- 1. Let V and W be finite-dimensional vector spaces over a field F. Let G = GL(V) and H = GL(W) be the associated general linear groups. Let X denote the vector space $Hom_F(V, W)$ of linear maps from V to W, but viewed only as a set (i.e., we ignore that X has a natural structure of F-vector space via pointwise operations). Recall that X has a natural left H-action and right G-action through composition and inner composition respectively (i.e., $h.x = h \circ x$ while $x.g = x \circ g$).
- (i) Prove that $x, x' \in X$ lie in the same G-orbit if and only if they have the same image in W (when viewed as linear maps from V to W).
- (ii) Give a criterion of similar flavor for two elements of X to lie in the same H-orbit, and prove your criterion is correct.
- (iii) In the special case W = F, how many G-orbits are there (don't ignore the zero map!)? What does this tell you about how GL(V) acts on the set of hyperplanes (i.e., codimension 1 subspaces) in V?
- 2. Let F be a field, and define $S^{1}(F) = \{(a, b) \in F^{2} | a^{2} + b^{2} = 1\}.$
 - (i) By thinking about the case $F = \mathbf{R}$, naturally endow $S^1(F)$ with a group structure for any F.
- (ii) If there exists $i \in F$ with $i^2 = -1$ (e.g., $F = \mathbb{C}$) and $2 \neq 0$ in F, use such an element to construct an isomorphism of groups $\phi_i : S^1(F) \simeq F^{\times}$. this isomorphism is not intrinsic to F in the sense that there's another square root choice, namely -i, so we could use ϕ_{-i} instead. What is the resulting automorphism $\phi_{-i} \circ \phi_i^{-1}$ of F^{\times} which carries ϕ_i into ϕ_{-i} (and vice-versa)? Meanwhile, if 2 = 0 in F (F need not be \mathbb{F}_2 !!), then show $S^1(F) \simeq F$ as groups (using addition on F).
- (iii) This is a purely philosophical question to think about on your own: can the field C intrinsically distinguish between its two square roots of -1?
- 3. Let $F = \mathbf{F}_p$ denote the "field with p elements" for a prime p (i.e., the integers mod p). Let V be an n-dimensional vector space over F, and $G = \mathrm{GL}(V)$. Note that V has size p^n (as one sees by choosing a basis). Assume n > 0.
- (i) Using the fact that the group F^{\times} acts on $V \{0\}$ (through scalar multiplication) and the orbits of this action are precisely the lines, conclude without any use of bases or coordinates that V contains $(p^n-1)/(p-1)$ lines. Applying this formula to the dual space V^* , how many hyperplanes are in V?
- (ii) By Exercise 1(iii), you know G acts transitively on the set X of hyperplanes in V. If we choose one hyperplane x_0 , conclude that $|G| = |X||\operatorname{Stab}_G(x_0)|$. Now elements of $\operatorname{Stab}_G(x_0)$ induce linear automorphisms of x_0 . Use general principles from linear algebra to show that the resulting map of groups $\operatorname{Stab}_G(x_0) \to \operatorname{GL}(x_0)$ is surjective, and deduce $|\operatorname{Stab}_G(x_0)| = |\operatorname{GL}(x_0)||\operatorname{Fix}_G(x_0)|$ where $\operatorname{Fix}_G(x_0)$ denotes the subgroup of elements of G which fix everything in the hyperplane x_0 (i.e., act as the identity on x_0 viewed as hyperplane in V).
- (iii) Putting together everything from (ii), we get the formula $|G| = |X||\operatorname{Fix}_G(x_0)||\operatorname{GL}(x_0)|$. You know |X| from (i). By considering a complementary vector to x_0 in V, find a simple formula for $|\operatorname{Fix}_G(x_0)|$ in terms of p = |F| and n, and use induction $(\dim x_0 = n 1!)$ to get a formula for |G| in terms of p = |F| and n
- (iv) Here's "another" way to compute |G|: think in terms of matrices. How many ways can you specify the first column of an invertible $n \times n$ matric over F? Once this is chosen, how many options are there for the second column? And so on. Deduce a formula for the number of such invertible matrices, and compare with (iii). More importantly: show this is the same method in disguise!
- 4. Consider the action of $G = GL_2(\mathbf{F}_3)$ on the set X of all 4 lines in $V = \mathbf{F}_3^2$. Let $\rho : G \to Aut(X)$ be the action map for the natural left action of G on X.
- (i) Choose an ordering on X so as to identify $\operatorname{Aut}(X)$ with \mathfrak{S}_4 , and for your favorite choice of 6 elements $g \in G$ (no two being scalar multiples of each other) write down $\rho(g) \in \mathfrak{S}_4$ in terms of its cycle decomposition.
- (ii) Show that $\rho(g) = 1$ if and only if g is a scalar multiplication (this argument should work for GL(V) acting on the set X of lines in V for V of finite dimension over any field whatsoever: don't use matrices!!), and conclude in our situation that $\rho(g) = \rho(g')$ if and only if $g = \pm g'$.

