Honors Algebra 4, MATH 371 Winter 2010

Assignment 6

Due Wednesday, March 24 at 08:35

- 1. Let K/F be a degree 2 extension of fields.
 - (a) If the characteristic of F is not 2, prove that K = F(a) for some $a \in K \setminus F$ with $a^2 \in F$.
 - (b) Give a counterexample to (1a) if F has characteristic 2.
 - (c) Fix F of characteristic not 2 and let K_1, K_2 be quadratic extensions of F with $K_1 = F(a_1)$ and $K_2 = F(a_2)$ where $a_i^2 = b_i \in F$. Prove that $K_1 \simeq K_2$ as extensions of F (i.e. that there exists an isomorphism of fields $K_1 \simeq K_2$ restricting to the identity on F) if and only if $b_1/b_2 \in (F^\times)^2$ is a square. Conclude that the isomorphism classes of quadratic extensions of F are in bijection with the group $F^\times/(F^\times)^2$.
 - (d) Using (1c), give a complete list (without repetition) of all isomorphism classes of quadratic extensions of **Q**.

Solution:

- (a) Fix $b \in K \setminus F$. Then $\{1, b\}$ is an F-basis of K, so b satisfies a degree 2 polynomial $b^2 + ub + v = 0$ with $u, v \in F$. Since the characteristic of F is not $2, 2 \in F^{times}$ so u/2 makes sense and we have $(b + u/2)^2 = u^2/4 v$ by completing the square. Thus, $a := b + u/2 \in K \setminus F$ has $a^2 \in F$ and clearly K = F(a).
- (b) The extension $\mathbf{F}_2[X]/(X^2+X+1)$ of \mathbf{F}_2 gives a counterexample, since $(a+bX)^2=(a^2+b^2)+b^2X$ lies in F if and only if b=0.
- (c) If $K_1 \simeq K_2$ as extensions of F, then b_1 must be a square in K_2 , say $b_1 = (u + va_2)^2$. This gives $b_1 = u^2 + v^2b_2 + 2uva_2$ from which it follows (as $2 \neq 0$ in F) that either u or v must be zero. The second case cannot occur as otherwise b_1 would be a square in F and $K_1 = F$. Thus $b_1 = v^2b_2$ for some $v \in F$. Conversely, If $b_1 = v^2b_2$ then $b_1 = (va_2)^2$ is a square in K_2 , and the map $F[X] \to K_2$ sending K_3 to K_4 is surjective and yields an isomorphism K_4 is extensions of K_4 . As the source of this isomorphism is isomorphic to K_4 , we get $K_4 \simeq K_2$ as extensions of F.
- (d) These are parameterized by $\mathbf{Q}^{\times}/(\mathbf{Q}^{\times})^2 = \{2, 3, 5, 6, 7, 10, 11, 13, 14, 15, \ldots\}$ (the positive square-free integers).
- 2. For $a \in \mathbf{F}_p$, set

$$f_a(x) := X^p - X - a \in \mathbf{F}_p[X].$$

- (a) If a = 0, show that $f_a(X) = \prod_{u \in \mathbf{F}_n} (X u)$.
- (b) Suppose that $a \neq 0$ and let E_a be a splitting field of $f_a(X)$. If $r_1, r_2 \in E_a$ are roots of f_a , prove that $r_1 r_2 \in \mathbf{F}_p$.
- (c) Show that $f_a(X)$ is irreducible for all $a \in \mathbf{F}_n^{\times}$.
- (d) Prove that $f_b(X)$ splits completely over E_a for each fixed $a \in \mathbf{F}_p^{\times}$ and all $b \in \mathbf{F}_p^{\times}$. Conclude that E_a is independent of a.

