1. More on stalks

Let X be a topological space and \mathcal{F} a presheaf on X with $x \in X$. Recall the stalk at x is

$$\mathcal{F}_x = \varinjlim_{U \ni x} \mathcal{F}(U).$$

- (1) Let G be ab abelian group and let $\mathcal{F} = \underline{G}$. Recall we may view \mathcal{F} as the sheaf of sections of the projection $G \times X \to X$ (where G is given the discrete topology). We have a map $G \to \mathcal{F}(U)$ for each open $U \subseteq X$ given by $g \mapsto (u \mapsto g)$. This induces a map $G \to \mathcal{F}_x$, and this map is an isomorphism (which follows readily from the fact that elements of $\mathcal{F}(U)$ are locally constant maps to G).
- (2) Let $X' \xrightarrow{f} X$ be a covering map and $\mathcal{F} = \Gamma_{X'/X}$ the sheaf of sections. We saw last time that there is a natural identification $\mathcal{F}_x \simeq f^{-1}(x)$. Observe that \mathcal{F} is locally constant because by definition of a covering space, there exists an open covering U_{α} of X such that $f^{-1}(U_{\alpha}) \simeq \coprod_{i \in I_{\alpha}} U_{\alpha}$, for some discrete I_{α} . Therefore, $\mathcal{F}|_{U}$ is the constant sheaf attached to the set I_{α} .
- (3) Let $X \xrightarrow{f} Y$ be a continuous map of top. spaces and \mathcal{F} a sheaf on X. Then $f_*\mathcal{F}$ is a sheaf on Y and for any $y \in Y$ we have $(f_*\mathcal{F})_y = \varinjlim_{U \ni y} \mathcal{F}(f^{-1}(U))$. If y = f(x) then this direct limit is $\varinjlim_{f^{-1}(U)\ni x} \mathcal{F}(f^{-1}(U))$ which maps to $\varinjlim_{V\ni x} \mathcal{F}(V) = \mathcal{F}_x$ so we obtain a map $(f_*\mathcal{F})_f(x) \to \mathcal{F}_x$. In general, this map is not surjective.

2. Ringed spaces

Let \mathscr{C} be a subcategory of the category of rings containing 0 and stable under formation of direct limits. We will be primarily interested in the categories of A-algebras (for a ring A) and rings.

Definition 2.1. A \mathscr{C} -ringed space (X, \mathcal{O}_X) is a topological space X equipped with a \mathscr{C} -valued sheaf \mathcal{O}_X .

Definition 2.2. A morphism of ringed spaces is a map

$$\varphi = (f, f^{\#}) : (X, \mathcal{O}_X) \longrightarrow (Y, \mathcal{O}_Y),$$

where $f: X \to Y$ is a continuous map of top. spaces and $f^{\#}: \mathcal{O}_Y \to f_*\mathcal{O}_X$ is a morphism of \mathscr{C} -valued sheaves.

Warning 2.3. The sheaf \mathcal{O}_X is not required to be a sheaf of functions with values in some fixed target and $f^{\#}$ is in general not determined by f, even though it interacts with f via the maps $f^{\#}: \mathcal{O}_Y(U) \to \mathcal{O}_X(f^{-1}(U))$ for each open $U \subseteq Y$.

