1. (20 pts) Work out the Galois group of $X^4 - 7$ over each of the following fields: \mathbf{Q} , $\mathbf{Q}(\sqrt{7})$, $\mathbf{Q}(\sqrt{-7})$, $\mathbf{Q}(\sqrt{-1})$. Determine the lattice of subfields for the case of \mathbf{Q} as the base field.

Solution By Eisenstein's criterion, $f = X^4 - 7$ is irreducible over \mathbf{Q} . A splitting field has the form $K = \mathbf{Q}(\alpha, i)$ where $\alpha^4 = 7$ and $i^2 + 1 = 0$; the roots of f in K are $\pm \alpha$ and $\pm i\alpha$. Since $\mathbf{Q}(\alpha)$ has degree 4 and admits a real embedding, $i \notin \mathbf{Q}(\alpha)$. Thus, $[K : \mathbf{Q}] = 8$. The only possible automorphisms are those determined by $\alpha \mapsto i^r \alpha$ for $r \in \mathbf{Z}/4$ and $i \mapsto \pm i$. These are 8 options, so all must work. Letting σ be the automorphism which fixes i and sends α to $i\alpha$, and τ be the automorphism which fixes α and sends i to -i, we have $\sigma^4 = 1$, $\tau^2 = 1$, and $\tau \sigma \tau^{-1} = \sigma^3 = \sigma^{-1}$. That is, $\operatorname{Gal}(K/\mathbf{Q}) \simeq D_4$. The quadratic subfields correspond to the order 4 (i.e., index 2) subgroups. Such a subgroup must contain σ^2 , so these are

$$\langle \sigma \rangle \simeq \mathbf{Z}/4, \ \langle \sigma^2, \tau \rangle \simeq \mathbf{Z}/2 \times \mathbf{Z}/2, \ \langle \sigma^2, \sigma \tau \rangle \simeq \mathbf{Z}/2 \times \mathbf{Z}/2.$$

The associated quadratic fixed fields are $\mathbf{Q}(i) \simeq \mathbf{Q}(\sqrt{-1})$, $\mathbf{Q}(\alpha^2) = \mathbf{Q}(\sqrt{7})$, and $\mathbf{Q}(i\alpha^2) \simeq \mathbf{Q}(\sqrt{-7})$ (so the Galois group for the splitting field of $X^4 - 7$ over each of these quadratic fields is the indicated order 4 group mentioned above).

The order 4 subextensions correspond to the order 2 subgroups. The elements of order 2 in D_8 are τ , σ^2 , and $\sigma^j \tau$. The fixed field of τ is $\mathbf{Q}(\alpha)$ and the fixed field of $\sigma^2 \tau$ is $\mathbf{Q}(i\alpha)$, as one sees by inspection. The fixed field of $\sigma \tau$ is $\mathbf{Q}(\alpha + i\alpha)$ (as one sees by first averaging to make the guess, and then checking directly, for example), and likewise the fixed field of $\sigma^{-1}\tau$ is $\mathbf{Q}(\alpha - i\alpha)$. The fixed field of σ^2 is $\mathbf{Q}(\alpha^2, i) \simeq \mathbf{Q}(\sqrt{7}, \sqrt{-1})$. The lattice of intermediate fields between K and \mathbf{Q} (omitting K and \mathbf{Q} from the picture) is:

- 2. Recall from class that we have a natural isomorphism $\operatorname{Gal}(\mathbf{Q}(\zeta_n)/\mathbf{Q}) \simeq (\mathbf{Z}/n)^{\times}$ for any $n \geq 1$, where ζ_n is a primitive nth root of unity in some extension of \mathbf{Q} . In this problem, we work inside of a fixed algebraic closure $\overline{\mathbf{Q}}$.
- (i) (10 pts) For n and m positive integers, with n|m, show that the natural diagram of groups

$$\operatorname{Gal}(\mathbf{Q}(\zeta_m)/\mathbf{Q}) \simeq (\mathbf{Z}/m)^{\times}$$
 \downarrow
 $\operatorname{Gal}(\mathbf{Q}(\zeta_n)/\mathbf{Q}) \simeq (\mathbf{Z}/n)^{\times}$

commutes. Use this to show that $\mathbf{Q}(\zeta_a) \cap \mathbf{Q}(\zeta_b) = \mathbf{Q}$ if and only if $\gcd(a,b) = 1$ or 2.

