MATH 593

Assignment \# 2

(Due Monday, September 23)

Hand in: \#'s 2, 3,4.
(\#1). (a). Starting with the field $\mathbf{Z} / 3 \mathbf{Z}[x]$ of three elements, consider the polynomial $x^{2}+1 \in(\mathbf{Z} / 3 \mathbf{Z})[x]$. Prove that $F=(\mathbf{Z} / 3 \mathbf{Z})[x] /\left(x^{2}+1\right)$ is a field, and write out the multiplication table in.
(b). By contrast, show that $(\mathbf{Z} / 5 \mathbf{Z})[x] /\left(x^{2}+1\right)$ is not a field.
(\#2). Let A be a commutative ring (always with 1), and let $I, J \subset R$ be ideals of A such that $I+J=A$.
(a). Show that given any $a, b \in A$, there exists an element $x \in A$ such that $x \equiv a(\bmod I)$ and $x \equiv b(\bmod J)$.
(b). Prove that if in addition $I \cap J=\emptyset$, then

$$
A \cong A / I \oplus A / J
$$

[Note concerning (b): Given rings R, S, the direct sum $R \oplus S$ (sometimes written as a product $R \times S$) is defined in the expected way: elements of $R \oplus S$ are ordered pairs (r, s) with $r \in R, s \in S$, and addition and multiplication is defined componentwise.]
(\#3).Let R be a commutative ring (always with 1). An ideal $P \subseteq R$ is prime if given $x, y \in R$,

$$
x y \in P \Longrightarrow x \in P \text { or } y \in P
$$

(a). Show that an ideal $I \subseteq \mathbf{Z}$ is prime iff either $I=(0)$ or $I=(p)$ for a prime number p.
(b). Show that a maximal ideal is prime.
(c). Show that the ideal $(x) \subseteq \mathbf{Q}[x, y]$ is prime but not maximal.
(d). Prove that R is an integral domain iff the zero ideal (0) is prime.
(e). Prove that an ideal $P \subseteq R$ is prime if and only if R / P is an integral domain.
(\#4). Let R be a commutative ring (always with 1). An element $f \in R$ is called nilpotent if $f^{n}=0$ for some $n>0$. The nilradical $N=N(R) \subset R$ of R is the subset consisting of all nilpotent elements. R is reduced if $N(R)=0$.
(a). Prove that $N(R)$ is an ideal.
(b). Show that $R / N(R)$ is reduced.
(c). More generally, let $I \subset R$ be any ideal. The radical \sqrt{I} of I is defined as:

$$
\sqrt{I}=\left\{r \in R \mid f^{n} \in I \text { for some } n>0 .\right\}
$$

Prove that \sqrt{I} is an ideal, and that R / \sqrt{I} is reduced.

