
Honors Algebra 4, MATH 371 Winter 2010
Assignment 6

Due Wednesday, March 24 at 08:35

1. Let K/F be a degree 2 extension of fields.

(a) If the characteristic of F is not 2, prove that K = F (a) for some a ∈ K \F with a2 ∈ F .

(b) Give a counterexample to (1a) if F has characteristic 2.

(c) Fix F of characteristic not 2 and let K1,K2 be quadratic extensions of F with K1 = F (a1)
and K2 = F (a2) where a2

i = bi ∈ F . Prove that K1 ' K2 as extensions of F (i.e. that
there exists an isomorphism of fields K1 ' K2 restricting to the identity on F ) if and
only if b1/b2 ∈ (F×)2 is a square. Conclude that the isomorphism classes of quadratic
extensions of F are in bijection with the group F×/(F×)2.

(d) Using (1c), give a complete list (without repetition) of all isomorphism classes of quadratic
extensions of Q.

Solution :

(a) Fix b ∈ K \ F . Then {1, b} is an F -basis of K, so b satisfies a degree 2 polynomial
b2 + ub + v = 0 with u, v ∈ F . Since the characteristic of F is not 2, 2 ∈ F times so
u/2 makes sense and we have (b + u/2)2 = u2/4 − v by completing the square. Thus,
a := b + u/2 ∈ K \ F has a2 ∈ F and clearly K = F (a).

(b) The extension F2[X]/(X2 + X + 1) of F2 gives a counterexample, since (a + bX)2 =
(a2 + b2) + b2X lies in F if and only if b = 0.

(c) If K1 ' K2 as extensions of F , then b1 must be a square in K2, say b1 = (u + va2)2.
This gives b1 = u2 + v2b2 + 2uva2 from which it follows (as 2 6= 0 in F ) that either u or
v must be zero. The second case cannot occur as otherwise b1 would be a square in F
and K1 = F . Thus ,b1 = v2b2 for some v ∈ F . Conversely, If b1 = v2b2 then b1 = (va2)2

is a square in K2, and the map F [X] → K2 sending X to va2 is surjective and yields an
isomorphism F [X]/(X2 − b1) ' K2. As the source of this isomorphism is isomorphic to
K1, we get K1 ' K2 as extensions of F .

(d) These are parameterized by Q×/(Q×)2 = {2, 3, 5, 6, 7, 10, 11, 13, 14, 15, . . .} (the positive
square-free integers).

2. For a ∈ Fp, set
fa(x) := Xp −X − a ∈ Fp[X].

(a) If a = 0, show that fa(X) =
∏

u∈Fp
(X − u).

(b) Suppose that a 6= 0 and let Ea be a splitting field of fa(X). If r1, r2 ∈ Ea are roots of
fa, prove that r1 − r2 ∈ Fp.

(c) Show that fa(X) is irreducible for all a ∈ F×p .

(d) Prove that fb(X) splits completely over Ea for each fixed a ∈ F×p and all b ∈ F×p .
Conclude that Ea is independent of a.

Solution:



(a) Every u ∈ Fp satisfies Xp − X = 0 and this gives p roots of the degree p polynomial
Xp −X in the Euclidean domain F [X], so we get the claimed factorization.

(b) Observe that (r1 − r2)p − (r1 − r2) = (rp
1 − r1) − (rp

2 − r2) = 0 so r1 − r2 is a root of
Xp −X and hence an element of Fp by the first part.

(c) Certainly fa has no root in Fp for a ∈ F×p , by part 1. Over Ea, we have the factorization

fa =
∏

0≤i<p

(X − (r + i))

for a fixed root b of fa in Ea (by the previous part). If fa = gh in Fp[X] then g =
Xd+αXd−1 for some 0 < d < p. But g is a product over certain integers i of (X−(r+i))
in Ea[X] so we must have −α = dr + u for some u ∈ Fp. As d ∈ F×p , this gives r ∈ Fp

(as α ∈ Fp), a contradiction as fa has no roots in Fp. Hence fa is irreducible.

(d) If r is any root of fa in Ea, then (vr)p − (vr) + va = 0 for any v ∈ F×p . Thus, the roots
of fva are precisely vr, vr + 1, . . . , vr + p− 1 ∈ Ea so fva splits completely over Ea. This
shows that Ea contains Eva for all a ∈ F×p and hence that Ea is independent of a.

3. Find the minimal polynomials of 2 cos(2π/5) and 2 cos(2π/7) over Q.

Solution We treat the case of 2 cos(2π/7) as it is the harder of the two. Let ζ = e2πi/7 and
set K = Q(ζ), G = Gal(K/Q). Put η := ζ + ζ−1 = 2 cos(2π/7). We know that G ' (Z/7Z)×

is cyclic of order 6, generated by the automorphism σ : ζ 7→ ζ3 (since 3 ∈ (Z/7Z)× is a
generator of this cyclic group). The conjugates of η are

η, ση = ζ3 + ζ−3, σ2η = ζ2 + ζ−2.