(ii) (10 pts) Using the isomorphism $\operatorname{Gal}(\mathbf{Q}(\zeta_{p^n})/\mathbf{Q}) \hookrightarrow (\mathbf{Z}/p^n)^{\times}$ for any prime p and any $n \geq 1$, along with the known structure of the group $(\mathbf{Z}/p^n)^{\times}$, show that $\mathbf{Q}(\zeta_{p^n})$ contains a unique subfield K of degree p^{n-1} over \mathbf{Q} and that $K \cap \mathbf{Q}(\zeta_p) = \mathbf{Q}$.

Solution

(i) For any $s \in (\mathbf{Z}/m)^{\times}$, the sth power map on mth roots of unity restricts to the sth power map on the subgroup of nth roots of unity (and only depends upon $s \mod n \in (\mathbf{Z}/n)^{\times}$). Keeping in mind how the map $\operatorname{Gal}(\mathbf{Q}(\zeta_d)/\mathbf{Q}) \to (\mathbf{Z}/d)^{\times}$ is defined in terms of exponentiation on roots of unity, the commutativity of the diagram drops out.

If $d = \gcd(a, b)$, then $\mathbf{Q}(\zeta_d) \subseteq \mathbf{Q}(\zeta_a) \cap \mathbf{Q}(\zeta_b)$, so when this latter intersection is \mathbf{Q} then $\mathbf{Q}(\zeta_d) = \mathbf{Q}$ and hence d = 1 or d = 2. For the converse, note that $\mathbf{Q}(\zeta_{2r}) = \mathbf{Q}(\zeta_r)$ for odd r, so if $\gcd(a, b) = 2$ then at least one of a or b is twice an odd number and hence by halving that index we don't change fields. Thus, for the converse we may assume $\gcd(a, b) = 1$. By the Chinese Remainder Theorem, the ring map $\mathbf{Z}/(ab) \to \mathbf{Z}/a \times \mathbf{Z}/b$ is an isomorphism, so the induced map on unit groups is an isomorphism. But taking m = ab and n = a, b identifies this isomorphism with the natural product map

$$\operatorname{Gal}(\mathbf{Q}(\zeta_{ab})/\mathbf{Q}) \to \operatorname{Gal}(\mathbf{Q}(\zeta_a)/\mathbf{Q}) \times \operatorname{Gal}(\mathbf{Q}(\zeta_b)/\mathbf{Q}).$$

Hence, this latter map is an isomorphism. It follows by inspection that the kernels of the two projections therefore generate all of $Gal(\mathbf{Q}(\zeta_{ab})/\mathbf{Q})$, but these kernels are the fixed groups for the subfields $\mathbf{Q}(\zeta_a)$ and $\mathbf{Q}(\zeta_b)$, so the fixed group associated to the intersection field $\mathbf{Q}(\zeta_a) \cap \mathbf{Q}(\zeta_b)$ is the group generated by these two kernels. As this subgroup is the whole group, by the Galois correspondence this intersection must be \mathbf{Q} .

