MATH 593
 Assignment \# 8 (Due Wednesday, November 13)

Hand IN: \#'s 2,3,4

Recall: The second hour exam will be on Monday, Novemeber 11.
(\#1). Find the rational canonical form and Jordan canonical form of the matrix

$$
\left(\begin{array}{ccc}
0 & -1 & -1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right)
$$

Do some other similar problems from Chapter 12 of Dummit and Foote.
(\#2). (a). List all isomorphism classes of additive abelian groups of order 500.
(b). How many similarity classes are there of 10×10 matrices over a field k whose characteristic polynomial is $\left(x^{2}-x\right)^{5}$? Write the minimal polynomial for each class.
(c). Let k be a field. Classify up to similarity all 4×4 matrices with entries in k satisfying the equation

$$
T^{3}-2 T^{2}+T=0
$$

(\#3) Let $A=\left\{a_{i j}\right\}$ be an $n \times n$ matrix of integers. Denote by M the (additive) abelian group generated by n generators e_{1}, \ldots, e_{n} subject to the relations

$$
\begin{gathered}
a_{11} e_{1}+a_{12} e_{2}+\ldots+a_{1 n} e_{n}=0 \\
a_{21} e_{1}+a_{22} e_{2}+\ldots+a_{2 n} e_{n}=0 \\
\ldots \\
a_{n 1} e_{1}+a_{n 2} e_{2}+\ldots+a_{n n} e_{n}=0
\end{gathered}
$$

Prove that M is finite if and only if $\operatorname{det}(A) \neq 0$, in which case $\# M=|\operatorname{det}(A)|$.
(\#4). Let T be an $n \times n$ invertible matrix over a field k, and let $P_{T}(x)$ be the characteristic polynomial of T.
(i). Find $P_{T^{-1}}(x)$ in terms of $P_{T}(x)$.
(ii). Let V_{T} denote the $k[x]$-module corresponding to T in the usual way. Given a decomposition of V_{T} into cyclic modules, explain how to decompose $V_{T^{-1}}$ into cyclic modules.

