MATH 593
Assignment \# 4
(Due Wednesday, October 9)

Hand IN: \#'s 1,2,3,4

Note: This material will be covered on the Hour Exam on October 7. However you don't need to hand in (or write up) the problems until Wednesday October 9.
(\#1). (Characteristic of an integral domain). Let R be an integral domain. Given a positive integer $m \in \mathbf{Z}$ and $a \in R$, define

$$
m \cdot a=a+a+\ldots+a \quad(\mathrm{~m} \text { times })
$$

when $m<0, m \cdot a$ is defined analogously with a replaced by $-a$.
(a). Denote by $\phi: \mathbf{Z} \longrightarrow R$ the homomorphism

$$
\phi: \mathbf{Z} \longrightarrow R \quad, \quad m \mapsto m \cdot 1_{R}
$$

Show that the image of ϕ is isomorphic either to \mathbf{Z} or to $\mathbf{Z} / p \mathbf{Z}$ for some prime number p. In the first case one says that R has characteristic zero; in the second case one says that R has characteristic p. For instance \mathbf{Z} has characteristic zero, and $\mathbf{Z} / p \mathbf{Z}$ has characteristic p.
(b). For each prime p, give an example of an infinite integral domain of characteristic p.
(c). If R has characteristic p, show that that $p \cdot a=0$ for every $a \in R$.
(d). Assume that R has characteristic p. Prove that the mapping

$$
F: R \longrightarrow R \quad, \quad a \mapsto a^{p}
$$

is a ring homomorphism. It is called the Frobenius homomorphism.
(\#2). Let R be an integral domain and $P \subseteq R$ a prime ideal. Consider a monic polynomial

$$
f(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0} \in R[x] .
$$

Assume that all the coefficients a_{0}, \ldots, a_{n-1} are in the prime ideal P and that $a_{0} \notin P^{2}$. Show that then f is irreducible in $R[x]$. (Hint: Reduce modulo P.) This is called Eisenstein's criterion.
(\#3). (a). Let p be a prime number, and consider the polynomial

$$
\Phi_{p}(x)=x^{p-1}+x^{p-2}+\ldots+x+1 \in \mathbf{Z}[x] .
$$

Prove that $\Phi_{p}(x)$ is irreducible. (Hint: Apply Eisenstein's criterion after making a judicious linear change of variables.)
(b). Is it true more generally that given any natural number $m>0$ the polynomial

$$
x^{m-1}+x^{m-2}+\ldots+x+1 \in \mathbf{Z}[x]
$$

is irreducible?
(\#4). Let p be a prime number, and let $F=\mathbf{Z} / p \mathbf{Z}$. There are p^{2} monic polynomials in $F[x]$ degree 2 . How many of them are irreducible?
(\#5). Given an integer $d \in \mathbf{Z}$ which is not a square, denote by $\mathbf{Z}[\sqrt{d}]$ the ring

$$
\mathbf{Z}[\sqrt{d}]=\{a+b \sqrt{d} \mid a, b \in \mathbf{Z}\}
$$

(a). Prove that if $d<0$, then the group of units in $\mathbf{Z}[\sqrt{d}]$ is finite.
(b). Show that the group of units in $\mathbf{Z}[\sqrt{2}]$ is infinite.

