
Math 594. Homework 1 (due January 15)

1. Let V and W be finite-dimensional vector spaces over a field F . Let G = GL(V ) and H = GL(W ) be
the associated general linear groups. Let X denote the vector space HomF (V, W ) of linear maps from V to
W , but viewed only as a set (i.e., we ignore that X has a natural structure of F -vector space via pointwise
operations). Recall that X has a natural left H-action and right G-action through composition and inner
composition respectively (i.e., h.x = h ◦ x while x.g = x ◦ g).

(i) Prove that x, x′ ∈ X lie in the same G-orbit if and only if they have the same image in W (when
viewed as linear maps from V to W ).

(ii) Give a criterion of similar flavor for two elements of X to lie in the same H-orbit, and prove your
criterion is correct.

(iii) In the special case W = F , how many G-orbits are there (don’t ignore the zero map!)? What does
this tell you about how GL(V ) acts on the set of hyperplanes (i.e., codimension 1 subspaces) in V ?

2. Let F be a field, and define S1(F ) = {(a, b) ∈ F 2 | a2 + b2 = 1}.
(i) By thinking about the case F = R, naturally endow S1(F ) with a group structure for any F .
(ii) If there exists i ∈ F with i2 = −1 (e.g., F = C) and 2 6= 0 in F , use such an element to construct

an isomorphism of groups φi : S1(F ) ' F×. this isomorphism is not intrinsic to F in the sense that there’s
another square root choice, namely −i, so we could use φ−i instead. What is the resulting automorphism
φ−i ◦ φ−1

i of F× which carries φi into φ−i (and vice-versa)? Meanwhile, if 2 = 0 in F (F need not be F2!!),
then show S1(F ) ' F as groups (using addition on F ).

(iii) This is a purely philosophical question to think about on your own: can the field C intrinsically
distinguish between its two square roots of −1?

3. Let F = Fp denote the “field with p elements” for a prime p (i.e., the integers mod p). Let V be an
n-dimensional vector space over F , and G = GL(V ). Note that V has size pn (as one sees by choosing a
basis). Assume n > 0.

(i) Using the fact that the group F× acts on V −{0} (through scalar multiplication) and the orbits of this
action are precisely the lines, conclude without any use of bases or coordinates that V contains (pn−1)/(p−1)
lines. Applying this formula to the dual space V ∗, how many hyperplanes are in V ?

(ii) By Exercise 1(iii), you know G acts transitively on the set X of hyperplanes in V . If we choose one
hyperplane x0, conclude that |G| = |X||StabG(x0)|. Now elements of StabG(x0) induce linear automorphisms
of x0. Use general principles from linear algebra to show that the resulting map of groups StabG(x0) →
GL(x0) is surjective, and deduce |StabG(x0)| = |GL(x0)||FixG(x0)| where FixG(x0) denotes the subgroup of
elements of G which fix everything in the hyperplane x0 (i.e., act as the identity on x0 viewed as hyperplane
in V ).

(iii) Putting together everything from (ii), we get the formula |G| = |X||FixG(x0)||GL(x0)|. You know
|X| from (i). By considering a complementary vector to x0 in V , find a simple formula for |FixG(x0)| in
terms of p = |F | and n, and use induction (dimx0 = n− 1!) to get a formula for |G| in terms of p = |F | and
n.

(iv) Here’s “another” way to compute |G|: think in terms of matrices. How many ways can you specify
the first column of an invertible n× n matric over F? Once this is chosen, how many options are there for
the second column? And so on. Deduce a formula for the number of such invertible matrices, and compare
with (iii). More importantly: show this is the same method in disguise!

4. Consider the action of G = GL2(F3) on the set X of all 4 lines in V = F2
3. Let ρ : G → Aut(X) be the

action map for the natural left action of G on X.
(i) Choose an ordering on X so as to identify Aut(X) with S4, and for your favorite choice of 6 elements

g ∈ G (no two being scalar multiples of each other) write down ρ(g) ∈ S4 in terms of its cycle decomposition.
(ii) Show that ρ(g) = 1 if and only if g is a scalar multiplication (this argument should work for GL(V )

acting on the set X of lines in V for V of finite dimension over any field whatsoever: don’t use matrices!!),
and conclude in our situation that ρ(g) = ρ(g′) if and only if g = ±g′.
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(iii) By counting the size of source and target, use (iii) to deduce that ρ is surjective.
(iv) Extra credit: Prove that for a 2-dimensional vector space over any field at all, GL(V ) acts transitively

on the set of triples of lines in V (so if V has only 4 lines, then . . . ).

5. Let G be a group.
(i) If g ∈ G satisfies gn = 1 for some n > 0, show that if we take n minimal with this property then for

any m ∈ Z (allowing m ≤ 0) we have gm = 1 if and only if n|m (hint: write m = nq + r with 0 ≤ r < n).
We call this least n the order of g (and say g has finite order; otherwise we say g has infinite order). If d|n,
what is the order of gd?

(ii) Give an example of a group G with two elements g, g′ ∈ G of finite order such that gg′ has infinite
order (hint: matrices).

(iii) We say G is (finite) cyclic if there exists g0 ∈ G of finite order such that every element of G is a power
of g0 (with possibly negative exponent). When this happens, with g0 of order n, show that G is abelian with
|G| = n and that there is a well-defined group homomorphism Z/n → G sending i mod n to gi

0, and that
this is an isomorphism. Conclude that (up to non-unique isomorphism) there is “only one” cyclic group of
order n for each positive integer n (there’s no “natural” isomorphism between two of the same size).

(iv) If G is cyclic of order n and i ∈ Z, show that the map g 7→ gi is a group homomorphism which is
an isomorphism if and only if multiplication by i on Z/n is injective, in which case i mod n ∈ (Z/n) has
a multiplicative inverse. Deduce a natural isomorphism of groups Autgroup(G) ' (Z/n)× which does not
depend on the specification of a generator of G.

6. Fix n > 1. For σ ∈ Sn and a pair {i, j} of distinct integers between 1 and n (inclusive), note that
(σ(i) − σ(j))/(i − j) = (σ(j) − σ(i))/(j − i), so this ratio does not depend on the ordering among i and j.
Define

εn(σ) =
∏

{i,j}

σ(i)− σ(j)
i− j

,

where the product is taken over unordered pairs of distinct integers between 1 and n.
(i) Compute ε3(σ) for all σ ∈ S3, and show in general that εn(σ) = ±1 for all σ ∈ Sn.
(ii) Prove that εn : Sn → {±1} is a surjective group homomorphism. Its kernel, An, is called the

alternating group on n letters.

7. Let A be an abelian group, a, a′ ∈ A elements with respective finite orders n and n′.
(i) If n =

∏
pei

i and n′ =
∏

q
fj

j are the prime factorizations, show that there exist elements in A of order

pei
i and q

fj

j for all i and j.
(ii) If n and n′ are relatively prime, show aa′ has order nn′. In general, construct an element of order

lcm(n, n′) (consider n = 6, n′ = 10 to see what’s happening).
(iii) Taking for granted that the equation Xm = 1 has no more than m solutions in a field F (a false

statement in non-commutative fields: there are infinitely many soltuons to X2 = −1 in the quaternions), a
result we’ll prove later in the course, use (ii) to show that when F is finite then an element of maximal order
in the finite abelian group F× must be a generator. Conclude (by pure thought!) that F× is cyclic. Find
generators of F×17 and F×31.


