MATH 593

Assignment \# 5
(Due Friday, October 18)

HAND IN: \#'s 2,3,4,5
(\#1) Let k be a field, and let M be the $k[x]$-module

$$
M=\frac{k[x]}{\left(x^{3}+x+1\right)} \oplus \frac{k[x]}{\left(x^{2}\right)} .
$$

Find explicitly a vector space V over k and an endomorphism T of V - which you should exhibit in the form of an explicit square matrix of appropriate size - such that $M \cong V_{T}$.
(\#2). Let G be a finite group, and V a finite dimensional vector space over a field k. We denote by $G L(V)$ the group of automorphisms of V : after choosing a basis of $V, G L(V)$ can be identified with the multiplicative group $G L_{n}(k)$ of invertible $n \times n$ matrices with entries in k. A reptresentation of G on V is a homomorphism $\rho: G \longrightarrow G L(V)$. For example, if $G=S_{n}$ is the symmetric group on n-elements, then G has a natural representation on the n-dimensional vector space k^{n} via permutation matrices.
(a). Given a representation ρ of G on V, show that there is a natural way to make V into a left module over the group ring $k[G]$: call this module V_{ρ}.
(b). Conversely, if V has the structure of a module over $k[V]$ (in such a way that the elements $\lambda \cdot\left[1_{G}\right] \in k[G]$ act by scalar multiplication in on V) then there is a representation ρ of G on V such that $V \cong V_{\rho}$ as $k[G]$-modules.
(\#3). Let k be a field, and let $f(x), g(x) \in k[x]$ be non-zero polynomials. Viewing the quotients $k[x] /(f)$ and $k[x] /(g)$ as $k[x]$-modules in the natural way, describe as explicitly as possible the $k[x]$-module

$$
\operatorname{Hom}_{k[x]}(k[x] /(f), k[x] /(g))
$$

(The module in question is actually of the form $k[x] /(h)$ for some polynomial $h \in k[x]$. One nice solution to the problem would be to find $h(x)$.)
(\#4). Let R be a ring. An R-module M is irreducible if the only R-submodules of M are (0) and M itself.
(a). Let $V=\mathbf{R}^{2}$ and let $T_{\theta}: V \longrightarrow V$ be rotation through θ radians. Write V_{θ} for V with the $\mathbf{R}[x]$-module structure determined by T_{θ}. For what values of θ is V_{θ} irreducible as an $\mathbf{R}[x]$-module?
(b). Given a representation $\rho: G \longrightarrow G L(V)$ as in (\#1), what is the condition on ρ in order that the $k[G]$-module V_{ρ} be irreducible?
(c). Let $\rho: S_{3} \longrightarrow G L_{3}(k)$ be the representation of the symmetric group S_{3} on the three dimensional vector space $V=k^{3}$ given by permutation matrices. Is V irreducible as a $k\left[S_{3}\right]$ module?
(\#5). Let R be a ring (always with 1). Given a (left) R-module M, the additive group $\operatorname{End}(M)=\operatorname{Hom}_{R}(M, M)$ of R-linear maps from M to itself becomes a ring in which multiplication is given by composition of endomorphisms.
(a). Assume that M is irreducible in the sense of (\# 3). Show that then $\operatorname{End}_{R}(M)$ is a division ring, i.e. a ring in which every non-zero element is a unit.
(b). Let $V=\mathbf{R}^{2}$, and let $T: V \longrightarrow V$ be rotation through $\frac{\pi}{2}$ radians. Show that

$$
\operatorname{End}_{\mathbf{R}[x]}\left(V_{T}\right) \cong \mathbf{C}
$$

(as rings).

