MATH 593
 Assignment \# 7 (Due Monday, November 4)

Hand IN: \#'s 2,3,4

Note: In fairness to the grader, due dates will henceforth be taken seriously!
(\#1). (a). Write down three matrices of integers, and use row and column operations to diagonalize them.
(b). Use row and column operations to diagonalize the matrix:

$$
\left(\begin{array}{ccc}
x & 2 & -14 \\
0 & x & 7 \\
0 & 0 & x
\end{array}\right)
$$

over $\mathbf{Q}[x]$.
(\# 2). Let $R=\mathbf{Q}[x, y]$ be the polynomial ring in two variables, and let $M=(x, y) \subseteq R$ be the the ideal generated by x and y, considered as a module over R. Find a presentation matrix for M with respect to the natural two generators (or other generators if you prefer).
$(\# 3)$. Let M be the abelian group generated by elements e, f, g subject to the relations

$$
\begin{aligned}
& 3 e+6 f+12 g=0 \\
& 2 e-4 f+10 g=0 .
\end{aligned}
$$

Express M as a direct sum of cyclic groups.
$(\# 4)^{1}$. Let A be an integral domain, and let M be an A-module. Recall that an element $m \in M$ is a torsion element if $a m=0$ for some $0 \neq a \in A$.
(i). Prove that the subset $T(M) \subset M$ of all torsion elements is a submodule. It is called the torsion submodule of M.

Recall that M is torsion-free if $T(M)=0$.
(ii). Prove that $M / T(M)$ is torsion free.

[^0](iii). Let $A=\mathbf{C}[x, y]$. Give an example of a finitely generated torsion-free A-module which is not free. Give an example of an A-module M for which $T(M)$ is non-trivial proper submodule of M.
(\#3). Let A be a Euclidean ring and let M be a finitely generated torsion-free A-module. In this exercise, we will sketch a proof of the theorem that M is free. ${ }^{2}$ Let $m_{1}, \ldots, m_{s} \in M$ be a set of generators. After re-indexing, we may suppose that $\left\{m_{1}, \ldots, m_{n}\right\}$ are linearly independent, while no larger subset of the $\left\{m_{i}\right\}$ is linearly independent. Denoting by $F=A m_{1}+\cdots+A m_{n} \subset M$ the subset of M generated by $\left\{m_{1}, \ldots, m_{n}\right\}$, the independence of $\left\{m_{1}, \ldots, m_{n}\right\}$ means that F is free of rank n.
(i). For each index $n+1 \leq i \leq s$, show that there exists a non-zero element $0 \neq a_{i} \in A$ such that $a_{i} m_{i} \in F$.
(ii). Let $a=a_{n+1} \cdot \ldots \cdot a_{s} \in A$, and consider the map $\phi_{a}: M \longrightarrow M$ given by $\phi_{a}(m)=a m$. Prove that ϕ_{a} is injective, and that $\operatorname{im} \phi_{a} \subset F$.
(iii). Using (ii), deduce that M is free.

[^1]
[^0]: ${ }^{1}$ This was $(\# 5)$ in the previous assignment, which wasn't required to be handed in. Now I will collect it.

[^1]: ${ }^{2}$ The same proof will work for torsion-free modules over a PID if you grant that a submodule of a finitely generated free module over a PID is free.

