MATH 594. SOLUTIONS TO HOMEWORK 6

1. Let R be a ring. Prove that for all z € R, Or - = 0g and (—1g)x = —=z.

Since Og 4+ 0r = Og, if we multiply both sides by = and add —(0g - z) to both sides and use the associative
law for addition, we get Or - © = Ogr. Since 1z + —1g = Og, multiplying through by z and using the first
part, together with 1z - © = x, we find that (—1g)z is the additive inverse to x.

2. Let R be a ring and I an ideal. Consider the natural ring map 7 : R — R/I given by 7(x) = x mod I.
Prove that a ring map ¢ : R — S can be ‘factored’ as ¢ = ¥ o7 for some ¢ : R/I — S if and only if
I C ker(¢p), in which case ¢ is unique.

Viewing R/I first as the quotient of additive groups, we see the existence and uniqueness of ¢ as an
additive group map, by the mapping properties of quotients from group theory. The only issue is to check
that ¢ is a ring map. This follows readily from the construction of ¢ and the fact that R — R/I is a map
of rings (since I is an ideal).

3. Let R be a ring. Let S be an R-algebra. Prove that for any s € S, there exists a unique R-algebra map
f: R[X] — S such that f(X) = s. In down-to-earth terms, mapping R[X] to S (as an R-algebra) is the
‘same’ as choosing an element of S.

Using a fixed identification C = R[X]/(X?%+1) (i.e., fixing a choice of v/—1 in C), what data do we need
on an R-algebra A in order to get a map of R-algebras C — A?

Let ¢ : R — S be the structure map. Then if f exists, we must have

F(XCaX’) = Y () = Y pla)s’

since f is a map of R-algebras. Because of the unique representation of every element of R[X] as a polynomial
expression in X with coefficients in R, we can use the above formula to define f as a map of sets (i.e., it is
well-defined). Now one checks from the definition of the ring structure on R[X] that f is a map of R-algebras.

By Exercise 2, together with the above, an R-algebra map C — A is equivalent to choosing a € A with
a? = —1 (though in a general A, there could well be infinitely many such a).

4. Generalize the sequence-based construction in class to rigorously define the R-algebra R[X;, ..., X,] for
any n > 1 and prove a mapping property for R-algebras analogous to Exercise 3 above. If I is any set, give
a definition (and mapping property) for an R-algebra R[X;], with indeterminates indexed by the set I.

Let H be the set of functions M : I — N with the property that M (i) = 0 for all but finitely many ¢ € I
(M stands for ‘monomial’). Let Oy denote the zero function and let M; denote the function which sends 4
to 1 and everything else to 0. Define R[X;] to be the set of functions f : H — R with f(M) = 0g for almost
all M € H and define X; to be the function given by X (M;) = 1z and X(M) = 0 for M # M;. We define
0 and 1 in R[X;] by O(M) = Og for all M € H and 1(M) = O for M # Oy and 1(0y) = 1. Addition
is defined by (f + ¢g)(M) = f(M) + g(M) (which does vanish for all but finitely many M), and we verify
immediately that with (—f)(M) = —(f(M)), (R[X;],+,0) is an additive group.

In order to define multiplication, we use the formula

(foM) =D [(N1)g(Na),

N1+Ns=M

where N7 and Ny run through all (finitely many) elements of H whose pointwise sum is M. Clearly this
does vanish for all but finitely many M, and so defines an element in R[X;]. It is now a tedious exercise to
check that this makes R[X;] a ring, with 1 an identity for multiplication.
We then verify that the map of sets j : R — R[X;] given by j(r)(0g) = r, j(r)(M) = O for M # 0y
is an injective map of rings, so R[X;] is an R-algebra. We now always write r instead of j(r) to simplify
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notation. One checks by the definitions that f € R[X;] can be uniquely written as a polynomial in X;’s with
coefficients in R, namely

f= > (ran IT xM@),
F(M)#0r M (i)7#0
with the usual convention that a sum over the empty set is 0 and a product over the empty set is 1.
Given any R-algebra ¢ : R — S and s; € S for all i € I, it follows from the definition of the ring structure
above that the set-theoretic map e : R[X;] — S given by

)= > (evon) I &
f(M)#0R M (i)7#0
is an R-algebra map. It is then readily checked to be the unique one which sends X; to s;.

