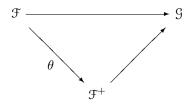
1. Sheafification

Theorem 1.1. Let \mathfrak{F} be a presheaf of sets on a topological space X. Then there exists a pair $(\mathfrak{F}^+, \theta : \mathfrak{F} \to \mathfrak{F}^+)$ with \mathfrak{F}^+ a sheaf, such that for any sheaf \mathfrak{F} on X and a map $\mathfrak{F} \to \mathfrak{G}$, there exists a unique map $\mathfrak{F}^+ \to \mathfrak{F}$ making the diagram



commute, i.e. we have a bijection $\operatorname{Hom}_X(\mathfrak{F}^+,\mathfrak{G}) \stackrel{\circ \theta}{\longleftrightarrow} \operatorname{Hom}_X(\mathfrak{F},\mathfrak{G})$. Moreover, \mathfrak{F}^+ is unique up to unique isomorphism and for all $x \in X$ we have an isomorphism $\mathfrak{F}_x \simeq \mathfrak{F}_x^+$.

We call (\mathfrak{F}^+, θ) (or by abuse of language, \mathfrak{F}^+) the *sheafification* of \mathfrak{F} .

(1) Let \mathcal{F} be the constant presheaf on X associated to the set Σ . Then $\mathcal{F}^+ = \underline{\Sigma}$ is the constant sheaf associated to Σ (i.e. the sheaf of locally constant functions with values in Σ). We claim that $\operatorname{Hom}_X(\mathcal{F},\mathcal{G}) = \{\Sigma \to \mathcal{G}(X)\}$. Indeed, since $\mathcal{F}(U) = \Sigma$ for all $U \neq \emptyset$ with restriction maps the identity, to give maps $\varphi_U : \mathcal{F}(U) \to \mathcal{G}(U)$ for all open $U \subseteq \operatorname{such}$ that the diagram

$$\mathfrak{F}(X) = \Sigma \longrightarrow \mathfrak{G}(X)$$

$$\downarrow^{\rho_{X,U}}$$

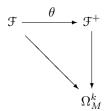
$$\mathfrak{F}(U) = \Sigma \longrightarrow \mathfrak{G}(U)$$

commutes is equivalent to giving a map $\psi: \Sigma \to \mathcal{G}(X)$ since commutativity forces all maps $\mathcal{F}(U) \to \mathcal{G}(U)$ to be induced by ψ .

(2) Let M be a C^{∞} manifold and \mathcal{F} the presheaf on M given by $U \mapsto \wedge_{\mathfrak{O}_M(U)}^k(\Omega_M^1(U))$. Then we have a canonical map

$$\varphi_U: \wedge_{\mathfrak{O}_M(U)}^k(\Omega_M^1(U)) \longrightarrow \Omega_M^k(U)$$

and we claim that the sheaf $U \mapsto \Omega^k(U)$ is \mathcal{F}^+ . Indeed, by the universal property of sheafification, we have a unique map $\mathcal{F}^+ \to \Omega^k_M$ making the diagram



commute. But the map $\theta_x: \mathcal{F}_x \to \mathcal{F}_x^+$ is an isomorphism on stalks, and it is not hard to see that the canonical map $\varphi: \mathcal{F} \to \Omega_M^k$ is also an isomorphism on stalks (because every k-form is locally a k-wedge power of 1-forms). Thus, $\mathcal{F}^+ \to \Omega_M^k$ is an isomorphism on stalks; since \mathcal{F}^+ and \mathcal{G} are *sheaves*, it follows that $\mathcal{F}^+ \to \mathcal{G}$ is an isomorphism.

Definition 1.2. A presheaf \mathcal{F} on X is separated if the map

$$\mathfrak{F}(U) \longrightarrow \prod \mathfrak{F}(U_i)$$

is injective for all open $U \subseteq X$ and all open covers $\{U_i\}$ of U.

Proof of Theorem 1.1. Let Σ_U be the set of all indexed open covers $\mathscr{V} = \{V_i\}$ of U. We put a partial ordering on Σ_U by $\{V_i\}_{i\in I} = \mathscr{V} \geq \mathscr{V}' = \{V_j'\}_{j\in J}$ if there exists a map $\tau: I \to J$ such that $V_{\tau(i)}' \supseteq V_i$ for all $i \in I$.

Let \mathcal{F} be a presheaf and define \mathcal{F}_0 by

$$\mathfrak{F}_0(U) = \varinjlim_{\{V_i\}_{i \in I} \in \Sigma_U} \left\{ (s_i) \in \prod_{i \in I} \mathfrak{F}(V_i) \ : \ s_i\big|_{V_i \cap V_j} = s_j\big|_{V_i \cap V_j} \text{ in } \mathfrak{F}(V_i \cap V_j) \text{ for all } i, j \in I \right\},$$

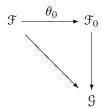
where the direct limit is formed as follows: for any $\{V_i'\} \geq \{V_j\}$ and any $\tau: I \to J$ we have the map $\prod \mathcal{F}(V_j) \to \prod \mathcal{F}(V_i')$ given by $(s_j) \mapsto (s_{\tau(i)}|_{V_i'})$. It is evident that $s_{\tau(i)}$ and $s_{tau(i')}$ agree on $V_i' \cap V_{i'}'$ because $V_i' \cap V_{i'}' \subseteq V_{\tau(i)} \cap V_{\tau(i')}$ and we know that $s_{\tau(i)}$ and $s_{\tau(i')}$ agree on $V_{\tau(i)} \cap V_{\tau(i')}$ already.