1

- (iii) By counting the size of source and target, use (iii) to deduce that ρ is surjective.
- (iv) Extra credit: Prove that for a 2-dimensional vector space over any field at all, GL(V) acts transitively on the set of *triples* of lines in V (so if V has only 4 lines, then ...).
- 5. Let G be a group.
- (i) If $g \in G$ satisfies $g^n = 1$ for some n > 0, show that if we take n minimal with this property then for any $m \in \mathbf{Z}$ (allowing $m \le 0$) we have $g^m = 1$ if and only if n | m (hint: write m = nq + r with $0 \le r < n$). We call this least n the order of g (and say g has finite order; otherwise we say g has infinite order). If d | n, what is the order of g^d ?
- (ii) Give an example of a group G with two elements $g, g' \in G$ of finite order such that gg' has infinite order (hint: matrices).
- (iii) We say G is (finite) cyclic if there exists $g_0 \in G$ of finite order such that every element of G is a power of g_0 (with possibly negative exponent). When this happens, with g_0 of order n, show that G is abelian with |G| = n and that there is a well-defined group homomorphism $\mathbf{Z}/n \to G$ sending $i \mod n$ to g_0^i , and that this is an isomorphism. Conclude that (up to non-unique isomorphism) there is "only one" cyclic group of order n for each positive integer n (there's no "natural" isomorphism between two of the same size).
- (iv) If G is cyclic of order n and $i \in \mathbf{Z}$, show that the map $g \mapsto g^i$ is a group homomorphism which is an isomorphism if and only if multiplication by i on \mathbf{Z}/n is injective, in which case $i \mod n \in (\mathbf{Z}/n)$ has a multiplicative inverse. Deduce a natural isomorphism of groups $\operatorname{Aut}_{\operatorname{group}}(G) \simeq (\mathbf{Z}/n)^{\times}$ which does not depend on the specification of a generator of G.
- 6. Fix n > 1. For $\sigma \in \mathfrak{S}_n$ and a pair $\{i, j\}$ of distinct integers between 1 and n (inclusive), note that $(\sigma(i) \sigma(j))/(i j) = (\sigma(j) \sigma(i))/(j i)$, so this ratio does not depend on the ordering among i and j. Define

$$\varepsilon_n(\sigma) = \prod_{\{i,j\}} \frac{\sigma(i) - \sigma(j)}{i - j},$$

where the product is taken over unordered pairs of distinct integers between 1 and n.

- (i) Compute $\varepsilon_3(\sigma)$ for all $\sigma \in \mathfrak{S}_3$, and show in general that $\varepsilon_n(\sigma) = \pm 1$ for all $\sigma \in \mathfrak{S}_n$.
- (ii) Prove that $\varepsilon_n:\mathfrak{S}_n\to\{\pm 1\}$ is a surjective group homomorphism. Its kernel, A_n , is called the alternating group on n letters.
- 7. Let A be an abelian group, $a, a' \in A$ elements with respective finite orders n and n'.
- (i) If $n = \prod p_i^{e_i}$ and $n' = \prod q_j^{f_j}$ are the prime factorizations, show that there exist elements in A of order $p_i^{e_i}$ and $q_i^{f_j}$ for all i and j.
- (ii) If n and n' are relatively prime, show aa' has order nn'. In general, construct an element of order lcm(n, n') (consider n = 6, n' = 10 to see what's happening).
- (iii) Taking for granted that the equation $X^m = 1$ has no more than m solutions in a field F (a false statement in non-commutative fields: there are infinitely many solutions to $X^2 = -1$ in the quaternions), a result we'll prove later in the course, use (ii) to show that when F is finite then an element of maximal order in the finite abelian group F^{\times} must be a generator. Conclude (by pure thought!) that F^{\times} is cyclic. Find generators of \mathbf{F}_{17}^{\times} and \mathbf{F}_{31}^{\times} .