5. Let R be a domain with fraction field F', and let ¢ : R — F be the usual inclusion map of rings. Prove
that F' is the ‘smallest’ field to which R injects in the sense that for any injective ring map f: R — k from
R to a field k, there is a unique map of fields j : F' — k so that f = j o4. Is this true if we don’t require f
to be injective?

All maps between fields are necessarily injective, so the answer to the last part is ‘no’. It is easy to see
that 7 : 7 +— r/1 is injective (here, r/s denotes the residue class of (r,s) in F'). From the definitions it is
clear that /s = (r/1)(s/1)7!, so if j exists, then

j(r/s) = j(i(r)i(i(s) ™) = j(i(r)i(i(s) ™" = fF(r) f(s) 7,
so j is unique. As for existence, use this formula to define j, noting that f(s)~! makes sense for non-zero

s € R, as f is injective and k is a field. One then checks this is well-defined (i.e., independent of choice of
numerator and denominator representatives) and gives a ring map with the desired properties.

6. Show that Z is the most ‘basic’ ring in the sense that for any ring R, there is a unique map of rings
fr :Z — R. That is, every ring is a Z-algebra in a unique way. To prove this, you may take for granted
the Principle of Recursive Definition, which asserts that for any set X, equipped with a choice of x € X
and a map of sets ¢ : X — X (the ‘recursive formula’), there is a unique map of sets ¢ : N — X satisfying
P(1) =2 and P(n+ 1) = o(¢(n)) for all n € N (if you have time, think about how to rigorously prove this
Principle from the Peano axioms).

In particular, if g : R — S is any map of rings, then go fr = fs.

Once the first part is proven, the second follows from the fact that g o fr satisfies the property that
uniquely determine fg. As for existence and uniqueness of fr in general, an induction argument shows that
if f and f’ are two such maps, then since f(1) = f'(1) = 1g, then f(n) = f/(n) for all n > 0. Since f and
f! are additive group maps, we see f(n) = f’(n) for n < 0 also, so uniqueness follows.

As for existence, define f(n) for n > 0 using f(1) = 1g and f(n 4+ 1) = f(n) + 1x (i.e., Principle of
Recursive Definition with X = R and ¢ (z) = x + 1g). Then define f(0) = Or and f(n) = —f(—n) for
n < 0. By the uniqueness part of the Principle of Recursive Definition, we have —f(—n) = f(n) for all
n € Z. In order to prove f(m + n) = f(m) + f(n) for all m,n € Z, we therefore need only consider the
case with m > 0. We can therefore induct on m, and the case m = 1 follows from the definitions. To prove
f(mn) = f(m)f(n), we again may assume that m > 0 (recall Exercise 1 too) and again can induct on m,
the case m =1 being clear.

7. (1) For a ring R, the kernel of the natural map fr from Exercise 6 is an ideal in Z, so it has the form
¢(R)Z for a unique ¢(R) > 0. We call ¢(R) the characteristic of R. Show that the characteristic of a domain
is either 0 or prime and that if g : R — S is a map of rings, then necessarily the characteristic of R is a
multiple of the characteristic of S.

(i) If g : R — S is injective (e.g., S = R[X] or S is the fraction field R with R a domain, g the natural
map), show that ¢(R) = ¢(S). Give an example (with g not injective) where ¢(R) # ¢(S). Do there exist maps
between fields with different characteristics? How about between domains with different characteristics?



3

(iii) If R is a ring with prime characteristic p, show that (x4 y)?" = 2P" +y?" for all 2,y € R and n > 0.

(7) Since go fr = fs, ker(fr) C ker(fs). Thus, ¢(5)|c(R). Since Z/c(R) injects into R, if R is a domain,
then so is Z/c(R). This clear prevents ¢(R) from being composite. Note that 1 is the characteristic of only
the zero ring, which we ruled out from being a domain in our definitions!

(#) Since g is injective, fs = go fr and fr have the same kernel. The map Z — Z/2 is a map between
domains with different characteristics, but maps of fields are always injective and so there are no maps
between fields with different characteristics.

(éi1) We induct on n, the case n = 1 following from the binomial formula (proof valid in any ring, or else
check in Z[X,Y] and use Exercises 4 and 6) and the fact that for 0 < ¢ < p, p!/il(p —4)! is divisible by p.

