
Math 594. Solutions to final exam

1. (20 pts) Work out the Galois group of X4 − 7 over each of the following fields: Q, Q(
√

7), Q(
√
−7),

Q(
√
−1). Determine the lattice of subfields for the case of Q as the base field.

Solution By Eisenstein’s criterion, f = X4 − 7 is irreducible over Q. A splitting field has the form
K = Q(α, i) where α4 = 7 and i2 + 1 = 0; the roots of f in K are ±α and ±iα. Since Q(α) has degree
4 and admits a real embedding, i 6∈ Q(α). Thus, [K : Q] = 8. The only possible automorphisms are those
determined by α 7→ irα for r ∈ Z/4 and i 7→ ±i. These are 8 options, so all must work. Letting σ be the
automorphism which fixes i and sends α to iα, and τ be the automorphism which fixes α and sends i to
−i, we have σ4 = 1, τ2 = 1, and τστ−1 = σ3 = σ−1. That is, Gal(K/Q) ' D4. The quadratic subfields
correspond to the order 4 (i.e., index 2) subgroups. Such a subgroup must contain σ2, so these are

〈σ〉 ' Z/4, 〈σ2, τ〉 ' Z/2× Z/2, 〈σ2, στ〉 ' Z/2× Z/2.

The associated quadratic fixed fields are Q(i) ' Q(
√
−1), Q(α2) = Q(

√
7), and Q(iα2) ' Q

√
−7) (so the

Galois group for the splitting field of X4−7 over each of these quadratic fields is the indicated order 4 group
mentioned above).

The order 4 subextensions correspond to the order 2 subgroups. The elements of order 2 in D8 are τ , σ2,
and σjτ . The fixed field of τ is Q(α) and the fixed field of σ2τ is Q(iα), as one sees by inspection. The fixed
field of στ is Q(α + iα) (as one sees by first averaging to make the guess, and then checking directly, for
example), and likewise the fixed field of σ−1τ is Q(α− iα). The fixed field of σ2 is Q(α2, i) ' Q(

√
7,
√
−1).

The lattice of intermediate fields between K and Q (omitting K and Q from the picture) is:
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ccGGGGGGGGG

OO 99ttttttttt
Q(
√
−7)

OO

Q(
√
−1)

OO 88qqqqqqqqqqq

ffLLLLLLLLLL

2. Recall from class that we have a natural isomorphism Gal(Q(ζn)/Q) ' (Z/n)× for any n ≥ 1, where ζn
is a primitive nth root of unity in some extension of Q. In this problem, we work inside of a fixed algebraic
closure Q.

(i) (10 pts) For n and m positive integers, with n|m, show that the natural diagram of groups

Gal(Q(ζm)/Q) ' (Z/m)×

↓ ↓
Gal(Q(ζn)/Q) ' (Z/n)×

commutes. Use this to show that Q(ζa) ∩Q(ζb) = Q if and only if gcd(a, b) = 1 or 2.
(ii) (10 pts) Using the isomorphism Gal(Q(ζpn)/Q) ↪→ (Z/pn)× for any prime p and any n ≥ 1, along

with the known structure of the group (Z/pn)×, show that Q(ζpn) contains a unique subfield K of degree
pn−1 over Q and that K ∩Q(ζp) = Q.

Solution
(i) For any s ∈ (Z/m)×, the sth power map on mth roots of unity restricts to the sth power map on the

subgroup of nth roots of unity (and only depends upon s mod n ∈ (Z/n)×). Keeping in mind how the map
Gal(Q(ζd)/Q) → (Z/d)× is defined in terms of exponentiation on roots of unity, the commutativity of the
diagram drops out.

If d = gcd(a, b), then Q(ζd) ⊆ Q(ζa) ∩ Q(ζb), so when this latter intersection is Q then Q(ζd) = Q
and hence d = 1 or d = 2. For the converse, note that Q(ζ2r) = Q(ζr) for odd r, so if gcd(a, b) = 2
then at least one of a or b is twice an odd number and hence by halving that index we don’t change fields.
Thus, for ths converse we may assume gcd(a, b) = 1. By the Chinese Remainder Theorem, the ring map
Z/(ab)→ Z/a× Z/b is an isomorphism, so the induced map on unit groups is an isomorphism. But taking
m = ab and n = a, b identifies this isomorphism with the natural product map

Gal(Q(ζab)/Q)→ Gal(Q(ζa)/Q)×Gal(Q(ζb)/Q).
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Hence, this latter map is an isomorphism. It follows by inspection that the kernels of the two projections
therefore generate all of Gal(Q(ζab)/Q), but these kernels are the fixed groups for the subfields Q(ζa) and
Q(ζb), so the fixed group associated to the intersection field Q(ζa) ∩Q(ζb) is the group generated by these
two kernels. As this subgroup is the whole group, by the Galois correspondence this intersection must be Q.