Using the binomial theorem, we compute

σ2η = η2 − 2, ση = η3 − 3η

and hence we find that
η + ση + σ2η = η3 + η2 − 2η − 2.

Using the fact that the minimal polynomial of ζ is X6 + X5 + · · ·+ X + 1, the left hand side
above is −1 whence η is a root of the degree 3 polynomial

X3 + X2 − 2X − 1

which must therefore be the minimal polynomial of η since η has 3 distinct conjugates.

4. For each of the following extensions, determine [K : F ] and an F -basis of K.

(a) F = Q, L = Q(a, b) with a2 = 6 and b3 = 2.

(b) F = C(T ) and L is the splitting field of Xn − T over F , with n a positive integer.

(c) F = Fp(T ) and L is the splitting field of Xp − T over F , with p a prime.

Solution:

(a) An F -basis is {1, b, b2, a, ab, ab2}



(b) Let r be a root of Xn − T in L. An F -basis is {1, r, r2, . . . , rn−1} (note that this
polynomial is irreducible by Eisenstein’s criterion, so F (r) is a degree n extension and
since C contains all n-th roots of unity, Xn − T splits completely over F (r)).

(c) Again, Eisenstein’s criterion gives irreducibility. If r the unique(!) root of Xp − T in L,
then an F -basis of L is 1, r2, . . . , rp−1.

5. Let K/F be a finite extension of fields and let α ∈ K. Then α induces an F -linear map of
finite-dimensional F -vector spaces

mα : K → K.

(a) Prove that α is a root of the characteristic polynomial of the linear map mα. Hint: select
a suitable F -basis of F (α).

(b) Use (5a) to find a monic degree 3 polynomial with Q-coefficients satisfied by 1+ 3
√

2+ 3
√

4.

(c) Prove that if K = F (α), then the characteristic polynomial of mα as a linear map
K → K is in fact the minimal polynomial of α over F .

Solution:

(a) Let m(x) := xd + ad−1α
d−1 + · · · + a0 be the minimal polynomial of α over F . Then

1, α, . . . , αd−1 is an F -basis of F (α). Let {b1, . . . , be} be an F (α)-basis of K so {αibj}
is an F -basis of K. Then the matrix of multiplication by α on K with respect to this
basis is a block diagonal matrix, with blocks given by the matrix of multiplication by α
on F (α), which is easily seen to be

0 1 0 · · · 0
0 0 1 · · · 0
...

... 0
−a0 −a1 −a2 · · · −ad−1


This matrix has characteristic polynomial m(x) so the characteristic polynomial of mα

is a power of m(x). This also handles part c).

(b) Let α = 3
√

2 and β := 1 + α + α2. The matrix of multiplication by β on Q(α) with
respect to the basis 1, α, α2 is  1 1 1

2 1 1
2 2 1


and this has characteristic polynomial X3 − 3X2 − 3X − 1.

6. For each of the following algebraic elements α of the given field extension K/Q, express 1/α
and 1/(α + 1) as polynomials in α with Q-coefficients.

(a) K is the splitting field of f = X3 − 3X + 1 and α is a root of f .

(b) K is the splitting field of f = X4 + X3 + X2 + X + 1 and α is a root of f .

(c) K is the splitting field of f = X5 − 3X + 3 and α is a root of f .

Solution:



(a) 1/α = 3− α2 and 1/(α + 1) = 1
3(−a2 + a + 2).

(b) 1/α = −a3 − a2 − a− 1 and 1/(α + 1) = −a3 − a

(c) 1/α = 1
3(−a4 + 3) and 1/(α + 1) = 1

5(−a4 + a3 − a2 + a + 2)

7. Prove that X4−5 is irreducible over Q and has splitting field K of degree 8 over Q. Describe
this splitting field explicitly as Q(a, b) where a is a root of X4 − 5 and b2 ∈ Q. In terms of a
and b, write down a Q-basis for K.

Solution: Use Eisenstein with p = 5. The splitting field is easily seen to be Q(a, b) where
a := 4

√
5 and b := i, which has degree 8 since i is not in Q(a) as Q(a) is a subfield of R. A

Q-basis for K is {1, a, a2, a3, b, ba, ba2, ba3}.

8. Describe the splitting fields of f := X3 − 5 over F11 and F7 and factor f into linear factors
over each extension.

Solution: Over F11, the given polynomial has a root X = 3 and factors as (X − 3)(X2 +
3X − 2) with irreducible quadratic. The splitting field is therefore degree 2, and is obtained
by adjoining the square root of any nonsquare in F11. Explicitly, the splitting field is F11(a)
where a2 = −1 and then X3 − 5 factors over F11(a) as

X3 − 5 = (X − 3)(X + 2a− 4)(X − 2a− 4).

The case of F7 is similar and is left to the reader.