- (1) Take $X = (M, \mathcal{O}_M)$ where M is any **C**-manifold and \mathcal{O}_M the sheaf of holomorphic functions. Then for $Y = (N, \mathcal{O}_N)$ and a map $f : M \to N$ we have the induced map $f^\# : \mathcal{O}_Y \to f_*\mathcal{O}_X$ given by $f_U^\# : \mathcal{O}_Y(U) \to \mathcal{O}_X(f^{-1}(U))$ as $\phi \mapsto \phi \circ f$, so we get a map $\varphi = (f, f^\#)$ of ringed spaces $X \to Y$.
- (2) We can take (X, \mathbf{Z}) for any topological space X.
- (3) Let X emptyset and $\mathfrak{O}_X(X) = 0$.
- (4) Let $X = \{\cdot\}$ be the one point topological space, and set $\mathcal{O}_X(X) = \mathbf{C}$. Then X is identified with $\mathrm{Spec}(\mathbf{C})$. One might ask what $\mathrm{Aut}(X)$ is. Observe that there is a unique map $X \to X$ as a topological space, so $\mathrm{Aut}(X)$ depends only on what category \mathcal{O}_X takes values in. If, for example, we take the category of \mathbf{C} -algebras, then $\mathrm{Aut}(X)$ is trivial. At the other extreme, if \mathcal{O}_X has values in the category of sets then $\mathrm{Aut}(X)$ is uncountable.
- (5) Let $X = \operatorname{Spec}(\mathbf{Z})$. Then the open sets are of the form $U = X \{p_1, \dots, p_n\}$ for some finite list of primes p_i . Consider the presheaf on X defined by

$$\mathcal{O}_X(U) = \begin{cases} 0 & U = \emptyset \\ \mathbf{Z}[1/(p_1 \cdots p_r)] & U = X - \{p_1, \dots, p_r\} \end{cases}.$$

The fact that we have an embedding $\mathcal{O}_X(U) \hookrightarrow \mathbf{Q}$ for all open U implies that \mathcal{O}_X is, in fact, a sheaf. Moreover, it is not hard to see that $\mathcal{O}_{X,(p)} = \mathbf{Z}_{(p)}$ for any prime ideal (p) (in particular, $\mathcal{O}_{X,(0)} = \mathbf{Q}$).

(6) Let $X = \operatorname{Spec}(k[t]/(t^2))$. Then as a topological space, X consists of a single point, (t). We define \mathcal{O}_X by $\mathcal{O}_X(X) = k[t]/(t)^2$.

3. Composition of morphisms of ringed spaces

Suppose that we have the following situation:

$$(X, \mathcal{O}_X) \xrightarrow{\varphi = (f, f^{\#})} (Y, \mathcal{O}_Y) \xrightarrow{\psi = (g, g^{\#})} (Z, \mathcal{O}_Z)$$

We want to understand how to form the composition $\psi \circ \varphi : (X, \mathcal{O}_X) \to (Z, \mathcal{O}_Z)$. On the level of topological spaces, we have the maps

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

 $X \xrightarrow{f} Y \xrightarrow{g} Z;$ so we obtain $g \circ f: X \to Z$. We then want to define a map of sheaves (on Z)

$$\mathcal{O}_Z \to (g \circ f)_* \mathcal{O}_X$$

and we have the sheave maps $f^{\#}: \mathcal{O}_{Y} \to f_{*}\mathcal{O}_{X}$ (both sides are sheaves on Y) and $g^{\#}: \mathcal{O}_{Z} \to g_{*}\mathcal{O}_{Y}$ (now both sided are sheaves on Z). Recall that $(g \circ f)_* = g_* \circ f_*$ as maps of sheaves on Z. Moreover, by the functoriality of the pushforward map g_* , the map of sheaves $f^\# : \mathcal{O}_Y \to f_*\mathcal{O}_X$ gives rise to a morphism

$$g_*f^\#: g_*\mathcal{O}_Y \to g_*f_*\mathcal{O}_X = (gf)_*\mathcal{O}_X,$$

so that we have

$$\mathcal{O}_Z \xrightarrow{g^\#} g_* \mathcal{O}_Y \xrightarrow{g_* f^\#} g_* f_* \mathcal{O}_X,$$

as morphisms of sheaves on Z. In summary, the map $\psi \circ \varphi : (X, \mathcal{O}_X) \to (Z, \mathcal{O}_Z)$ is

$$\psi \circ \varphi = (g \circ f, g_* f^\# \circ g^\#).$$

Explicitly, let $U \subseteq Z$ be open. Then we have the maps of sections

$$\mathcal{O}_{Z}(U) \xrightarrow{g_{U}^{\#}} \mathcal{O}_{Y}(g^{-1}U) \xrightarrow{f_{g^{-1}U}^{\#}} \mathcal{O}_{X}(f^{-1}g^{-1}(U)).$$

Observe that $f_{g^{-1}U}^{\#} = g_* f_U^{\#}$ and $f^{-1}g^{-1}(U) = (f \circ g)^{-1}(U)$.

Exercise 3.1. Check that composition thus defined is associative, and show that $id_{(X, \mathcal{O}_X)} = (id_{(X, id_{\mathcal{O}_X)})$, where $id_{\mathcal{O}_X} = (id_X)_*$, so that \mathscr{C} -ringed spaces are thus a category.

4. How to relate things to stalks

If (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) are two \mathscr{C} -ringed spaces and

$$\varphi = (f, f^{\#}) : (X, \mathcal{O}_X) \longrightarrow (Y, \mathcal{O}_Y)$$

a morphism, given any $x \in X$ we have a map $f_U^\# : \mathcal{O}_Y(U) \longrightarrow \mathcal{O}_X(f^{-1}U)$ for all $U \subseteq Y$. This gives a map

$$\mathcal{O}_{Y,f(x)} \longrightarrow (f_*\mathcal{O}_X)_{f(x)},$$

and composing with the map $(f_*\mathcal{O}_X)_{f(x)} \to \mathcal{O}_{X,x}$ which we defined in §1, we obtain a map

$$\varphi_x: \mathcal{O}_{Y,f(x)} \longrightarrow \mathcal{O}_{X,x}.$$

5. Pointed \mathscr{C} -ringed spaces

Definition 5.1. A pointed \mathscr{C} -ringed space is a pair $((X, \mathcal{O}_X), x)$. A morphism of pointed \mathscr{C} -ringed spaces

$$\varphi = (f, f^{\#}) : ((X, \mathcal{O}_X), x) \longrightarrow ((Y, \mathcal{O}_Y), y)$$

is a morphism

$$(f, f^{\#}): (X, \mathcal{O}_X) \longrightarrow (Y, \mathcal{O}_Y)$$

such that f(x) = y.

Exercise 5.2. Check that the association $((X, \mathcal{O}_X), x) \longrightarrow \mathcal{O}_{X,x}$ is a functor on the category of pointed ringed

(1) Let M, N be two C^{∞} manifolds (with \mathcal{O}_M and \mathcal{O}_N the sheaves of C^{∞} functions on M, N respectively, and $\varphi = (f, f^{\#}: M \to N \text{ a } C^{\infty} \text{ map, where } f^{\#} \text{ is "composition with } f,$ " that is $f^{\#}: \mathcal{O}_{N,n} \to \mathcal{O}_{M,m}$ is given on sections over an open U by $\alpha \to \alpha \circ f$.

Suppose that $m \in M$ and n = f(m). Then we obtain a map

$$\varphi_m: \mathcal{O}_{N,n} \longrightarrow \mathcal{O}_{M,m}$$

induced by composition with f. Observe that $\mathcal{O}_{N,n}$ is a local ring with maximal ideal \mathfrak{m}_n the ideal of all functions vanishing at n. If $\alpha(n)=0$ then $\alpha\circ f(m)=0$ so that $\alpha\circ f\in\mathfrak{m}_m$, where \mathfrak{m}_m is the unique maximal ideal of $\mathcal{O}_{M,m}$ consisting of functions vanishing at m. Thus, $\varphi_m(\mathfrak{m}_n)\subseteq\mathfrak{m}_m$, so that φ_m is a local map of local rings and gives rise to a morphism of pointed ringed spaces. Observe that all the stalks are local rings.

(2) For an example of a ringed space where none of the stalks are local rings, consider the ringed space (X, \mathbf{Z}) , where X is any topological space. The stalk at any point \mathbf{Z}_x is just \mathbf{Z} , which is not local.