(ii) Gal(Q(ζpn)/Q) = (Z/pn)×, which is (canonically) a product of its cyclic p-Sylow subgroup (of order
pn−1) and the product of the other Sylow subgroups — a cyclic group of order p − 1 (representing the
canonical (Z/p)× quotient). Let K be the fixed field of the cyclic subgroup of order p − 1. Then use the
Fundamental Theorem of Galois Theory.

3. (20 pts) The problem works out some examples with quadratic fields.
(i) (8 pts) Construct a finite Galois extension L/Q(

√
2) with Gal(L/Q(

√
2)) ' Z/2 × Z/2 and L not

Galois over Q (prove it!).
(ii) (12 pts) Using that Gal(Q(ζ8)/Q) → (Z/8)× is an isomorphism (proven in Problem 2), find all

subfields of Q(ζ8), writing each quadratic subfield in the form Q(
√
d) for an explicit squarefree integer d.

Solution
(i) Let K = Q(

√
2). Take L = K(α, β) where α2 = 3 and β2 =

√
2 (a splitting field of (X2−3)(X2−

√
2) ∈

K[X]). It is easy to check that 3,
√

2, and
√

2/3 are non-squares in K, so L is degree 4 over K with

Gal(L/K) ' Gal(K(α)/K)×Gal(K(β)/K) ' Z/2× Z/2.

To see L is not Galois over Q, note that it contains a root β of the irreducible X4 − 2 ∈ Q[X], yet does not
contain a splitting field of this polynomial since it does not contain a primitive 4th root of unity (indeed, L
clearly has a real embedding).

(ii) As an abstract group (Z/8)× is isomorphic to Z/2 × Z/2, so there are exactly 3 subfields of Q(ζ)
distinct from Q and Q(ζ), each of degree 2 over Q; here, ζ = ζ8 has minimal polynomial X4 + 1. One of
these is Q(i) where i = ζ2 is a primitive 4th root of unity. This is the subgroup invariant under −1 ∈ (Z/8)×.
Another order 2 subgroup is the one generated by 3, for which α = ζ + ζ3 is invariant. Clearly α is not in
Q, so Q(α) is the fixed field of 〈3〉, hence is quadratic over Q, with Gal(Q(α)/Q) an order 2 group with
generator induced by the action w of −1 ∈ (Z/8)× (as well as by the action of 5 ∈ (Z/8)×). To find its
minimal polynomial, we compute the sum and product of its conjugate over Q:

z + w(z) = ζ + ζ3 + ζ−1 + ζ−3 = 0, zw(z) = (ζ + ζ3)(ζ−1 + ζ−3) = 2 + ζ2 + ζ−2 = 2 + i− i = 2

(to compute the big sum by pure thought, recall ζ has minimal polynomial X4 + 1), so z is a root of X2− 2.
Hence, Q(

√
2) is another such subfield, and Q(

√
−2) must therefore be the third.

4. (20 pts) Give examples for each of the following, or indicate that no such example exists. In each case,
provide brief justification.

(i) (4 pts) A finite field of order 30.
(ii) (4 pts) A field F which is abstractly isomorphic to a proper subfield F ′ ( F .
(iii) (4 pts) A Galois extension of Q with Galois group C13.
(iv) (4 pts) A Galois extension of F3 with Galois group Z/2× Z/2.
(v) (4 pts) A field of characteristic zero which cannot be embedded into C.

Solution
(i) Finite fields have prime power order, so no example exists.
(ii) F = Q(t), F ′ = Q(t2), using f(t2) 7→ f(t).
(iii) Since 13 divides 52 = 53− 1, Q(ζ53) has cyclic Galois group of order 52. Take the unique subfield of

degree 13 over Q.
(iv) Galois extensions of finite fields are cyclic, so no such example exists.
(v) The field K = Q(Xi) on a set of indeterminates of cardinality larger than the size of C. We cannot

even embed K into C as a subset, let alone as subfield.

5. (20 pts) If K/k is an extension of fields, a k-derivation from K to K is a k-linear map D : K → K such
that D(xy) = xD(y) + yD(x) for all x, y ∈ K (the Leibnitz rule).



3

(i) (5 pts) Prove that for any k-derivations D1, D2 : K → K and any elements c1, c2 ∈ K, c1D1 + c2D2

and D1 ◦D2 −D2 ◦D1 are k-derivations from K to K.
(ii) (5 pts) Applying the Leibnitz Rule to the identities 1 · 1 = 1 and xx−1 = 1 (for x 6= 0), conclude that

D(1) = 0 and D(x−1) = −D(x)/x2 for any nonzero x ∈ K, and likewise show D(xn) = nxn−1D(x) for all
n ≥ 1 and x ∈ K. Deduce that if a ∈ K then two k-derivations D1, D2 : K → K coincide on k(a) ⊆ K if
and only if D1(a) = D2(a).

(iii) (5 pts) If K = k(T ) for an indeterminate T , prove that the k-derivations D : K → K are precisely
the operators Dc : f 7→ c f ′(T ) for varying c ∈ K (hint: prove that c · d/dT is a derivation with value c on
T , and use (ii)).

