Honors Algebra 4, MATH 371 Winter 2010
Assignment 4
Due Wednesday, February 17 at 08:35

1. Let R be a commutative ring with 1 # 0.

(a)

Prove that the nilradical of R is equal to the intersection of the prime ideals of R. Hint:
it’s easy to show using the definition of prime that the nilradical is contained in every
prime ideal. Conversely, suppose that f is not nilpotent and consider the set S of ideals
I of R with the property that “n >0 = f™ ¢ [.” Show that S has maximal elements
and that any such maximal element must be a prime ideal.

Solution: Suppose that f € R is not nilpotent and let S be the set .S of ideals I of R
with the property that “n >0 = f™ ¢ I.” Ordering S by inclusion, note that every
chain is bounded above: if Iy C Iy C --- is a chain, then I = UI; is an upper bound
which clearly lies in S. By Zorn’s lemma, S has a maximal element, say M, which we
claim is prime. Indeed, suppose that uv € M but that u ¢ M and v € M. Then the
ideals M + (u) and M + (v) strictly contain M so do not belong to S by maximality of
M. Thus, there exist m and n such that f* € M + (u) and f™ € M + (v). It follows
that f™*" € M + (uv) = M and hence that M is not in S, a contradiction. Thus, either
u or v lies in M and M is prime. We deduce that f is not contained in the prime ideal
M, and hence that f is not contained in the intersection of all prime ideals.
Conversely, if p is any prime ideal and f is nilpotent then 0 = f™ € p for some n, and
an easy induction argument using that p is prime shows that f must be in p.

Suppose that R is reduced, i.e. that the nilradical of R is the zero ideal. If p is a minimal
prime ideal of R, show that the localization R, has a unique prime ideal and conclude
that Ry is a field.

Solution: By a previous exercise, the prime ideals of the localization R are those prime
ideals of R not meeting R \ p, or in other words, the prime ideals of R contained in p.
As p is minimal, there is a unique such prime ideal: namely p itself. We claim that the
image of p in Ry is the zero ideal. Indeed, by part (a), any f € p is nilpotent in R, so
there exists s € R\ p such that sf™ = 0 for some n > 0. We deduce by commutativity
that sf € R is nilpotent, whence it must be zero since R is reduced, and we conclude
that f is zero in Ry as desired. Thus, R, is a ring whose only prime ideal is 0 and
therefore must be a field. (If T is any such ring and = € T is nonzero, then (z) can not
be contained in any maximal ideal, since maximal ideals are prime and hence () is the
unit ideal so z is a unit.)

Again supposing R to be reduced, prove that R is isomorphic to a subring of a direct
product of fields.

Solution: We have a canonical ring homomorphism
R— ] R
p minimal

whose kernel is the intersection of all minimal primes. By part (a), this kernel is the
nilradical of R, so since R is reduced the above map is injective. By part (b), the right



hand side is a product of fields, so we conclude that R is isomorphic to a subring of a
direct product of fields.

2. Let R be a commutative ring with 1 # 0 and let ¢ : R — R be a ring homomorphism. If R is
noetherian and ¢ is surjective, show that ¢ must be injective too, and hence an isomorphism.
(Hint: Consider the iterates of ¢ and their kernels.) Can you give a counter-example to this
when R is not noetherian?

Solution: Let ¢™ be the composition of ¢ with itself n-times and denote by I, the kernel of
©". Then we have a chain of ideals

LCLCI3C -

in the noetherian ring R, so we conclude that this chain stabilizes, hence I,, = I, for
some n > 1. Suppose x € kerp. Since " is surjective, we can write z = ¢"(y) whence
0 = ¢(z) = " (y) and we deduce that y € I,,41 = I,, and hence that z = ¢"(y) = 0. Thus,
 is injective.

As a counterexample in the case of non-noetherian R, consider the ring R of infinitely dif-
ferentiable real-valued functions on the interval [0,1] and the map ¢ : R — R given by
differentiation. This map is surjective, since for any f, the function F(z) := [; f(u)du is
well-defined and infinitely differentiable. However, ¢ is not injective as it kills the constant
functions.