- (ii) $\operatorname{Gal}(\mathbf{Q}(\zeta_{p^n})/\mathbf{Q}) = (\mathbf{Z}/p^n)^{\times}$, which is (canonically) a product of its cyclic p-Sylow subgroup (of order p^{n-1}) and the product of the other Sylow subgroups a cyclic group of order p-1 (representing the canonical $(\mathbf{Z}/p)^{\times}$ quotient). Let K be the fixed field of the cyclic subgroup of order p-1. Then use the Fundamental Theorem of Galois Theory.
- 3. (20 pts) The problem works out some examples with quadratic fields.
- (i) (8 pts) Construct a finite Galois extension $L/\mathbf{Q}(\sqrt{2})$ with $\mathrm{Gal}(L/\mathbf{Q}(\sqrt{2})) \simeq \mathbf{Z}/2 \times \mathbf{Z}/2$ and L not Galois over \mathbf{Q} (prove it!).
- (ii) (12 pts) Using that $\operatorname{Gal}(\mathbf{Q}(\zeta_8)/\mathbf{Q}) \to (\mathbf{Z}/8)^{\times}$ is an isomorphism (proven in Problem 2), find all subfields of $\mathbf{Q}(\zeta_8)$, writing each quadratic subfield in the form $\mathbf{Q}(\sqrt{d})$ for an explicit squarefree integer d.

Solution

(i) Let $K = \mathbf{Q}(\sqrt{2})$. Take $L = K(\alpha, \beta)$ where $\alpha^2 = 3$ and $\beta^2 = \sqrt{2}$ (a splitting field of $(X^2 - 3)(X^2 - \sqrt{2}) \in K[X]$). It is easy to check that 3, $\sqrt{2}$, and $\sqrt{2}/3$ are non-squares in K, so L is degree 4 over K with

$$\operatorname{Gal}(L/K) \simeq \operatorname{Gal}(K(\alpha)/K) \times \operatorname{Gal}(K(\beta)/K) \simeq \mathbf{Z}/2 \times \mathbf{Z}/2.$$

To see L is not Galois over \mathbf{Q} , note that it contains a root β of the irreducible $X^4 - 2 \in \mathbf{Q}[X]$, yet does not contain a splitting field of this polynomial since it does not contain a primitive 4th root of unity (indeed, L clearly has a real embedding).

(ii) As an abstract group $(\mathbf{Z}/8)^{\times}$ is isomorphic to $\mathbf{Z}/2 \times \mathbf{Z}/2$, so there are exactly 3 subfields of $\mathbf{Q}(\zeta)$ distinct from \mathbf{Q} and $\mathbf{Q}(\zeta)$, each of degree 2 over \mathbf{Q} ; here, $\zeta = \zeta_8$ has minimal polynomial $X^4 + 1$. One of these is $\mathbf{Q}(i)$ where $i = \zeta^2$ is a primitive 4th root of unity. This is the subgroup invariant under $-1 \in (\mathbf{Z}/8)^{\times}$. Another order 2 subgroup is the one generated by 3, for which $\alpha = \zeta + \zeta^3$ is invariant. Clearly α is not in \mathbf{Q} , so $\mathbf{Q}(\alpha)$ is the fixed field of $\langle 3 \rangle$, hence is quadratic over \mathbf{Q} , with $\mathrm{Gal}(\mathbf{Q}(\alpha)/\mathbf{Q})$ an order 2 group with generator induced by the action w of $-1 \in (\mathbf{Z}/8)^{\times}$ (as well as by the action of $5 \in (\mathbf{Z}/8)^{\times}$). To find its minimal polynomial, we compute the sum and product of its conjugate over \mathbf{Q} :

$$z + w(z) = \zeta + \zeta^3 + \zeta^{-1} + \zeta^{-3} = 0, \quad zw(z) = (\zeta + \zeta^3)(\zeta^{-1} + \zeta^{-3}) = 2 + \zeta^2 + \zeta^{-2} = 2 + i - i = 2$$

(to compute the big sum by pure thought, recall ζ has minimal polynomial X^4+1), so z is a root of X^2-2 . Hence, $\mathbf{Q}(\sqrt{2})$ is another such subfield, and $\mathbf{Q}(\sqrt{-2})$ must therefore be the third.

- 4. (20 pts) Give examples for each of the following, or indicate that no such example exists. In each case, provide brief justification.
 - (i) (4 pts) A finite field of order 30.
 - (ii) (4 pts) A field F which is abstractly isomorphic to a proper subfield $F' \subseteq F$.
 - (iii) (4 pts) A Galois extension of \mathbf{Q} with Galois group C_{13} .
 - (iv) (4 pts) A Galois extension of \mathbf{F}_3 with Galois group $\mathbf{Z}/2 \times \mathbf{Z}/2$.
 - (v) (4 pts) A field of characteristic zero which cannot be embedded into \mathbb{C} .

