in P$. It follows that x lies in the intersection of all prime ideals.

(c) Arguing as in assignment 1, we have an isomorphism of rings

$$F_p[X]/(x^p - 1) = F_pG.$$

But as polynomials over F_p, we have $x^p - 1 = (x - 1)^p$ so our task is to find the nilradical of $F_p[X]/(x - 1)^p$. In other words, we seek to find all $f \in F_p[X]$ such that $f^k \in (x - 1)^p$ for some k. Since $(x - 1)$ is a prime ideal of $F_p[X]$, we conclude that we must have $f \in (x - 1)^i$ for some $i \geq 1$ and hence the nilradical is precisely the principal ideal generated by $(x - 1)$.

6. Let R be a commutative ring. Prove that the set of prime ideals in R has minimal elements with respect to inclusion. Such minimal elements are called **minimal primes**.

Solution: This exercise should require R to have an identity $1 \neq 0$. Let S be the set of prime ideals of R, ordered by inclusion. Since R is not the zero ring, R has at least one maximal (hence prime) ideal so S is nonempty. Suppose that I is any totally ordered set and that $\{P_i\}_{i \in I}$ is a chain in S. We claim that

$$P := \bigcap_{i \in I} P_i$$

is a prime ideal of R. It is clearly an ideal, so suppose that $ab \in P$. Then for all i, either $a \in P_i$ or $b \in P_i$. If $a \not\in P_i$ for some $i \in I$, then $a \not\in P_j$ for all $j \leq i$ as $P_j \subseteq P_i$ and hence
Let $b \in P_j$ for all $j \leq i$. As we must also then have $b \in P_j$ for all $j \geq i$ we deduce that $b \in P$ and P is prime. Thus, every chain in S is bounded below and we conclude by Zorn’s Lemma (in the form with minimal elements) that S has minimal elements, as desired.

7. Let R be a finite (as a set) commutative ring with 1. Prove that every prime ideal of R is maximal.

Solution: Let P be a prime ideal of R. Then R/P is a domain with finitely many elements, and is hence a field. (Indeed, if $x \in R/P$ is nonzero then the powers of x can not all be distinct by finiteness so $x^j = x^j$ for some $0 < i < j$ and we conclude that $x^{j-i}(x^j - 1) = 0$ so since R/P is a domain and $x \neq 0$ we conclude that $x^i = 1$ for some $i \geq 1$ whence x is a unit.) We conclude that P is maximal, as desired.

8. Let $\varphi : R \rightarrow S$ be a homomorphism of commutative rings and I an ideal of S. Prove that $\varphi^{-1}(I)$ (set-theoretic inverse image) is an ideal of R that is prime whenever I is a prime ideal of S. Show that this holds with “prime” replaced by “maximal” provided we assume that φ is surjective. Give a counterexample to this if we drop the surjectivity requirement.

Solution: The map φ induces an injective homomorphism of rings

$$R/\varphi^{-1}(I) \hookrightarrow S/I$$

so if the target is a domain, so is the source as any subring of a domain is a domain. In the case that φ is surjective, this induced map is an isomorphism so if I is maximal both target and source are fields and $\varphi^{-1}(I)$ must be maximal as well. As a counterexample, consider the map $\mathbb{Z} \hookrightarrow \mathbb{Q}$ given by inclusion. The zero ideal of \mathbb{Q} is maximal as \mathbb{Q} is a field, but clearly its inverse image—the zero ideal of \mathbb{Z}—is not maximal.

Suppose that $ab \in \varphi^{-1}(I)$. Then $\varphi(a)\varphi(b) \in I$ so if I is prime one of $\varphi(a), \varphi(b)$ lies in I and hence one of a, b lies in $\varphi^{-1}(I)$. If φ is surjective and I is maximal