
Math 632, Lecture 3 January 14, 2004

1. Last time

Recall that in classical geometrical examples of ringed spaces we have

(1) If (M,OM ) is a ringed space then OM,m is a local ring with maximal ideal consisting of those functions
that vanish at m.

(2) If f : M ′ →M is a map and f# is the “compose with f” map OM ′ → f∗OM then the induced map

(f#)f(m) : OM ′,f(m) −→ (f∗OM )f(m) −→ OM,m

are local maps (that is, (f#)f(m)(mf(m)) ⊆ mm).

Observe that there are many examples maps of local rings which are not local maps: C[[t]] ↪→ C((t)) and
Z(p) ↪→ Q are two examples.

2. Locally ringed spaces

Definition 2.1. A locally C -ringed space is a C -ringed space (X, OX) such that for all x ∈ X, the ring OX,x is
local (in particular nonzero).

The category of locally C -ringed spaces has objects consisting of locally C -ringed spaces and has morphisms
ϕ = (f, f#) : (X, OX)→ (Y,OY ) such that for all x ∈ X,

ϕf(x) : OY,f(x) −→ (f∗OX)f(x) −→ OX,x

is a local map.

Remark 2.2. Evaluation: Let (X, OX) be a locally ringed space and choose x ∈ X and open U ⊆ X containing
x. For f ∈ OX(U) we have

f ∈ OX(U) −→ OX,x −→ OX,x/mx = k(x).

The image of f in k(x) is denoted f(x). For example, let (X, OX) be a real analytic manifold and let f ∈ OX(U).
Suppose that f(x) = c (in the usual sense of evaluating a function at a point). Then f(x) − c ∈ mx so maps to
zero in k(x).

Now suppose that K is a field and (X, OX) and (Y,OY ) are locally ringed spaces of K-algebras such that
K → k(x) and K → k(y) are isomorphisms for all x ∈ X and y ∈ Y . Then any morphism of ringed spaces

(f, f#) : (X, OX) −→ (Y,OY )

is automatically local. Indeed,

OY,f(x)

f#
f(x)−→ (f∗OX)f(x) −→ OX,x

is a K-algebra map of local K-algebras having residue field K, so it will suffice to demonstrate the following lemma:

Lemma 2.3. Let K be a field and ϕ : A → B a K-algebra map of local K-algebras, each having residue field K.
Then ϕ is local.

Proof. Choose a ∈ mA and suppose that ϕ(a) 6∈ mB . Then there exists c ∈ K× such that under the isomorphism
K→̃B/mB we have c 7→ ϕ(a). Thus, ϕ(a)− c ∈ mB and since ϕ is a K-algebra map, we have ϕ(a− c) ∈ mB . But
c ∈ K× and a ∈ mA so that a− c is a unit in A, whence ϕ(a− c) is a unit in B. This is a contradiction. �

Let ϕ : (X, OX) → (Y,OY ) be a map of C -locally ringed spaces. Then the map ϕx : OY,ϕ(x) → OX,x induces a
unique map k(ϕ(x))→ k(x): this follows from the fact that ϕ#(mϕ(x)) ⊆ mx. We therefore have the commutative
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diagram

OY (U)
ϕ#

−−−−→ OX(ϕ−1(U))y y
OY,ϕ(x) −−−−→

ϕx

OX,xy y
k(ϕ(x)) −−−−→ k(x)

By chasing around an element f ∈ OY (U) in the above diagram, we see that the map k(ϕ(x)) → k(x) carries
f(ϕ(x)) to (ϕ#(f))(x).

If we work with locally ringed spaces of K-algebras such that all residue fields are K then we have a map
OX → CX,K , where CX,K is the sheaf of K-valued functions on X and for any ϕ : (X, OX)→ (Y,OY ) we have the
commutative diagram

OY
ϕ#

−−−−→ ϕ∗OXy y
CY,K −−−−−−−−→

old pullback
CX,K

However, observe that the map OX → CX,K need not be injective. As an example, take X = SpecC[T ]/T 2 and
let P = (T ) be the unique point of X. Define the structure sheaf OX(X) = C[T ]/T 2 and consider the function T .
Then the value of T at P is the image of T in OX,P /mP = (C[T ]/T 2)/T = C[T ]/T , which is 0. Thus, the function
T , while nonzero, is identically zero on X.

Exercise 2.4. Show that for the category of C-manifolds, the preceding construction identifies morphisms of ringed
spaces of K-algebras with morphisms in the “old-fashioned” sense (i.e in the sense of complex manifolds).

3. Some generalities on sheaves

We can now prove some fundamental results about sheaves. We start with

Theorem 3.1. Let X be a topological space and F,G sheaves on X. Let ϕ : F → G be a morphism of sheaves.
Then ϕ is an isomorphism if and only if ϕx : Fx → Gx is an isomorphism for all x.

Proof. If ϕ is an isomorphism, then for all U the maps ϕ(U) : F(U)→ G(U) are isomorphisms. It follows that the
maps ϕx : Fx → Gx are isomorphisms for all x ∈ X. (Put differently, the association ϕ → ϕx is functorial).

Now suppose that ϕx : Fx → Gx is an isomorphism for each x. Fix U and let s, t ∈ F(U) be two sections over U
with ϕU (s) = ϕU (t). Then because of the commutative diagram

F(U)
ϕU−−−−→ G(U)y y

Fx −−−−→
ϕx

Gx

we see that ϕx(sx) = ϕx(tx). Since ϕx is injective, we must have sx = tx in Fx for all x ∈ U . By definition of Fx

as a direct limit, for every point x ∈ U there exists an open set Ux containing x such that s
∣∣
Ux

= t
∣∣
Ux

in F(Ux).
Since the Ux cover U and F is a sheaf, we have s = t (by unique glueing). Hence ϕ : F ↪→ G, so in particular, for
every U we may consider F(U) as a subset of G(U).

Now suppose s ∈ G(U). Then since Fx ' Gx, there exists a neighborhood Ux of x and a section σUx ∈ F(Ux)
such that ϕUx

(σUx
) = s

∣∣
Ux
∈ G(Ux) (since we have some σx ∈ Fx which maps to sx). Since ϕ : F → G is injective,

such σUx
are unique. Now observe that σUx

∣∣
Ux∩Ux′

and σUx′

∣∣
Ux∩Ux′

both map to s
∣∣
Ux∩Ux′

in G(Ux ∩Ux′); since the

map ϕUx∩Ux′ : F(Ux ∩ Ux′) → G(Ux ∩ Ux′) is injective, we conclude that σUx

∣∣
Ux∩Ux′

= σUx′

∣∣
Ux∩Ux′

for all Ux, Ux′ .

Since F is a sheaf, we obtain σ ∈ F(U) such that ϕ(σ)
∣∣
Ux

= s
∣∣
Ux

(using the same commutative diagram as above).
Finally, since G is a sheaf, unique glueing holds, so ϕ(σ) = s. �


