
Math 632, Lecture 6 January 21, 2004

1. More properties of sheafification

Let X be a topological space and denote by A (X) the category of sheaves on X (it is an abelian category). Let
F,G ∈ A (X) and ϕ : F → G be a map of sheaves. For any opens V ⊆ U we have the commutative diagram of
abelian groups (or sets or . . . )

0 - ker(ϕU ) - F(U)
ϕU- G(U) - coker(ϕU ) - 0

0 - ker(ϕV ) - F(V )

ρU,V ;F

? ϕV- G(V )

ρU,V ;G

?
- coker(ϕV ) - 0

and this diagram induces unique compatible maps ker(ϕU ) → ker(ϕV ) and coker(ϕU ) → coker(ϕV ). This motivates
the following definition:

Definition 1.1. Let kerϕ be the presheaf U 7→ ker(ϕU ) with the unique compatible restriction maps described
above. Similarly, let “cokerϕ” be the presheaf U 7→ coker(ϕU ) with the above restriction maps.

A-priori, kerϕ and “cokerϕ” are presheaves. We shall see later that kerϕ is in fact a sheaf, while “cokerϕ” is
in general not, and must be sheafified.

Now since the exact sequence

0 - kerϕ(U) - F(U)
ϕU- G(U) - “ cokerϕ”(U) - 0

is compatible with restriction to any V ⊆ U and since direct limit is an exact functor, we obtain an exact sequence
on stalks

0 - kerϕx
- Fx

ϕx - Gx
- “ cokerϕ”x

- 0

from which it follows immediately that ker(ϕx) = (kerϕ)x (since both are contained in Fx) and “ cokerϕ”x '
coker(ϕx) as quotients of Gx.

In a similar manner, one defined the presheaf “ imϕ” by U 7→ imϕU ⊆ G(U) with the unique restriction maps
that make the corresponding diagram (as above) commute. This is a subpresheaf of G and we have, just as above,
that “ imϕ”x = imϕx inside of Gx.

Lemma 1.2. The presheaf kerϕ is a sheaf.

Proof. Since kerϕ ⊆ F and F is separated, we see that kerϕ is also separated: for and open U and any covering
Ui of U we have the diagram

kerϕ(U) ⊂ - F(U)

∏
kerϕ(Ui)

?
⊂-

∏
F(Ui)
?

∩

from which it follows that kerϕ(U) −→
∏

kerϕ(Ui) must be an injection. So in order to show that kerϕ is a sheaf,
we need only show that for any si ∈ kerϕ(Ui) with si

∣∣
Ui∩Uj

= sj

∣∣
Ui∩Uj

in kerϕ(Ui ∩ Uj) we have a global section

s ∈ kerϕ(U) with s
∣∣
Ui

= si. But since F is a sheaf, there exists a unique s ∈ F(U) with s
∣∣
Ui

= si for all i; we thus
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need only check that s ∈ kerϕ(U) = ker (F(U) → G(U)). But this follows from the diagram

F(U) - G(U)

∏
F(Ui)
?

-
∏

G(Ui)
?

∩

so that since s ∈ F(U) maps to zero via F(U) →
∏

F(Ui) →
∏

G(Ui), it must map to zero vie F(U) → G(U) →∏
G(Ui); injectivity of G(U) →

∏
G(Ui) forces s to map to 0 under F(U) → G(U) so that s ∈ kerϕ(U) as

claimed. �

Definition 1.3. Let ϕ : F → G be a map of sheaves. We say that ϕ is locally surjective if for any open U ⊆ X and
any s ∈ G(U) there existst an open covering Ui of U and sections ti ∈ F(Ui) such that ϕ(ti) = s

∣∣
Ui

.