8. (i) Prove that for m > 0, the ring Z/m is a field if and only if m is a prime. Note that Z/m has
characteristic m. For a prime p > 0, we often write F, instead of Z/p when we wish to view it as a field
(rather that just as a group).

(i) Let k be a field. If k has characteristic 0, then there is a unique map of fields Q — k. If k has
characteristic p, then there is a unique map of fields F, — k. Thus, Q and F,, are the most ‘basic’ fields.

(i) By Exercise 10, Z/m is a domain if and only if it is a field. Since it has characteristic m, it can only
be a domain for prime m (Exercise 7). It is immediate from the definitions and unique factorization in Z
that Z/p is a domain for a prime p.

(ii) By Exercise 6, there is a unique map of ring Z — k. By Exercise 5, we are done if this map is injective
— that is, if k has characteristic 0. Otherwise, by Exercise 2 we are done if k has characteristic p.

9. (i) Let f : R — S be a map of rings. Show that this induces a natural group map between unit groups
f*:R* — S*. If r € R satisfies r™ = 0 for some n > 1, then for any v € R, show that v € R* if and
only if u +r € R* (hint: recall the geometric series for (1 + x)~!). Consider the case S = R/I, with f the
natural map. Prove f* is surjective with f=1(S*) = R* if every x € I satisfies 2= = 0 for some n, > 1
(the converse is not generally true).

(ii) For a prime p, determine the unit group ((Z/p?)[X])*. Also determine (Z[X]/(X1900))x.

(9) f r € R*, so rr’ = 1g, then f(r)f(r') = f(rr') = f(1g) = 1s, so f(r) € S*. So it is clear how to
define f*. Now say r € R is nilpotent (i.e., some ™ = 0). Since —r is also nilpotent (by Exercise 1), we
need only check that for u € RX, we have u 4+ r € RX. Scaling through by u~!, we are reduced to the case
u = 1. Now use the hint to consider a truncated Taylor series.

For I as given, if f(r) is a unit, then ' = 1+« with « nilpotent, so 77’ is a unit. Thus, r is a unit. Since
f is surjective, we are done.

(i) Using (i) with I the ideal generated by p, we see that (Z/p?)[X]* is the set of polynomials of the
form ag + pf with ag € Z/p? not a multiple of p. Taking I to be the ideal generated by X in the second
case, the units in Z[X]/X!0% are elements with a constant term of 1 or —1.

10. Let k be a field and A a k-algebra with finite dimension as a k-vector space. If A is a domain, prove
that A is a field. Also, prove that if A is a domain whose underlying set is finite, then A is a field. Why
does this imply that 1/(2'/3 4 41/5) can be expressed as a Q-linear polynomial in o = 2'/3 and g = 4'/5?

For non-zero a € A, the map x — ax is an injective k-linear map from A to itself. Since dimy(A) is
finite, this map must be surjective and therefore hits 1, so @ is a unit. In the second case, use cardinality
arguments to replace linear algebra. Taking A = Q[a, 3] and noting that dimgq A4 is finite (since a® = 2 and
3% = 4) shows that A is a field, so the visibly nonzero o+ 3 € A has a multiplicative inverse in A (which is
an expression of the desired type).

11. Let L/k be a degree 2 extension of fields. If k& has characteristic different from 2, show that L = k(a)
with a? € k, a ¢ k. Be sure to prove a ‘quadratic formula’ in a suitable setting if you choose to use it.

If k has characteristic 2 and X2 + X + 1 is irreducible in k[X] (e.g., k = F3), then prove that k[X]/(X? +
X +1) is a degree 2 extension field of k and cannot be expressed in the form k(a) with o € k.

By linear algebra, we can find a basis of the form {1,a}. Expressing a? as a linear combination of 1 and
a, we can complete the square if char(k) # 2. This gives a ‘better’a with a? € k.



Note that under the hypothesis in the second part, the quotient ring is actually a domain (and thus a
field). For example, k¥ = Fs is such a k. Any possible ¢ must have a unique representative of the form
A+ BX with B#0, A, B € k. Since k has characteristic 2, we see that a? is represented by A2 + B? + B2X,
which is never in k for B # 0.