We claim that our definition of \mathcal{F}_0 is independent of the choices of maps $\tau:I\to J$ that are used in forming the direct limit as described above. To see this, we must show that for any $\sigma,\tau:I\to J$ the sections $s_{\sigma(i)}$ and $s_{\tau(i)}$ agree on V_i' , where $V_i'\subseteq V_{\sigma(i)}\cap V_{\tau(i)}$. But this is clear, as $s_{\sigma(i)}$ and $s_{\tau(i)}$ already agree on $V_{\sigma(i)}\cap V_{\tau(i)}$.

We define transition maps $\rho_{U,W}: \mathfrak{F}_0(U) \to \mathfrak{F}_0(W)$ as follows: given $(s_i) \in \prod \mathfrak{F}(V_i)$ with $\{V_i\}$ a cover of U, we obtain a cover of W as $\{W_i = V_i \cap W\}$ and an element $(s_i|_{V_i \cap W}) \in \prod \mathfrak{F}(V_i \cap W)$ with the s_i compatible on overlaps; hence we get an element of $\mathfrak{F}_0(W)$.

Now we assert that:

- (1) \mathcal{F}_0 is a separated presheaf.
- (2) For any separated presheaf \mathcal{G} and any map $\mathcal{F} \to \mathcal{G}$ there exists a unique map $\mathcal{F}_0 \to \mathcal{G}$ making the diagram



commute.

We first prove (1). We need to show that given an open cover $\{U_{\alpha}\}$ of U and sections $s,t\in \mathcal{F}_0(U)$ with $s|_{U_{\alpha}}=t|_{U_{\alpha}}$ in $\mathcal{F}_0(U_{\alpha})$ then s=t in $\mathcal{F}_0(U)$. Therefore, suppose we have such s,t and pick an open cover $\{V_i\}$ of U such that there exist $(s_i)\in \prod \mathcal{F}(V_i)$ and $(t_i)\in \prod \mathcal{F}(V_i)$ representing $s,t\in \mathcal{F}_0(U)$. Now for each α , we see that $\{V_i\cap U_{\alpha}\}_{i\in I}$ is a cover of U_{α} . Since $s|_{U_{\alpha}}=t|_{U_{\alpha}}$ in $\mathcal{F}_0(U_{\alpha})$, for each α there exists a refinement of $V_i\cap U_{\alpha}$ (covering U_{α}) such that the s_i and t_i agree under restriction. Putting these refinements together across all α we obtain a cover of $\{W_j\}$ of U together with "refinements" $(s_j)\in \prod \mathcal{F}(W_j)$ and $(t_j)\in \prod \mathcal{F}(W_j)$ such that $s_j=t_j$ in $\mathcal{F}(W_j)$. Therefore, s=t as elements of $\mathcal{F}_0(U)$ and \mathcal{F}_0 is separated.

We now dispense with (2). Since \mathcal{G} is a sheaf, we evidently have an isomorphism $\mathcal{G} \xrightarrow{\sim} \mathcal{G}_0$ and any map $\varphi : \mathcal{F} \to \mathcal{G}$ induces a natural map $\varphi_0 : \mathcal{F}_0 \to \mathcal{G}_0$ such that the diagram

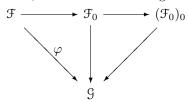
$$\begin{array}{ccc}
\mathfrak{F} & \xrightarrow{\varphi} & \mathfrak{G} \\
\theta_0 \downarrow & & \downarrow \\
\mathfrak{F}_0 & \xrightarrow{\varphi_0} & \mathfrak{G}_0
\end{array}$$

commutes. We need only show that φ_0 is unique. But since \mathcal{G} is a sheaf, it suffices to show that the $(\varphi_0)_x : (\mathcal{F}_0)_x \to (\mathcal{G}_0)_x$ are unique for all x. But from the definition of \mathcal{F}_0 , it is clear that $(\theta_0)_x : \mathcal{F}_x \to (\mathcal{F}_0)_x$ is an isomorphism for all x. Since the two vertical maps in the diagram

$$\begin{array}{ccc}
\mathfrak{F}_x & \xrightarrow{\varphi} & \mathfrak{G}_x \\
(\theta_0)_x \downarrow & & \downarrow \\
(\mathfrak{F}_0)_x & \xrightarrow{(\varphi_0)_x} & (\mathfrak{G}_0)_x
\end{array}$$

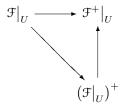
are isomorphisms, we see that $(\varphi_0)_x$ is uniquely determined by φ_x ; hence φ_0 is unique.

Now given a map $\varphi : \mathcal{F} \to \mathcal{G}$ with \mathcal{G} a sheaf, consider the following diagram:



We have seen that φ induces a unique map $\mathcal{F}_0 \to \mathcal{G}$, and applying this fact twice, we get a unique map $(\mathcal{F}_0)_0 \to \mathcal{G}$. We claim that if \mathcal{F} is any separated presheaf, then \mathcal{F}_0 is a sheaf. This essentially follows from the definition of \mathcal{F}_0 as the space of "solutions to glueing problems" and the fact that when \mathcal{F} is separated, such solutions are *unique*.

We end by recording one obvious property of sheafification: If $U \subseteq X$ is any open set and \mathcal{F} is a presheaf on X, then there is a unique map $\left(\mathcal{F}\big|_{U}\right)^{+} \to \mathcal{F}^{+}\big|_{U}$ making the diagram



commute.