Solution

- (i) Finite fields have prime power order, so no example exists.
- (ii) $F = \mathbf{Q}(t), F' = \mathbf{Q}(t^2), \text{ using } f(t^2) \mapsto f(t).$
- (iii) Since 13 divides 52 = 53 1, $\mathbf{Q}(\zeta_{53})$ has cyclic Galois group of order 52. Take the unique subfield of degree 13 over \mathbf{Q} .
 - (iv) Galois extensions of finite fields are cyclic, so no such example exists.
- (v) The field $K = \mathbf{Q}(X_i)$ on a set of indeterminates of cardinality larger than the size of \mathbf{C} . We cannot even embed K into \mathbf{C} as a subset, let alone as subfield.
- 5. (20 pts) If K/k is an extension of fields, a k-derivation from K to K is a k-linear map $D: K \to K$ such that D(xy) = xD(y) + yD(x) for all $x, y \in K$ (the Leibnitz rule).

- (i) (5 pts) Prove that for any k-derivations $D_1, D_2 : K \to K$ and any elements $c_1, c_2 \in K$, $c_1D_1 + c_2D_2$ and $D_1 \circ D_2 D_2 \circ D_1$ are k-derivations from K to K.
- (ii) (5 pts) Applying the Leibnitz Rule to the identities $1 \cdot 1 = 1$ and $xx^{-1} = 1$ (for $x \neq 0$), conclude that D(1) = 0 and $D(x^{-1}) = -D(x)/x^2$ for any nonzero $x \in K$, and likewise show $D(x^n) = nx^{n-1}D(x)$ for all $n \geq 1$ and $x \in K$. Deduce that if $a \in K$ then two k-derivations $D_1, D_2 : K \to K$ coincide on $k(a) \subseteq K$ if and only if $D_1(a) = D_2(a)$.
- (iii) (5 pts) If K = k(T) for an indeterminate T, prove that the k-derivations $D : K \to K$ are precisely the operators $D_c : f \mapsto c f'(T)$ for varying $c \in K$ (hint: prove that $c \cdot d/dT$ is a derivation with value c on T, and use (ii)).
- (iv) (5 pts) For any $a \in K$ and $f \in k[T]$, prove D(f(a)) = f'(a)D(a) for any k-derivation $D: K \to K$. Conclude that if K/k is separable algebraic, then the only k-derivation $D: K \to K$ is D = 0.

Solution

(i) The case of $c_1D_2 + c_2D_2$ is easy, and for the "commutator" we compute

$$D_1(D_2(xy)) - D_2(D_1(xy)) = D_1(xD_2(y) + yD_2(x)) - D_2(xD_1(y) + yD_1(x)),$$

which we expand as

$$D_1(x)D_2(y) + xD_1(D_2(y)) + D_1(y)D_2(x) + yD_1(D_2(x))$$

-D_2(x)D_1(y) - xD_2(D_1(y)) - D_2(y)D_1(x) - yD_2(D_1(x)),

and upon cancelling we get

$$x(D_1(D_2(y)) - D_2(D_1(y))) + y(D_1(D_2(x)) - D_2(D_1(x)),$$

as desired. The k-linearity aspect is trivial.

(ii) Since
$$D(1) = D(1 \cdot 1) = 1 \cdot D(1) + 1 \cdot D(1) = 2D(1)$$
, we get $D(1) = 0$. Thus, for $x \neq 0$,

$$0 = D(1) = D(x \cdot x^{-1}) = xD(x^{-1}) + x^{-1}D(x),$$

from which we see $D(x^{-1}) = -D(x)/x^2$. The identity $D(x^n) = nx^{n-1}D(x)$ for $n \ge 1$ and $x \in K$ is easy via induction on n with the help of the Leibnitz Rule.

