MATH 593
Assignment \# 9
(Due Friday, November 22)

Hand in: All five problems.
(\#1). Let $R=\mathbf{C}[x, y]$ and $I=(x, y) \subseteq R$. Show that there is a homomorphism of R-modules

$$
\phi: I \otimes_{R} I \longrightarrow \mathbf{C}
$$

determined by the formula

$$
\phi(f \otimes g)=f_{x}(0,0) g_{y}(0,0)-f_{y}(0,0) g_{x}(0,0)
$$

(Here f_{x}, f_{y} denote the partial derivatives of f, and similarly for g.) Deduce that

$$
x \otimes y-y \otimes x \neq 0 \in I \otimes_{R} I
$$

(\#2). Prove that $\mathbf{Q} \otimes_{\mathbf{z}} \mathbf{Q} \cong \mathbf{Q}$.
$(\# 3)$. Let V and W be finite dimensional vector spaces over a field k. Write $V^{*}=$ $\operatorname{Hom}_{k}(V, k)$ for the dual space of V. Prove that there is a canonical isomorphism

$$
\operatorname{Hom}_{k}(V, W) \cong V^{*} \otimes_{k} W
$$

(\#4). Let R be a commutative ring, and $I \subseteq R$ an ideal. Given any R-module M, prove that there is an isomorphism

$$
M \otimes_{R} R / I \cong M /(I M)
$$

Here $I M \subseteq M$ denotes as usual the submodule of M generated by all elements of the form $r m$ for $r \in I$ and $m \in M$. (Hint: Consider the exact sequence $0 \longrightarrow I \longrightarrow R \longrightarrow R / I \longrightarrow 0$ and use the right exactness of tensor product.)
(\#5). Let V be a two dimensional vector space over \mathbf{R}, and consider the four-dimensional vector space $W=V \otimes_{\mathbf{R}} V$. Show that the set of all simple (i.e. decomposable) tensors is a quadric hypersurface in W (with respect to a suitable choice of coordinates on W).