(iv) (5 pts) For any a ∈ K and f ∈ k[T ], prove D(f(a)) = f ′(a)D(a) for any k-derivation D : K → K.
Conclude that if K/k is separable algebraic, then the only k-derivation D : K → K is D = 0.

Solution
(i) The case of c1D2 + c2D2 is easy, and for the “commutator” we compute

D1(D2(xy))−D2(D1(xy)) = D1(xD2(y) + yD2(x))−D2(xD1(y) + yD1(x)),

which we expand as

D1(x)D2(y) + xD1(D2(y)) +D1(y)D2(x) + yD1(D2(x))
−D2(x)D1(y)− xD2(D1(y))−D2(y)D1(x)− yD2(D1(x)),

and upon cancelling we get

x(D1(D2(y))−D2(D1(y))) + y(D1(D2(x))−D2(D1(x)),

as desired. The k-linearity aspect is trivial.
(ii) Since D(1) = D(1 · 1) = 1 ·D(1) + 1 ·D(1) = 2D(1), we get D(1) = 0. Thus, for x 6= 0,

0 = D(1) = D(x · x−1) = xD(x−1) + x−1D(x),

from which we see D(x−1) = −D(x)/x2. The identity D(xn) = nxn−1D(x) for n ≥ 1 and x ∈ K is easy via
induction on n with the help of the Leibnitz Rule.

If D1(a) = D2(a), then by the power rule D1(an) = D2(an) for any n ≥ 1, so by k-linearity we see that
the Dj ’s coincide on k[a]. By the inversion rule, the Dj ’s therefore agree on reciprocals of nonzero elements
in k[a], and so by the Leibnitz Rule (write an element in k(a) as x · y−1 for x, y ∈ k[a] with y 6= 0) we see
that the Dj ’s agree on k(a).

(iii) The operator d/dT is trivially a k-derivation from K = k(T ) to itself, so Dc = c · d/dT is as well for
any c ∈ K. This derivation has value c at T , so for any k-derivation D : K → K we see that for c = D(1),
the k-derivations D and Dc agree on T . Thus, by (ii), we get D = Dc.

(iv) Since D is k-linear, if f =
∑
cjT

j with cj ∈ k then by the power rule

D(f(a)) =
∑

cjD(aj) =
∑
j≥1

jcja
j−1D(a) = f ′(a)D(a).

If K/k is separable algebraic, then any a ∈ K satisfies f(a) = 0 for some f ∈ k[T ] with f ′(a) 6= 0 (namely,
take f to be the minimal polynomial of a over k). Then 0 = D(0) = D(f(a)) = f ′(a)D(a), so D(a) = 0
since f ′(a) 6= 0. Thus, D = 0 when K/k is separable algebraic.

6. (20 pts) We say that a polynomial f ∈ k[X] over a field k is additive if f(U)+f(V ) = f(U+V ) in k[U, V ].
(i) (5 pts) If k has characteristic zero, prove that an additive polynomial in k[X] is precisely one of the

form f = cX with c ∈ k.
(ii) (10 pts) If k has positive characteristic p, show that f ∈ k[X] is additive if and only if f =

∑
cjX

pj .
(iii) (5 pts) We say that a polynomial f(X) is multiplicative if f(U)f(V ) = f(UV ) in k[U, V ]. In any

characteristic, prove that the multiplicative polynomials are the zero polynomial and the monomials f = Xn

with n ≥ 0.

Solution
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(i) Sending U, V 7→ 0, we see that f(0) = 0 for an additive polynomial in any characteristic. It remains
to show that in characteristic zero, f cannot have leading term cXn with n > 1. In such cases, f(U + V )
has top degree monomials of total degree n, coming from c(U + V )n. The binomial expansion with n > 1
provides nonzero cross terms in f(U + V ) ∈ k[U, V ] since the binomial coefficients are nonzero in k. The
presence of such cross terms is incompatible with an equality f(U + V ) = f(U) + f(V ).

(ii) By looking in total degree r, we see that for any r > 0 with Xr appearing in f , we must have
(U +V )r = Ur +V r. We want to show that this can only happen if r is a power of p (the converse is trivial).
If we can deduce that r is divisible by p, then by considering the identity inside of the field k(U, V ) we could
extract pth roots so as to replace r with r/p, and by induction on r we would get the desired result.

Thus, we must show that if r > 1 is not divisible by p then (U + V )r 6= Ur + V r in k[U, V ]. If such an
equality does hold, taking partial derivatives with respect to U yields r(U +V )r−1 = rUr−1, so by cancelling
the nonzero r ∈ k we would get (U + V )r−1 = Ur−1 in k[U, V ]. By expanding out (U + V )r−1 if r > 1, we
get a contradiction by noticing that V r−1 appears on the left side without cancelling out.

(iii) We may assume f is nonzero. If f has leading term cUn with n ≥ 0, then clearly (cUn)(cV n) =
c(UV )n, so c = 1. Since f(UV ) is a polynomial in powers U jV j , there cannot be term in f other than the
lead term Un since otherwise in the product f(U)f(V ) there would be nonzero cross terms with unequal
exponents, contradicting an equality with f(UV ).


