
Honors Algebra 4, MATH 371 Winter 2010
Assignment 4

Due Wednesday, February 17 at 08:35

1. Let R be a commutative ring with 1 6= 0.

(a) Prove that the nilradical of R is equal to the intersection of the prime ideals of R. Hint:
it’s easy to show using the definition of prime that the nilradical is contained in every
prime ideal. Conversely, suppose that f is not nilpotent and consider the set S of ideals
I of R with the property that “n > 0 =⇒ fn 6∈ I.” Show that S has maximal elements
and that any such maximal element must be a prime ideal.

Solution: Suppose that f ∈ R is not nilpotent and let S be the set S of ideals I of R
with the property that “n > 0 =⇒ fn 6∈ I.” Ordering S by inclusion, note that every
chain is bounded above: if I1 ⊆ I2 ⊆ · · · is a chain, then I = ∪Ii is an upper bound
which clearly lies in S. By Zorn’s lemma, S has a maximal element, say M , which we
claim is prime. Indeed, suppose that uv ∈ M but that u 6∈ M and v 6∈ M . Then the
ideals M + (u) and M + (v) strictly contain M so do not belong to S by maximality of
M . Thus, there exist m and n such that fn ∈ M + (u) and fm ∈ M + (v). It follows
that fm+n ∈M +(uv) = M and hence that M is not in S, a contradiction. Thus, either
u or v lies in M and M is prime. We deduce that f is not contained in the prime ideal
M , and hence that f is not contained in the intersection of all prime ideals.
Conversely, if p is any prime ideal and f is nilpotent then 0 = fn ∈ p for some n, and
an easy induction argument using that p is prime shows that f must be in p.

(b) Suppose that R is reduced, i.e. that the nilradical of R is the zero ideal. If p is a minimal
prime ideal of R, show that the localization Rp has a unique prime ideal and conclude
that Rp is a field.

Solution: By a previous exercise, the prime ideals of the localization Rp are those prime
ideals of R not meeting R \ p, or in other words, the prime ideals of R contained in p.
As p is minimal, there is a unique such prime ideal: namely p itself. We claim that the
image of p in Rp is the zero ideal. Indeed, by part (a), any f ∈ p is nilpotent in Rp so
there exists s ∈ R \ p such that sfn = 0 for some n > 0. We deduce by commutativity
that sf ∈ R is nilpotent, whence it must be zero since R is reduced, and we conclude
that f is zero in Rp as desired. Thus, Rp is a ring whose only prime ideal is 0 and
therefore must be a field. (If T is any such ring and x ∈ T is nonzero, then (x) can not
be contained in any maximal ideal, since maximal ideals are prime and hence (x) is the
unit ideal so x is a unit.)

(c) Again supposing R to be reduced, prove that R is isomorphic to a subring of a direct
product of fields.

Solution: We have a canonical ring homomorphism

R→
∏

p minimal

Rp

whose kernel is the intersection of all minimal primes. By part (a), this kernel is the
nilradical of R, so since R is reduced the above map is injective. By part (b), the right



hand side is a product of fields, so we conclude that R is isomorphic to a subring of a
direct product of fields.

2. Let R be a commutative ring with 1 6= 0 and let ϕ : R→ R be a ring homomorphism. If R is
noetherian and ϕ is surjective, show that ϕ must be injective too, and hence an isomorphism.
(Hint: Consider the iterates of ϕ and their kernels.) Can you give a counter-example to this
when R is not noetherian?

Solution: Let ϕn be the composition of ϕ with itself n-times and denote by In the kernel of
ϕn. Then we have a chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · ·

in the noetherian ring R, so we conclude that this chain stabilizes, hence In = In+1 for
some n ≥ 1. Suppose x ∈ kerϕ. Since ϕn is surjective, we can write x = ϕn(y) whence
0 = ϕ(x) = ϕn+1(y) and we deduce that y ∈ In+1 = In and hence that x = ϕn(y) = 0. Thus,
ϕ is injective.

As a counterexample in the case of non-noetherian R, consider the ring R of infinitely dif-
ferentiable real-valued functions on the interval [0, 1] and the map ϕ : R → R given by
differentiation. This map is surjective, since for any f , the function F (x) :=

∫ x
0 f(u)du is

well-defined and infinitely differentiable. However, ϕ is not injective as it kills the constant
functions.

3. As usual, for a prime p we write Fp = Z/pZ for the field with p elements.

(a) Find all monic irreducible polynomials in Fp[X] of degree ≤ 3 for p = 2, 3, 5.

