MATH 593

Assignment \# 10
(Due Wednesday, Dec. 4)

Hand In: All three problems.
(\#1). Let V be a vector space of dimension n over a field k.
(a). Prove that there is a canonical isomorphism

$$
V^{*} \otimes \Lambda^{n} V \cong \Lambda^{n-1} V
$$

where as usual $V^{*}=\operatorname{Hom}_{k}(V, k)$ is the dual space of V. (By canonical, I mean independent of any choices.) Since $\Lambda^{n} V$ is one-dimensional, this means that V^{*} is (non-canonically) isomorphic to $\Lambda^{n-1} V$.
(b). Fix $k<n$, and let $\omega \in \Lambda^{k} V$. Show that if

$$
\omega \wedge v=0 \in \Lambda^{k+1}(V)
$$

for every $v \in V$, then $\omega=0 \in \Lambda^{k} V$. (Hint: Show that if $\omega \neq 0$ then there is an element $\eta \in \Lambda^{n-k} V$ such that $\omega \wedge \eta \neq 0 \in \Lambda^{n} V$.)
(\#2). Let G be a group, and V a finite-dimensional vector space, say over C. Recall that a linear representation of G on V is a homomorphism

$$
\rho: G \longrightarrow \mathrm{GL}(V)
$$

where $\mathrm{GL}(V)$ denotes the general linear group of all automorphisms of V. One says also that V is a representation of G. If we choose bases, so that an element of $\operatorname{GL}(V)$ is represented by an invertible matrix, a representation ρ amounts to giving an invertible matrix $\rho(s)$ for each $s \in G$ in such a way that $\rho(s t)=\rho(s) \cdot \rho(t)$ for all $s, t \in G$.
(a). Given a representation $\rho: G \longrightarrow \mathrm{GL}(V)$ show that for each $k>0, \rho$ induces representations

$$
S^{k} \rho: G \longrightarrow \mathrm{GL}\left(S^{k} V\right) \quad \text { and } \quad \Lambda^{k} \rho: G \longrightarrow \mathrm{GL}\left(\Lambda^{k} V\right)
$$

(b). Suppose that $\operatorname{dim} V=n$ and we realize ρ by $n \times n$ matrices. Explain concretely how we realize the matrices for $\Lambda^{n} \rho$.
(c). Let $V=\mathrm{C}^{2}$ and $G=\mathrm{GL}_{2}(V)$. Then there is a natural representation ρ of G on V (for which ρ is an isomorphism). Choose bases and write out explicitly the representation $S^{2}(\rho)$. (So for each element

$$
s=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G L_{2}(\mathbf{C})
$$

you should write down a 3×3 matrix in terms of a, b, c, d representing $S^{2} \rho(s)$.)
(\#3). In this problem, V denotes a vector space of dimension n over a field k of characteristic $\neq 2$, and g is a symmetric or alternating bilinear form on V.

Let $L_{g}: V \longrightarrow V^{*}$ be the linear mapping associated to g. We define the rank of g to be the rank of L_{g}.
(a). Prove that the rank of g is $n-\operatorname{dim} \operatorname{ker}(g)$. Moreover g is non-degenerate if and only if it has rank n.
(b). Show that there exist symmetric forms of any rank $0 \leq r \leq n=\operatorname{dim} V$. Prove that the rank of an alternating form is even, and that there exist skew forms of any even rank $r=2 r^{\prime}$ with $0 \leq r \leq n$.
(c). Let $W \subseteq V$ be a subsoace of codimension 1 , and let g be a non-degenerate symmertic form on W. Denote by $g \mid W$ the restriction of g to W. What are the possibilities for the rank of $g \mid W$?
(d). A subspace $W \subseteq V$ is isotropic if $g \mid W \equiv 0$, i.e. if $g\left(w, w^{\prime}\right)=0$ for all $w, w^{\prime} \in W$. Find an example of a non-degenerate symmetric form on a vector space V of dimension $n=2 m$ on which there is an m-dimensional isotropic subspace. Do the same for skew forms. Find also an example of a symmetric form on an n-dimensional vector space V which has no non-trivial isotropic subspaces. (Remark: For the last part, you may want to make a judicious choice of the ground-field k.)