- If $D_1(a) = D_2(a)$, then by the power rule $D_1(a^n) = D_2(a^n)$ for any $n \ge 1$, so by k-linearity we see that the D_j 's coincide on k[a]. By the inversion rule, the D_j 's therefore agree on reciprocals of nonzero elements in k[a], and so by the Leibnitz Rule (write an element in k(a) as $x \cdot y^{-1}$ for $x, y \in k[a]$ with $y \ne 0$) we see that the D_j 's agree on k(a).
- (iii) The operator d/dT is trivially a k-derivation from K = k(T) to itself, so $D_c = c \cdot d/dT$ is as well for any $c \in K$. This derivation has value c at T, so for any k-derivation $D : K \to K$ we see that for c = D(1), the k-derivations D and D_c agree on T. Thus, by (ii), we get $D = D_c$.
 - (iv) Since D is k-linear, if $f = \sum c_j T^j$ with $c_j \in k$ then by the power rule

$$D(f(a)) = \sum_{j \ge 1} c_j D(a^j) = \sum_{j \ge 1} j c_j a^{j-1} D(a) = f'(a) D(a).$$

If K/k is separable algebraic, then any $a \in K$ satisfies f(a) = 0 for some $f \in k[T]$ with $f'(a) \neq 0$ (namely, take f to be the minimal polynomial of a over k). Then 0 = D(0) = D(f(a)) = f'(a)D(a), so D(a) = 0 since $f'(a) \neq 0$. Thus, D = 0 when K/k is separable algebraic.

- 6. (20 pts) We say that a polynomial $f \in k[X]$ over a field k is additive if f(U) + f(V) = f(U+V) in k[U,V].
- (i) (5 pts) If k has characteristic zero, prove that an additive polynomial in k[X] is precisely one of the form f = cX with $c \in k$.
 - (ii) (10 pts) If k has positive characteristic p, show that $f \in k[X]$ is additive if and only if $f = \sum c_j X^{p^j}$.
- (iii) (5 pts) We say that a polynomial f(X) is multiplicative if f(U)f(V) = f(UV) in k[U, V]. In any characteristic, prove that the multiplicative polynomials are the zero polynomial and the monomials $f = X^n$ with $n \ge 0$.

Solution

- (i) Sending $U, V \mapsto 0$, we see that f(0) = 0 for an additive polynomial in any characteristic. It remains to show that in characteristic zero, f cannot have leading term cX^n with n > 1. In such cases, f(U + V) has top degree monomials of total degree n, coming from $c(U + V)^n$. The binomial expansion with n > 1 provides nonzero cross terms in $f(U + V) \in k[U, V]$ since the binomial coefficients are nonzero in k. The presence of such cross terms is incompatible with an equality f(U + V) = f(U) + f(V).
- (ii) By looking in total degree r, we see that for any r > 0 with X^r appearing in f, we must have $(U+V)^r = U^r + V^r$. We want to show that this can only happen if r is a power of p (the converse is trivial). If we can deduce that r is divisible by p, then by considering the identity inside of the field k(U, V) we could extract pth roots so as to replace r with r/p, and by induction on r we would get the desired result.

Thus, we must show that if r > 1 is not divisible by p then $(U + V)^r \neq U^r + V^r$ in k[U, V]. If such an equality does hold, taking partial derivatives with respect to U yields $r(U + V)^{r-1} = rU^{r-1}$, so by cancelling the nonzero $r \in k$ we would get $(U + V)^{r-1} = U^{r-1}$ in k[U, V]. By expanding out $(U + V)^{r-1}$ if r > 1, we get a contradiction by noticing that V^{r-1} appears on the left side without cancelling out.

(iii) We may assume f is nonzero. If f has leading term cU^n with $n \geq 0$, then clearly $(cU^n)(cV^n) = c(UV)^n$, so c = 1. Since f(UV) is a polynomial in powers U^jV^j , there cannot be term in f other than the lead term U^n since otherwise in the product f(U)f(V) there would be nonzero cross terms with unequal exponents, contradicting an equality with f(UV).