Observe that this definition is equivalent to surjectivity of ϕx : Fx → Gx for all x ∈ X. Indeed, one implication
is clear. For the other, suppose that s ∈ G(U). Then for all x ∈ U we have a tx ∈ Fx such that ϕx(tx) = sx so that
we have an open Ux 3 x such that tx is represented in Fx by (t̃x, Ux) with t̃x ∈ F(Ux). Since ϕUx(t̃x) has the same
stalk at x as s, we can shrink each Ux to some Ũx so that sx is represented in Gx by (s

∣∣
Ũx
, Ũx) and ϕŨx

(t̃x) = s
∣∣
Ũx

.

(1) Let X be a C-manifold and OX the sheaf of holomorphic functions on X. Then for any open U ⊆ X we
have the exact sequence

0 - Z(1)(U) - OX(U)
exp- OX(U)× - “ coker exp ”(U) - 0

Since the logarithm is well defined locally, however, we see that the exponential map is locally surjective,
and hence that “ coker exp ”x = {1} for all x. Beware, however, that the map exp : OX(U) → OX(U)×

need not be surjective if U is not simply connected.

Lemma 1.4. Let F,G,H be sheaves. If ϕ : F → G is a local surjection and G
ψ1 -

ψ2

- H are two maps of sheaves

such that ψ1 ◦ ϕ = ψ2 ◦ ϕ then ψ1 = ψ2.

Proof. It is enough to show that the two maps Gx

(ψ1)x-

(ψ2)x

- Hx agree for all x. But we have

(ψ1)x ◦ ϕx = (ψ1 ◦ ϕ)x = (ψ2 ◦ ϕ)x = (ψ2)x ◦ ϕx

for all x; since ϕx is surjective we conclude that (ψ1)x = (ψ2)x and we are done. �

Definition 1.5. If ϕ : F → G is a map of abelian sheaves we define cokerϕ to be the sheafification of the presheaf
“ cokerϕ”. Similarly we define imϕ to be the sheafification of “ imϕ”.

Observe that with these definitions the sheaves cokerϕ and imϕ have the “right” universal properties. For
example, Suppose we have sheaves F,G,H and maps ϕ : F → G and ψ : G → H such that ψ ◦ ϕ = 0. Then over
any U , the map ψ ◦ ϕ factors through coker(ϕU ) = “ cokerϕ”(U) by the universal property of cokernals of abelian
groups. That is we obtain the diagram of presheaves

F
ϕ - G - “ cokerϕ”

	�
�

�
�

�

H

ψ

?
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But this diagram induces (via the universal property of sheafification) a map cokerϕ→ H making the diagram

F
ϕ - G - “ cokerϕ” - cokerϕ

	�
�

�
�

�

������������

H

ψ

?

commute. Moreover, this map is unique since it is completely determined on the level of stalks, and in this setting
the stalk map is unique by the universal property for abelian groups, so that the sheaf cokerϕ indeed has the
correct universal property.

We can similarly identify imϕ with a subsheaf of G. Indeed, we would like to know that the maps imϕ(U) → G(U)
are injective for all U ; but for this it is equivalent to show that the stalk maps (imϕ)x → Gx are injective. But we
know that (imϕ)x = im(ϕx) and evidently im(ϕx) ↪→ Gx (it is a subgroup).

(1) If ϕ : F → G factors through a subsheaf H ⊆ G then imϕ ⊆ H. This is because for subsheaves G1,G2 of G,
the containment G1 ⊆ G2 is equivalent to the containments (G1)x ⊆ (G2)x inside of Gx for all x.

(2) Consider the diagram

F
ϕ - G -- cokerϕ

@
@

@
@

@RR �
�

�
�

�

ι

� @
@

@
@

@RR

imϕ coker ι
?

where ι is the natural injection. By chasing stalks, one can show that cokerϕ→ coker ι is an isomorphism.
Moreover, if ϕ is injective, so that F is a subsheaf of G then F is the kernel of the map G � coker ι. Similarly,
if we have a map π : F � G that is a local surjection, then G is the cokernel of the map kerπ ↪→ F.


