(1)

MATH 632, LECTURE 1 JANUARY 7, 2004

1. DEFECTS IN THE CLASSICAL THEORY:

What if & is not algebraically closed? If A is a finite type k-algebra then for any m € Max(A), we have
[A/m : k] < oo, but perhaps A/m # k for some or even all maximal ideals m. As an example, consider
A=Q[X,Y]/(X?+Y2+1)and m = (X,Y2+1). Then A/m ~ Q(i). Weil studied the k points of a
variety with defining equations having coefficients in k, but his methods did not adequately address what
happens under base change k — L. For example, take k = Q and L = C.
What if there is no field at all? In the classical theory, Max Spec is functorial on finite type k-algebras
(i.e. a map between f.t. k-algebras induces a map between the Max Spec’s). Indeed, if A and B are f.t.
k-algebras and ¢ : A — B a map of k-algebras then for any m € Max(B) we have p~!(m) € Spec(A), so
that A/p~1(m) is a domain. Moreover, A/p~1(m) — B/m, and since B/m is a finite extension of k (equal
to k if k is algebraically closed), we see that the domain A/p~!(m) is finite dimensional over the field k,
and hence also a field. It follows that ¢ ~!(m) € Max(A) so that A — Max Spec(A) is functorial on the
category of f.t. k-algebras, as claimed.

For more general rings, however, this is not the case, the canonical counterexample being Z — Q in
which the preimage of the maximal ideal (0) is not maximal (in fact minimal!)
Non-reduced rings, even those that are f.t. k-algebras pose a serious problem in the classical theory, even
though they occur quite naturally. For example, let k be algebraically closed with char(k) # 2 and consider
the variety in A? defined by y* = z, The coordinate ring is A = k[z,y]/(y* — z) and the natural map
k[x] — A gives a map Max(A) — Max(k[z]) which corresponds to projection onto the affine line. We can
ask what the fiber over any point ¢ € k is. Since the point z( of A,l€ corresponds to the maximal ideal
(x — zp), we want to determine which maximal ideals of Max(A) contain the expansion of (x — x) to A;
but these are precisely the maximal ideals of

Af(x = x0) = K[z, 9]/ (y* — 2,2 — w0) = kly]/(y* — x0),

i.e. the fiber is just Max(k[y]/(y*>—x0)), which for z¢ # 0 consists of the two points (y—+/z¢) and (y++/Zo).
Observe, however, that when x¢ = 0 the fiber ring is k[y]/(y?), which is a non-reduced ring and the fiber is
the single point (y). Classically, this is the notion of a “branch point” for finite maps of Riemann surfaces.
Products: given two affine varieties X = Max Spec(A) and Y = Max Spec(B) over k = k we can form their
product X x Y = Max Spec(A ®; B). This is a natural enough thing to want to do, but if k # k, it can
happen that A ®; B is not reduced, even if A, B are fields! For example, consider A = B = Fp(Tl/ P) over
k=TF,(T). Thenu =1 TP — TP @1 € A®; B is nilpotent (or order p).

Some reassurance is in order, so that we don’ think all of our work over fields was for nought. Indeed, even when

working with general rings, the theory over fields plays a central role. For example, consider a map of rings A 2 B.

This gives a map Spec(B) LN Spec(A) via p — ¢~ 1(p), and we can ask what the fiber over p is. As we saw above, the
fiber consists of all prime ideals of B which contract to p. These are precisely the prime ideals of B which contain
©(p) and which do not meet S = (A — p) (for if a prime q of B meets S then ¢*(q) contains an element of A — p
and hence is not equal to p). But these are exactly the prime ideals of S™'*B/pS™'B = B, /pB, = B®4 Ay /pA,.
In fact,

©**(p) is homeomorphic to Spec(B @4 k(p)) (see Atiyah-MacDonald, pg. 47).

contain the expansion of p; this corresponds to the maximal ideals of the ring

2. SHEAVES AND RINGED SPACES.

Let X be a topological space and ¥ any category with final object. For example, we might take & to be the

category of abelian groups, rings, or sets in which the final objects are, respectively, the trivial group, the zero-ring,
and the one-element set.

Definition 2.1. A presheaf F on X with values in % is an assignment

F:U - FUO)

which associates to every open set U C X an object F(U) of ¥, together with the data of restriction maps

pU,V : ?(U) — ?(V)
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whenever V' C U, such that for any W C V C U we have py,w o py,v = pu,w. We require that F(0) be the final
object of ¥.

A more sophisticated way to phrase this is to say that a presheaf F is a functor F : Top(X) — € from the open
sets of X to & .

Definition 2.2. A morphism ¢ : F — § of presheaves is a collection of maps ¢y : F(U) — G(U) for all open
U C X such that for any V C U, the diagram

FV) —— §(V)

PV
comimutes.

As an example, let X be a C*> manifold, take € to be the category of R-vector spaces, and consider the presheaf
Ox on X to be the assignment U — {C> functions U — R} (with usual restriction of functions). Let Q% be the
presheaf given by U — {w € QY(U)} (that is, the presheaf of C° 1-forms). Then we have a morphism of sheaves

d:0x — Q%
given on Ox (U) — QL (U) as f — df.
Definition 2.3. If F is a presheaf on X, a subpresheaf is a pair (G,¢) where G is a presheaf on X and i: § — F is
a morphism of presheaves with iy : §(U) — F(U) injective (monic) for all open U C X.
(1) Let X be a topological space and F the presheaf of continuous R-valued functions.
(2) Let X' 4. X be a continuous map of topological spaces. The presheaf of sections of f (on X) is given by
FU)={s:U— fYU): fos=idy}.

This is a presheaf of sets and it explains the practice of calling the elements of F(U) “sections over U” for
arbitrary presheaves JF.

(3) Let X’ C X be C-manifolds and Ox-,Ox the presheaves of holomorphic functions. Let Jx: be the presheaf
on X defined by

Pu,x’'nu

Ix(U) = ker (oX(U) X0 9 (U N X’)) .
This is called the ideal sheaf associated to X'.