3. As usual, for a prime p we write F,, = Z/pZ for the field with p elements.
(a) Find all monic irreducible polynomials in F,[X] of degree < 3 for p = 2,3,5.
Solution: For p = 2 the monic irreducibles are
P+, B4l 2+l 241,
for p = 3 they are
Bt +r+2 2+t +204+1, B+ 42, B+ 2+ +1

234202+ 2042, ¥ 422 +1, 22+ 20 +1, 23 +22+2
:L‘2—|—33+2, x2+2x—|—2, :E2+1, z+1, x+2, x



for p = 5 they are

Bttt +3, Bt o4 2P+ 30 +1, 2P a2+ 3244

Pt tdr+ 1, B4t A +3, B2+ +1, a2 42, 22+ 222+ 2+ 3
23420 fr 4, 24202+ 220+ 2, 2 4227 + 22043, 2%+ 227 + 4+ 2
234202 +dx 44, P +202+1, 2® + 222 +3, B +32% 4z +1, 22+ 322+ +2
x3+3x2+2x+2, 333+3932+2x+3, x3+3x2+4$+1, 234322 + 42+ 3

234322 +2, 234322 +4, P +4’ 441, B+ 2 +2, 22 +422 + 32 +1
22442 + 30 +4, 2+ 40’ + 4+ 2, 2P+ 4’ 4+ 4, 2P+ 4%+ 3, 22+ 422 + 4
B4+l B 4r+4 B2+ 1, 22+ 20 +4, 3 +32+2, 22+ 30 +3, 23 +4r+2
44 +3, 22 +a+1, 2l +a+2 22 +20+3, 22 +20+4, 22 +3x+3, 22 +3z+4
2 4dr+1, 2?44 +2, 22+2, 2243, 241, 2 +2, +3, x+4, z

(b) Prove that for f € F,[X] monic and irreducible, the ideal (f(X)) is maximal and hence
that F,[X]/(f(X)) is a field. Show that F,[X]/(f(X)) has finite cardinality pi°¢/ and
use part (??) to explicitly construct finite fields of orders 8,9, 25,125.

Solution: We showed that F,[X] is Euclidean and hence a PID and hence a UFD.
In particular, irreducible implies prime (using UFD) and prime implies maximal (using
PID). We conclude that for a monic irreducible f, the ring F,[X]/(f(X)) is a field. As
an F)-vector space, F,[X]/(f(X)) has basis 1, X, X2, ..., X498/~ and hence this field
has cardinality pd®8/. Choosing specific examples of monic irreducibles as found in part
(a) yields specific examples of finite fields of size 23, 32, 52, and 53.

(c) Prove that F7[X]/(X?+2) and F7[X]/(X?+ X +3) are both finite fields of size 49. Show
that these fields are isomorphic by exhibiting an explicit isomorphism between them.

Solution: Both X2+ X + 3 and X2 + 2 are monic irreducibles in F7[X]. Any ring map
¢ : F7[X] = F7[Y]/(Y? +Y + 3) has the form

X—aY +0b,
so X2 + 2 maps to
(aY 4b)24+2 = a?Y242abY +b%42 = a*(—Y —3)+2abY +b*+2 = —(a®—2ab)Y +b*+2—3a?

so since 1,Y is an Fy-basis of the target, if X2 + 2 is to map to zero we must have
a?> = 2ab and b? = 3a®> +2 = 0. If a = 0 then ¢ would not be surjective, so we
must have @ # 0. Then @ = 2b and b*> = 4 so b = +2. Taking b = 2 and a = 4
gives the map X +— 4Y + 2 which by our calculation induces a nonzero map of fields
F7[X]/(X?%+2) — F;[Y]/(Y2? 4+ Y + 3) which must therefore be an isomorphism.

4. Let R ba a ring with 1 # 0 and M an R-module. Show that if Ny C Ny C --- is an ascending
chain of submodules of M then U;>1N; is a submodule of N. Show by way of counterexample
that modules over a ring need not have maximal proper submodules (in contrast to the special
case of ideals in a ring with 1).



Solution: The argument is identical to that for the special case of ideals. For a counterex-
ample, consider Q as a Z-module.

5. Let R be any commutative ring with 1 # 0 and M and R-module. Show that the canonical
map

Homp(R,M) - M

sending ¢ to (1) is an isomorphism of R-modules.

Solution: One must first check that the given map really is a map of R-modules; as this is
straightforward and tedious, we omit it. For m € M let ¢,, : R — M be the map defined by
©m/(r) := rm. It is easy to see that this is an R-module homomorphism and is inverse to the
canonical map Hompg(R, M) — M.

6. Let F = R and let V = R3. Consider the linear map ¢ : V' — V given by rotation through
an angle of 7/2 about the z-axis. Consider V' as an F[X]-module by defining

(an X"+ an 1 X"+ + a1 X + ag)v = (an@” + an19" " + - + a19 + ag)v,
where ¢’ is the composition of ¢ with itself i-times.

(a) What are the F[X]-submodules of V7

Solution: The F[X]-submodules are precisely that F-subspaces of the vector space R3
which are stable under multiplication by X, i.e. the subspaces preserved by ¢. Thinking
geometrically, these are the x — y plane and the z-axis.

