
Math 594. Algebra II.

Midterm Exam 1 (February 10–17, 2002)

No time limit

Name:

Read all questions carefully. Do any 5 out of the 6 questions. You will not be given partial

credit on the basis of having misunderstood a question, and please show all work. Unless

otherwise indicated, you may use without proof all results which were discussed in lecture,

homework, or the course text. Be clear and precise in stating what you use.

If you are unable to solve part of a problem, you may still use the conclusion from that

part to do subsequent parts of the problem. If your solution does not fit in the indicated

space, please use the back of the same page. This is an open-book, open-notebook exam. It

is due at the beginning of class on Monday, February 17. At that time solution sets will be

handed out, so late submission will be unacceptable.

You must sign below (indicating your agreement with) the following honor pledge: I pledge

my honor that I have not used calculators, electronic computing machines of any sort, the

Internet, contact with other human beings, or any published book other than the course text

for mathematical assistance in connection with my work on this exam.

Question Possible Actual

1 20

2 20

3 20

4 20

5 20

6 20

Total 100

1
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1. (20 pts) Let G be a group. We define its automorphism group Aut(G) to be the set of

group isomorphisms φ : G ' G.

(i) (5 pts) Prove that using composition of maps, Aut(G) is a group.

(ii) (5 pts) For g ∈ G, define cg : G ' G to be the left conjugation action: cg(g
′) = gg′g−1.

Prove that cg ∈ Aut(G) and that g 7→ cg is a group homomorphism G→ Aut(G) with kernel

Z(G) (the center of G). The image of this map is denoted Inn(G) and its elements are called

the inner automorphisms of G.
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(iii) (10 pts) Prove Inn(G) is a normal subgroup of Aut(G). The quotient Aut(G)/Inn(G) is

denoted Out(G), and is called the outer automorphism group of G (though its elements are

not actually automorphisms of G, but are merely coset classes by the inner automorphism

group).

It is an important problem to know when the outer automorphism group is trivial, or

to understand its structure. By considering how an element of Aut(S3) acts on the three

transpositions in S3, construct an injection of groups Aut(S3) → S3 and use the triviality

of the center to conclude by pure thought (i.e., without grungy calculations) that Inn(S3) =

Aut(S3). That is, Out(S3) is trivial.
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2. (20 pts) Give examples of each of the following, briefly indicating why your examples

satisfy the requirements, or explain (with brief argument) why no such example exists.

(i) (4 pts) A cyclic group which is a product of two non-trivial groups.

(ii) (4 pts) A group acting transitively on a set with trivial stabilizer at one point and

non-trivial stabilizer at another point.

(iii) (4 pts) Two non-isomorphic non-abelian groups of order 20.

(iv) (4 pts) An infinite non-abelian solvable group.

(v) (4 pts) A non-normal subgroup H in a finite group G such that H is not equal to its

normalizer in G.



5

3. (20 pts) Let G be a non-trivial finite p-group (i.e., p|#G) and let V be a nonzero finite-

dimensional vector space over Fp. Suppose G acts linearly on V on the left (i.e., we’re given

a group homomorphism G→ GL(V )).

(i) (7 pts) Prove that the orbits of G with more than 1 point have size a power of p, and

conclude that {v ∈ V | StabG(v) = G} is divisible by p. Using that this set is non-empty (it

contains 0!), show G fixes some nonzero v ∈ V .

(ii) (6 pts) Choose a nonzero v0 ∈ V fixed by G, say spanning a line L. By considering the

induced action of G on V/L and using induction on dimV , prove the existence of a basis of

V with respect to which the image of G in GL(V ) ' GLn(Fp) lies in the subgroup of strictly

upper triangular matrices.
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(iii) (7 pts) Let H = GLn(Fp) and let G be a p-subgroup. Using (ii) for an appropriate V ,

but not using the Sylow theorems, deduce that some conjugate of G lies inside the subgroup

of strictly upper triangular matrices.
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4. (20 pts) Let C be the cube in R3 with side length 2 and the 8 vertices at the points

(ε1, ε2, ε3) with εj ∈ {±1}. Let Γ denote the group of “orientation-preserving symmetries

of the cube”, by which we mean permutations of the 8 vertices which preserve the relation

“joined by a common edge” for pairs of vertices and “lie on a common face” for pairs of

edges, and which respect the orientation of R3 formed by 3 edges emanating from a vertex.

(i) (10 pts) Observe that there are 4 “long diagonals” on the cube. Use this to define a group

homomorphism Γ→ S4, and explain why it is injective. Then by either using stabilizers of

a long diagonal (watch the orientation!) to compute #Γ, or by hunting for transpositions in

the image (or using some other geometric method), prove this group map is an isomorphism.
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(ii) (10 pts) Suppose a finite group G acts on a finite set X. For each g ∈ G, define

Fix(g) = #{x ∈ | g.x = x} to be the number of points fixed by g. Prove∑
g∈G

Fix(g) = #{(g, x) ∈ G×X | g.x = x} =
∑
x∈X

#{g ∈ G | g.x = x} =
∑
x∈X

|G|/|G.x|,

and by breaking up the final sum over orbits deduce Burnside’s Lemma: the number of

orbits is the average number of fixed points (i.e., |G|−1
∑

g∈G Fix(g)).

(Extra Credit) (10 pts) Imagine we paint the 6 faces of the cube with 2 red faces, 2 blue

faces, and 2 green faces. Let P be the set of such ways of painting the cube. There is an

obvious action of G on P , and we regard two colorings as “equivalent” if they lie in the same

G-orbit (why is this reasonable?). Thus, the number of “essentially different” colorings is

the number of G-orbits. Use Burnside’s Lemma to determine this number (hint: Fix(γ) only

depends on the conjugacy class of γ, and in Γ ' S4 we know the conjugacy classes!).
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5. (20 pts) Classify all finite groups of order 40 with non-commutative 2-Sylow subgroup,

and prove that your list does not contain any repetitions (up to isomorphism). You may use

the classification of finite groups of order 8.
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6. (20 pts) Let V be a vector space of finite dimension n > 0 over a field F . Define Aff(V )

to be the group of “affine transformations” of V : this is the group generated by GL(V )

together with translations tv0 : v 7→ v + v0 for v0 ∈ V (note that t−v0 is an inverse to tv0).

(i) (6 pts) In the special case V = F (so n = 1), explain how to identify Aff(V ) with the

group of linear polynomials ax + b under “composition of functions”, and show that this is

isomorphic to the group of matrices (
a b

0 1

)
with a, b ∈ F and a 6= 0. This is often called the “ax+ b group”.

(ii) (8 pts) Viewing V as an additive group, consider the natural map of sets

φ : GL(V )× V → Aff(V )

defined by (T, v) 7→ tv ◦ T . Show that the composite of g1 = tv1 ◦ T1 and g2 = tv2 ◦ T2 can

be written in “tv ◦ T” form for a unique v ∈ V and T ∈ GL(V ) (depending on the vj’s and

Tj’s), and likewise we can write g−1
1 = tv′1 ◦T

′
1 for some unique v′1, T

′
1 depending on v1 and T1.

Conclude that φ is a bijection of sets, and explain how it describes Aff(V ) as a semi-direct

product of GL(V ) and V (= translation group), with V normal in Aff(V ).
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(iii) (6 pts) Consider the natural (left) action of G = Aff(V ) on V (via g.v = g(v)), and

prove GL(V ) is the stabilizer of the origin. Compute the stabilizer group at any v0 ∈ V as

the conjugate of GL(V ) by an explicit element of G (depending of course on v0).


