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1. LAST TIME

Recall that in classical geometrical examples of ringed spaces we have

(1) If (M,0Oy) is a ringed space then Oy, is a local ring with maximal ideal consisting of those functions
that vanish at m.
(2) If f: M' — M is a map and f# is the “compose with f” map Oy — f.Oys then the induced map

(F) pomy t Ontr pmy — (FrOm) p(my — Ontm

are local maps (that is, (f#) f(m) (Mp(m)) € Mpp).

Observe that there are many examples maps of local rings which are not local maps: C[[t]] — C((¢)) and
Z,) — Q are two examples.

2. LOCALLY RINGED SPACES

Definition 2.1. A locally € -ringed space is a €-ringed space (X, Ox) such that for all z € X, the ring Ox , is
local (in particular nonzero).

The category of locally €-ringed spaces has objects consisting of locally 4-ringed spaces and has morphisms
o= (f,f*): (X,0x) — (Y,0y) such that for all x € X,

Pr@) : Ovip@) — (fiOx) @) — Ox.
is a local map.

Remark 2.2. Evaluation: Let (X,0Ox) be a locally ringed space and choose z € X and open U C X containing
x. For f € Ox(U) we have

f € Ox(U) — OX,I — OX’I/mz = k(l’)

The image of f in k(x) is denoted f(x). For example, let (X, Ox) be a real analytic manifold and let f € Ox(U).
Suppose that f(z) = ¢ (in the usual sense of evaluating a function at a point). Then f(z) — ¢ € m, so maps to
zero in k(x).

Now suppose that K is a field and (X,0x) and (Y,Oy) are locally ringed spaces of K-algebras such that
K — k(z) and K — k(y) are isomorphisms for all x € X and y € Y. Then any morphism of ringed spaces

(faf#) : (X7OX) B (KOY)

is automatically local. Indeed,

1%,
Oy.f(x) = (fe0x)p(@) — Oxa

is a K-algebra map of local K-algebras having residue field K, so it will suffice to demonstrate the following lemma:

Lemma 2.3. Let K be a field and ¢ : A — B a K-algebra map of local K-algebras, each having residue field K.
Then ¢ is local.

Proof. Choose a € m,4 and suppose that ¢(a) € mp. Then there exists ¢ € K> such that under the isomorphism
K= B/mp we have ¢ — ¢(a). Thus, p(a) — ¢ € mp and since ¢ is a K-algebra map, we have p(a — ¢) € mp. But
c € K* and a € my so that a — ¢ is a unit in A, whence p(a — ¢) is a unit in B. This is a contradiction. |

Let ¢ : (X,0x) — (Y,0y) be a map of €-locally ringed spaces. Then the map ¢, : Oy,,(z) — Ox,, induces a
unique map k(¢(x)) — k(z): this follows from the fact that ¢# (m,()) € m,. We therefore have the commutative
1



diagram

Oy (U) —£ 0x(p (1)

l l

oY,Lp(:c) T) OX,x

x

l l

k(p(z)) ——  k(z)
By chasing around an element f € Oy (U) in the above diagram, we see that the map k(p(z)) — k(z) carries
fle()) to (% (f))(2).
If we work with locally ringed spaces of K-algebras such that all residue fields are K then we have a map
Ox — Cx i, where Cx g is the sheaf of K-valued functions on X and for any ¢ : (X,0x) — (¥, Oy ) we have the

commutative diagram
#
Oy 2 0.0x

| |

OY, I — CX,K
old pullback

However, observe that the map Ox — Cx x need not be injective. As an example, take X = Spec C[T]/T? and
let P = (T) be the unique point of X. Define the structure sheaf O x(X) = C[T]/T? and consider the function T
Then the value of T at P is the image of T in Ox p/mp = (C[T]/T?)/T = C[T]/T, which is 0. Thus, the function
T, while nonzero, is identically zero on X.

Ezxercise 2.4. Show that for the category of C-manifolds, the preceding construction identifies morphisms of ringed
spaces of K-algebras with morphisms in the “old-fashioned” sense (i.e in the sense of complex manifolds).

3. SOME GENERALITIES ON SHEAVES

We can now prove some fundamental results about sheaves. We start with

Theorem 3.1. Let X be a topological space and F,G sheaves on X. Let ¢ : F — G be a morphism of sheaves.
Then ¢ is an isomorphism if and only if . : T — G5 is an isomorphism for all x.

Proof. If ¢ is an isomorphism, then for all U the maps ¢(U) : F(U) — G(U) are isomorphisms. It follows that the
maps ¢, : Fr — G, are isomorphisms for all x € X. (Put differently, the association ¢ — ¢, is functorial).

Now suppose that ¢, : F, — G, is an isomorphism for each z. Fix U and let s,t € F(U) be two sections over U
with @ (s) = wu(t). Then because of the commutative diagram

F(U) —— $(U)

! !

Fo — G
Px

we see that ¢, (sz) = ¢ (ts). Since ¢, is injective, we must have s, = ¢, in F, for all z € U. By definition of F,
as a direct limit, for every point x € U there exists an open set U, containing = such that s’UI = t’UI in F(U,).
Since the U, cover U and F is a sheaf, we have s = t (by unique glueing). Hence ¢ : F — G, so in particular, for
every U we may consider F(U) as a subset of §(U).

Now suppose s € G(U). Then since F, ~ G,, there exists a neighborhood U, of z and a section oy, € F(U,)
such that ¢y (op,) = s|Uz € §(U,) (since we have some o, € F, which maps to s,). Since ¢ : F — § is injective,

such oy, are unique. Now observe that oy, ’U/ A, and oy, both map to 5|U, —_— (U, NU,); since the
U, for all U, U, .

using the same commutative diagram as above).

U,NU
map oy,nu,, : F(Uz NUy) — G(Up NUy,) is injective, we conclude that oy, |U AU, =0u,,

Since J is a sheaf, we obtain o € F(U) such that p(0)|, = s’U (
Finally, since § is a sheaf, unique glueing holds, so ¢(c) = s. |