(b) Show that V is naturally a module over the quotient ring F[X]/(X3 — X2+ X —1).

Solution: Thinking geometrically, ¢ has eigenvalues 1 (the z-axis is an eigenvector) and
+i (the restriction of ¢ to the z — y plane is rotation through 7/2, whose characteristic
polynomial is clearly X2 + 1). We conclude that the characteristic polynomial of ¢ is

(X -DX2+1)=(X3-X?+X-1)

and hence that this element of F[X] acts trivially on V by the Cayley-Hamilton theorem.
Thus, V is a module over the quotient ring F[X]/(X3 — X2+ X —1).

7. Let R be a ring with 1 # 0.
(a) For a left ideal I of R and an R-module M, define
IM == {rimi+roma+---+rpgmy = r; € R, m; € M, k € Z>¢}.
Show that IM is an R-submodule of M.

Solution: Obvious.

(b) Prove that for any ideal I of R and any positive integer n, there is a canonical isomor-
phism of R-modules

R"JIR" ~R/IR x R/IR x --- x R/IR



with n-factors in the product on the right.

Solution: The map
R"~R/IRX R/IRX---x R/IR

defined by (r1,...,r) — (r1+1,...,m, + I) is a well-defined and surjective R-module
homomorphism. The kernel consists of exactly those (rq,...,r,) with r; € I for all I,
which is easily seen to be the ideal I R™.

(¢) Suppose now that R is commutative and that R™ ~ R™ as R-modules. Show that m = n.
Hint: reduce to the case of finite dimensional vector spaces over a field by applying (77?)
with I a maximal ideal of R.

Solution: Let I be a maximal ideal of R so F := R/IR is a field. By (??), we deduce
that
F"™ ~R™/IR™ ~ R"/IR"simeqF™"

which forces m = n since all bases of a finite dimensional vector space have the same
cardinality (i.e. dimension is well-defined).

(d) If R is commutative and A is any finite set of cardinality n, show that F(A) ~ R" as
R-modules (Hint: Show that R™ satisfies the same universal mapping property as F'(A)
and deduce from this that one has maps in both directions whose composition in either
order must be the identity). Conclude that the rank of a free module over a commutative
ring is well-definied if it is finite.

Solution: Let E := {e¢;}"; be the standard basis of R" and suppose given a map of
sets ¢ : ' — M for an R-module M. We extend ¥ to an R-module homomorphism

R™ — M by the rule
Z’m‘ez’ = Zril/}(ez‘)-

This is well-defined because {¢;} is a basis of R", so every element of R™ has a unique
representation as a sum »  7;e;. Moreover, this map is obviously a homomorphism of
R-modules, and is uniquely determined by ¢ (because {e;} spans R™). Thus, R™ with
the set E satisfies the same universal property as F(F) so the two must be isomorphic
as R-modules. As F(E) ~ F(A) (because A and E are in bijection as sets) we conclude
as desired.

8. Let R be a ring with 1 # 0 and M an R-module. We say that M is irreducible if M # 0 and
the only submodules of M are 0 and M.

(a) Show that M is irreducible if and only if M is a nonzero cyclic R-module.

Solution: Let m € M be any nonzero element. Then Rm is a nonzero cyclic submodule
of M (since it contains m) and by irreducibility of M we must have Rm = M. The
converse is false in general (example 2Z C Z), and we must require the additional phrase
“with any nonzero element as a generator” to get the desired equivalence. Suppose that
M is a nonzero cyclic R-module with any nonzero element as a generator. If N C M is
a submodule which is nonzero, then any nonzero n € N generates M as an R-module so
N = M and M is irreducible.



(b)

If R is commutative, show that M is irreducible if and only if M ~ R/I as R-modules
for some maximal ideal I of R.

Solution: By part (a), if M is irreducible then there is a natural surjective map of R-
modules ¢ : R — M given by r — rm for any (fixed) nonzero m € M. The kernel of this
map is a submodule of R, i.e. an ideal I of R. Since the submodules of M ~ R/ker(p)
are those ideals of R containing ker(y), by irreducibility of M we conclude that I must
be maximal.

Prove Schur’s lemma: if M; and Ms are irreducible R-modules then any nonzero R-
module homomorphism ¢ : M; — M; is an isomorphism.

Solution: The kernel of ¢ is a submodule of M; so by irreducibility of M; must be zero
(as ¢ is not the zero map). Since M is nonzero (definition of irreducible) we conclude
that M is isomorphic to a nonzero submodule of My and hence ¢ is an isomorphism by
irreducibility of Ma.