Solution: For p = 2 the monic irreducibles are

x3 + x2 + 1, x3 + x+ 1, x2 + x+ 1, x+ 1, x

for p = 3 they are

x3 + x2 + x+ 2, x3 + x2 + 2x+ 1, x3 + x2 + 2, x3 + 2x2 + x+ 1

x3 + 2x2 + 2x+ 2, x3 + 2x2 + 1, x3 + 2x+ 1, x3 + 2x+ 2

x2 + x+ 2, x2 + 2x+ 2, x2 + 1, x+ 1, x+ 2, x



for p = 5 they are

x3 + x2 + x+ 3, x3 + x2 + x+ 4, x3 + x2 + 3x+ 1, x3 + x2 + 3x+ 4

x3 + x2 + 4x+ 1, x3 + x2 + 4x+ 3, x3 + x2 + 1, x3 + x2 + 2, x3 + 2x2 + x+ 3

x3 + 2x2 + x+ 4, x3 + 2x2 + 2x+ 2, x3 + 2x2 + 2x+ 3, x3 + 2x2 + 4x+ 2

x3 + 2x2 + 4x+ 4, x3 + 2x2 + 1, x3 + 2x2 + 3, x3 + 3x2 + x+ 1, x3 + 3x2 + x+ 2

x3 + 3x2 + 2x+ 2, x3 + 3x2 + 2x+ 3, x3 + 3x2 + 4x+ 1, x3 + 3x2 + 4x+ 3

x3 + 3x2 + 2, x3 + 3x2 + 4, x3 + 4x2 + x+ 1, x3 + 4x2 + x+ 2, x3 + 4x2 + 3x+ 1

x3 + 4x2 + 3x+ 4, x3 + 4x2 + 4x+ 2, x3 + 4x2 + 4x+ 4, x3 + 4x2 + 3, x3 + 4x2 + 4

x3 + x+ 1, x3 + x+ 4, x3 + 2x+ 1, x3 + 2x+ 4, x3 + 3x+ 2, x3 + 3x+ 3, x3 + 4x+ 2

x3 + 4x+ 3, x2 + x+ 1, x2 + x+ 2, x2 + 2x+ 3, x2 + 2x+ 4, x2 + 3x+ 3, x2 + 3x+ 4

x2 + 4x+ 1, x2 + 4x+ 2, x2 + 2, x2 + 3, x+ 1, x+ 2, x+ 3, x+ 4, x

(b) Prove that for f ∈ Fp[X] monic and irreducible, the ideal (f(X)) is maximal and hence
that Fp[X]/(f(X)) is a field. Show that Fp[X]/(f(X)) has finite cardinality pdeg f and
use part (??) to explicitly construct finite fields of orders 8, 9, 25, 125.

Solution: We showed that Fp[X] is Euclidean and hence a PID and hence a UFD.
In particular, irreducible implies prime (using UFD) and prime implies maximal (using
PID). We conclude that for a monic irreducible f , the ring Fp[X]/(f(X)) is a field. As
an Fp-vector space, Fp[X]/(f(X)) has basis 1, X,X2, . . . , Xdeg f−1 and hence this field
has cardinality pdeg f . Choosing specific examples of monic irreducibles as found in part
(a) yields specific examples of finite fields of size 23, 32, 52, and 53.

(c) Prove that F7[X]/(X2+2) and F7[X]/(X2+X+3) are both finite fields of size 49. Show
that these fields are isomorphic by exhibiting an explicit isomorphism between them.

Solution: Both X2 +X + 3 and X2 + 2 are monic irreducibles in F7[X]. Any ring map
ϕ : F7[X] → F7[Y ]/(Y 2 + Y + 3) has the form

X 7→ aY + b,

so X2 + 2 maps to

(aY+b)2+2 = a2Y 2+2abY+b2+2 = a2(−Y−3)+2abY+b2+2 = −(a2−2ab)Y+b2+2−3a2

so since 1, Y is an F7-basis of the target, if X2 + 2 is to map to zero we must have
a2 = 2ab and b2 = 3a2 + 2 = 0. If a = 0 then ϕ would not be surjective, so we
must have a 6= 0. Then a = 2b and b2 = 4 so b = ±2. Taking b = 2 and a = 4
gives the map X 7→ 4Y + 2 which by our calculation induces a nonzero map of fields
F7[X]/(X2 + 2) → F7[Y ]/(Y 2 + Y + 3) which must therefore be an isomorphism.

4. Let R ba a ring with 1 6= 0 and M an R-module. Show that if N1 ⊆ N2 ⊆ · · · is an ascending
chain of submodules of M then ∪i≥1Ni is a submodule of N . Show by way of counterexample
that modules over a ring need not have maximal proper submodules (in contrast to the special
case of ideals in a ring with 1).



Solution: The argument is identical to that for the special case of ideals. For a counterex-
ample, consider Q as a Z-module.

5. Let R be any commutative ring with 1 6= 0 and M and R-module. Show that the canonical
map

HomR(R,M) →M

sending ϕ to ϕ(1) is an isomorphism of R-modules.

Solution: One must first check that the given map really is a map of R-modules; as this is
straightforward and tedious, we omit it. For m ∈M let ϕm : R→M be the map defined by
ϕm(r) := rm. It is easy to see that this is an R-module homomorphism and is inverse to the
canonical map HomR(R,M) →M .

6. Let F = R and let V = R3. Consider the linear map ϕ : V → V given by rotation through
an angle of π/2 about the z-axis. Consider V as an F [X]-module by defining

(anX
n + an−1X

n−1 + · · ·+ a1X + a0)v := (anϕ
n + an−1ϕ

n−1 + · · ·+ a1ϕ+ a0)v,

where ϕi is the composition of ϕ with itself i-times.

(a) What are the F [X]-submodules of V ?

Solution: The F [X]-submodules are precisely that F -subspaces of the vector space R3

which are stable under multiplication by X, i.e. the subspaces preserved by ϕ. Thinking
geometrically, these are the x− y plane and the z-axis.

(b) Show that V is naturally a module over the quotient ring F [X]/(X3 −X2 +X − 1).

Solution: Thinking geometrically, ϕ has eigenvalues 1 (the z-axis is an eigenvector) and
±i (the restriction of ϕ to the x− y plane is rotation through π/2, whose characteristic
polynomial is clearly X2 + 1). We conclude that the characteristic polynomial of ϕ is

(X − 1)(X2 + 1) = (X3 −X2 +X − 1)

and hence that this element of F [X] acts trivially on V by the Cayley-Hamilton theorem.
Thus, V is a module over the quotient ring F [X]/(X3 −X2 +X − 1).

7. Let R be a ring with 1 6= 0.

(a) For a left ideal I of R and an R-module M , define

IM := {r1m1 + r2m2 + · · ·+ rkmk : ri ∈ R, mi ∈M, k ∈ Z≥0} .

Show that IM is an R-submodule of M .

Solution: Obvious.

(b) Prove that for any ideal I of R and any positive integer n, there is a canonical isomor-
phism of R-modules

Rn/IRn ' R/IR×R/IR× · · · ×R/IR



with n-factors in the product on the right.

Solution: The map
Rn ' R/IR×R/IR× · · · ×R/IR

defined by (r1, . . . , rn) 7→ (r1 + I, . . . , rn + I) is a well-defined and surjective R-module
homomorphism. The kernel consists of exactly those (r1, . . . , rn) with ri ∈ I for all I,
which is easily seen to be the ideal IRn.

(c) Suppose now that R is commutative and that Rn ' Rm as R-modules. Show thatm = n.
Hint: reduce to the case of finite dimensional vector spaces over a field by applying (??)
with I a maximal ideal of R.

Solution: Let I be a maximal ideal of R so F := R/IR is a field. By (??), we deduce
that

Fm ' Rm/IRm ' Rn/IRnsimeqFn

which forces m = n since all bases of a finite dimensional vector space have the same
cardinality (i.e. dimension is well-defined).

(d) If R is commutative and A is any finite set of cardinality n, show that F (A) ' Rn as
R-modules (Hint: Show that Rn satisfies the same universal mapping property as F (A)
and deduce from this that one has maps in both directions whose composition in either
order must be the identity). Conclude that the rank of a free module over a commutative
ring is well-definied if it is finite.

Solution: Let E := {ei}n
i=1 be the standard basis of Rn and suppose given a map of

sets ψ : E → M for an R-module M . We extend ψ to an R-module homomorphism
Rn →M by the rule ∑

riei 7→
∑

riψ(ei).

This is well-defined because {ei} is a basis of Rn, so every element of Rn has a unique
representation as a sum

∑
riei. Moreover, this map is obviously a homomorphism of

R-modules, and is uniquely determined by ψ (because {ei} spans Rn). Thus, Rn with
the set E satisfies the same universal property as F (E) so the two must be isomorphic
as R-modules. As F (E) ' F (A) (because A and E are in bijection as sets) we conclude
as desired.

8. Let R be a ring with 1 6= 0 and M an R-module. We say that M is irreducible if M 6= 0 and
the only submodules of M are 0 and M .

(a) Show that M is irreducible if and only if M is a nonzero cyclic R-module.

Solution: Let m ∈M be any nonzero element. Then Rm is a nonzero cyclic submodule
of M (since it contains m) and by irreducibility of M we must have Rm = M . The
converse is false in general (example 2Z ⊆ Z), and we must require the additional phrase
“with any nonzero element as a generator” to get the desired equivalence. Suppose that
M is a nonzero cyclic R-module with any nonzero element as a generator. If N ⊆M is
a submodule which is nonzero, then any nonzero n ∈ N generates M as an R-module so
N = M and M is irreducible.



(b) If R is commutative, show that M is irreducible if and only if M ' R/I as R-modules
for some maximal ideal I of R.

Solution: By part (a), if M is irreducible then there is a natural surjective map of R-
modules ϕ : R→M given by r 7→ rm for any (fixed) nonzero m ∈M . The kernel of this
map is a submodule of R, i.e. an ideal I of R. Since the submodules of M ' R/ ker(ϕ)
are those ideals of R containing ker(ϕ), by irreducibility of M we conclude that I must
be maximal.

(c) Prove Schur’s lemma: if M1 and M2 are irreducible R-modules then any nonzero R-
module homomorphism ϕ : M1 →M2 is an isomorphism.

Solution: The kernel of ϕ is a submodule of M1 so by irreducibility of M1 must be zero
(as ϕ is not the zero map). Since M1 is nonzero (definition of irreducible) we conclude
that M1 is isomorphic to a nonzero submodule of M2 and hence ϕ is an isomorphism by
irreducibility of M2.


