MATH 593
 Assignment \# 11
 (Due Wednesday, December 11)

Hand IN: \#'s 2,3,4
(\#1). Let V be a finite dimensional vector space over \mathbf{R} (or any field of characteristic $\neq 2$), ahd let g be a non-degenerate alternating form on V. Prove that there is a basis for V with respect to which g is isomorophic to a direct sum of copies of the the form with matrix

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

$(\# 2)$. Let $V=\mathbf{R}^{3}$ be a three-dimensional real vector space with standard basis $e_{1}, e_{2}, e_{3} \in$ V. Define a symmetric bilinear form on V via:

$$
b\left(e_{i}, e_{j}\right)= \begin{cases}1 & \text { if } i \neq j \\ 0 & \text { if } i=j\end{cases}
$$

In other words, b is the symmetric form associated to the matrix $\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$.
(a). Find the rank and signature of b.
(b). Do the same for the resrtiction of b to the subspace $W \subseteq V=\mathbf{R}^{3}$ consisting of vectors (x, y, z) such that $x+y+z=0$.
(\#3). Let V be a finite dimensional vector space over the complex numbers C. Recall that a Hermitian form on V is a function

$$
h: V \times V \longrightarrow \mathbf{C}
$$

which is \mathbf{C}-linear in the second argument, and satisfies

$$
h(v, w)=\overline{h(w, v)}
$$

(where the bar on the right denotes complex conjugation). Note that this implies that h is conjugate linear in the first argument, i.e. $h(a \cdot v, w)=\bar{a} \cdot h(v, w)$ for every $a \in \mathbf{C}$. We denote by $V_{\mathbf{R}}$ the real vector space underlying V (i.e. just forget that you can multiply vectors in V by complex as well as real scalars): thus $\operatorname{dim}_{\mathbf{R}} V_{\mathbf{R}}=2 \cdot \operatorname{dim}_{\mathbf{C}} V$.
(a). Given a Hermitian form h as above, show that $h=b+\sqrt{-1} \cdot \omega$, where b is a symmetric real-valued bilinear form on $V_{\mathbf{R}}$ and ω is an alternating real-valued bilinear form on $V_{\mathbf{R}}$.
(b). Define what it should mean for h to be non-degenerate, and prove that if h is nondegenerate then so too are the forms b and ω constructed in (a).
(c). Show that if h is non-degenerate, then V has an orthogonal basis with respect to h. State and prove an analogue of Sylvester's law of interia for non-degenerate Hermitian forms.
$(\# 4)$. Let $V=\mathbf{C}^{n}$ with its standard basis, and let h be the standard Hermitian form

$$
<v, w>=h(v, w)=\bar{v} \cdot w
$$

An endomorphism $T: V \longrightarrow V$ is self-adjoint if

$$
<T u, v>=<u, T v>
$$

for all $u, v \in V$.
(a). What is the condition that T be self-adjoint in terms of the matrix of T ?
(b). Show that the eigenvalues of a self-adjoint endomorphism are real.