Solution:

- (a) Every $u \in \mathbf{F}_p$ satisfies $X^p X = 0$ and this gives p roots of the degree p polynomial $X^p X$ in the Euclidean domain F[X], so we get the claimed factorization.
- (b) Observe that $(r_1 r_2)^p (r_1 r_2) = (r_1^p r_1) (r_2^p r_2) = 0$ so $r_1 r_2$ is a root of $X^p X$ and hence an element of \mathbf{F}_p by the first part.
- (c) Certainly f_a has no root in \mathbf{F}_p for $a \in \mathbf{F}_p^{\times}$, by part 1. Over E_a , we have the factorization

$$f_a = \prod_{0 \le i < p} (X - (r+i))$$

for a fixed root b of f_a in E_a (by the previous part). If $f_a = gh$ in $\mathbf{F}_p[X]$ then $g = X^d + \alpha X^{d-1}$ for some 0 < d < p. But g is a product over certain integers i of (X - (r+i)) in $E_a[X]$ so we must have $-\alpha = dr + u$ for some $u \in \mathbf{F}_p$. As $d \in \mathbf{F}_p^{\times}$, this gives $r \in \mathbf{F}_p$ (as $\alpha \in \mathbf{F}_p$), a contradiction as f_a has no roots in \mathbf{F}_p . Hence f_a is irreducible.

- (d) If r is any root of f_a in E_a , then $(vr)^p (vr) + va = 0$ for any $v \in \mathbf{F}_p^{\times}$. Thus, the roots of f_{va} are precisely $vr, vr + 1, \ldots, vr + p 1 \in E_a$ so f_{va} splits completely over E_a . This shows that E_a contains E_{va} for all $a \in \mathbf{F}_p^{\times}$ and hence that E_a is independent of a.
- 3. Find the minimal polynomials of $2\cos(2\pi/5)$ and $2\cos(2\pi/7)$ over **Q**.

Solution We treat the case of $2\cos(2\pi/7)$ as it is the harder of the two. Let $\zeta = e^{2\pi i/7}$ and set $K = \mathbf{Q}(\zeta)$, $G = \mathrm{Gal}(K/\mathbf{Q})$. Put $\eta := \zeta + \zeta^{-1} = 2\cos(2\pi/7)$. We know that $G \simeq (\mathbf{Z}/7\mathbf{Z})^{\times}$ is cyclic of order 6, generated by the automorphism $\sigma : \zeta \mapsto \zeta^3$ (since $3 \in (\mathbf{Z}/7\mathbf{Z})^{\times}$ is a generator of this cyclic group). The conjugates of η are

$$\eta$$
, $\sigma \eta = \zeta^3 + \zeta^{-3}$, $\sigma^2 \eta = \zeta^2 + \zeta^{-2}$.

Using the binomial theorem, we compute

$$\sigma^2 \eta = \eta^2 - 2, \quad \sigma \eta = \eta^3 - 3\eta$$

and hence we find that

$$\eta + \sigma \eta + \sigma^2 \eta = \eta^3 + \eta^2 - 2\eta - 2.$$

Using the fact that the minimal polynomial of ζ is $X^6 + X^5 + \cdots + X + 1$, the left hand side above is -1 whence η is a root of the degree 3 polynomial

$$X^3 + X^2 - 2X - 1$$

which must therefore be the minimal polynomial of η since η has 3 distinct conjugates.

- 4. For each of the following extensions, determine [K:F] and an F-basis of K.
 - (a) $F = \mathbf{Q}$, $L = \mathbf{Q}(a, b)$ with $a^2 = 6$ and $b^3 = 2$.
 - (b) $F = \mathbf{C}(T)$ and L is the splitting field of $X^n T$ over F, with n a positive integer.
 - (c) $F = \mathbf{F}_p(T)$ and L is the splitting field of $X^p T$ over F, with p a prime.

Solution:

(a) An F-basis is $\{1,b,b^2,a,ab,ab^2\}$

- (b) Let r be a root of $X^n T$ in L. An F-basis is $\{1, r, r^2, \ldots, r^{n-1}\}$ (note that this polynomial is irreducible by Eisenstein's criterion, so F(r) is a degree n extension and since \mathbb{C} contains all n-th roots of unity, $X^n T$ splits completely over F(r)).
- (c) Again, Eisenstein's criterion gives irreducibility. If r the unique(!) root of $X^p T$ in L, then an F-basis of L is $1, r^2, \ldots, r^{p-1}$.
- 5. Let K/F be a finite extension of fields and let $\alpha \in K$. Then α induces an F-linear map of finite-dimensional F-vector spaces

$$m_{\alpha}: K \to K$$
.

- (a) Prove that α is a root of the characteristic polynomial of the linear map m_{α} . Hint: select a suitable F-basis of $F(\alpha)$.
- (b) Use (5a) to find a monic degree 3 polynomial with **Q**-coefficients satisfied by $1+\sqrt[3]{2}+\sqrt[3]{4}$.
- (c) Prove that if $K = F(\alpha)$, then the characteristic polynomial of m_{α} as a linear map $K \to K$ is in fact the minimal polynomial of α over F.

Solution:

(a) Let $m(x) := x^d + a_{d-1}\alpha^{d-1} + \cdots + a_0$ be the minimal polynomial of α over F. Then $1, \alpha, \ldots, \alpha^{d-1}$ is an F-basis of $F(\alpha)$. Let $\{b_1, \ldots, b_e\}$ be an $F(\alpha)$ -basis of K so $\{\alpha^i b_j\}$ is an F-basis of K. Then the matrix of multiplication by α on K with respect to this basis is a block diagonal matrix, with blocks given by the matrix of multiplication by α on $F(\alpha)$, which is easily seen to be

$$\begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & & \vdots & 0 \\
-a_0 & -a_1 & -a_2 & \cdots & -a_{d-1}
\end{pmatrix}$$

This matrix has characteristic polynomial m(x) so the characteristic polynomial of m_{α} is a power of m(x). This also handles part c).

(b) Let $\alpha = \sqrt[3]{2}$ and $\beta := 1 + \alpha + \alpha^2$. The matrix of multiplication by β on $\mathbf{Q}(\alpha)$ with respect to the basis $1, \alpha, \alpha^2$ is

$$\left(\begin{array}{rrr}
1 & 1 & 1 \\
2 & 1 & 1 \\
2 & 2 & 1
\end{array}\right)$$

and this has characteristic polynomial $X^3 - 3X^2 - 3X - 1$.

- 6. For each of the following algebraic elements α of the given field extension K/\mathbf{Q} , express $1/\alpha$ and $1/(\alpha+1)$ as polynomials in α with \mathbf{Q} -coefficients.
 - (a) K is the splitting field of $f = X^3 3X + 1$ and α is a root of f.
 - (b) K is the splitting field of $f = X^4 + X^3 + X^2 + X + 1$ and α is a root of f.
 - (c) K is the splitting field of $f = X^5 3X + 3$ and α is a root of f.

Solution:

- (a) $1/\alpha = 3 \alpha^2$ and $1/(\alpha + 1) = \frac{1}{3}(-a^2 + a + 2)$.
- (b) $1/\alpha = -a^3 a^2 a 1$ and $1/(\alpha + 1) = -a^3 a$
- (c) $1/\alpha = \frac{1}{3}(-a^4 + 3)$ and $1/(\alpha + 1) = \frac{1}{5}(-a^4 + a^3 a^2 + a + 2)$
- 7. Prove that $X^4 5$ is irreducible over \mathbf{Q} and has splitting field K of degree 8 over \mathbf{Q} . Describe this splitting field explicitly as $\mathbf{Q}(a,b)$ where a is a root of $X^4 5$ and $b^2 \in \mathbf{Q}$. In terms of a and b, write down a \mathbf{Q} -basis for K.

Solution: Use Eisenstein with p = 5. The splitting field is easily seen to be $\mathbf{Q}(a, b)$ where $a := \sqrt[4]{5}$ and b := i, which has degree 8 since i is not in $\mathbf{Q}(a)$ as $\mathbf{Q}(a)$ is a subfield of \mathbf{R} . A \mathbf{Q} -basis for K is $\{1, a, a^2, a^3, b, ba, ba^2, ba^3\}$.

8. Describe the splitting fields of $f := X^3 - 5$ over \mathbf{F}_{11} and \mathbf{F}_7 and factor f into linear factors over each extension.

Solution: Over \mathbf{F}_{11} , the given polynomial has a root X=3 and factors as $(X-3)(X^2+3X-2)$ with irreducible quadratic. The splitting field is therefore degree 2, and is obtained by adjoining the square root of any nonsquare in \mathbf{F}_{11} . Explicitly, the splitting field is $\mathbf{F}_{11}(a)$ where $a^2=-1$ and then X^3-5 factors over $\mathbf{F}_{11}(a)$ as

$$X^3 - 5 = (X - 3)(X + 2a - 4)(X - 2a - 4).$$

The case of \mathbf{F}_7 is similar and is left to the reader.