1. More sheaf constructions

Definition 1.1. If $\mathcal{F} \stackrel{\iota}{\hookrightarrow} \mathcal{G}$ is a subsheaf, we define the sheaf \mathcal{G}/\mathcal{F} to be the sheaf coker ι .

As an example, for any complex manifold X the exact sequence

$$0 \longrightarrow \mathbf{Z}(1) \longrightarrow \mathfrak{O}_X \stackrel{\exp}{\longrightarrow} \mathfrak{O}_X^{\times}$$

induces $\mathfrak{O}_X/\mathbf{Z}(1) \simeq \mathfrak{O}_X^{\times}$.

In general, for any (local) surjection $\varphi: \mathcal{G} \to \mathcal{H}$ of sheaves we obtain $\mathcal{G}/\ker \varphi \simeq \mathcal{H}$, where the existence of a map $\mathcal{G}/\ker \varphi \to \mathcal{H}$ follows from the universal property of a quotient sheaf as a cokernel, and one checks this is an isomorphism on stalks.

Definition 1.2. A short exact sequence of sheaves is a sequence

$$0 \longrightarrow \mathfrak{F}' \stackrel{\iota}{\longrightarrow} \mathfrak{F} \stackrel{\varphi}{\longrightarrow} \mathfrak{F}'' \longrightarrow 0$$

in which

- (1) $\varphi \circ \iota = 0$.
- (2) φ is a (local) surjection.
- (3) ι is injective.
- (4) φ induces an isomorphism $\mathfrak{F}/\mathfrak{F}' \simeq \mathfrak{F}''$.

Observe from (1), (2), and (3) that (4) is equivalent to ι inducing $\mathcal{F}' \simeq \ker \varphi$.

Surjectivity is a slightly delicate notion: indeed, a map $X' \to X$ of varieties over a field k can be surjective on \overline{k} -points without being surjective on k-points. Consider the self-map of $\mathbf{A}_k^1 - \{0\}$ given by $t \mapsto t^2$ over a field k in which $k \neq k^2$.

2. Pullbacks

Let $f: X \to Y$ be a continuous map of topological spaces and \mathcal{F} a sheaf on Y.

Definition 2.1. Let " $f^{-1}\mathcal{F}$ " be the presheaf on X given by $U \mapsto \varinjlim_{V \supseteq f(U)} \mathcal{F}(V)$, where the direct limit is over all open V, One checks that this is a presheaf with the obvious restriction maps. We define the sheaf $f^{-1}\mathcal{F}$ to be the sheafification of " $f^{-1}\mathcal{F}$ ".

The pullback construction generalizes some already familiar notions: let $y \in Y$ be a point and $X = \{y\}$ with the induced topology and $\iota: X \to Y$ the inclusion map. If \mathcal{F} is any sheaf on Y then $\iota^{-1}\mathcal{F}(X) = \varinjlim_{V \supseteq \{y\}} \mathcal{F}(V) = \mathcal{F}_y$ is the stalk at y.

Remark 2.2. Pullback and pushforward of sheaves are analogous to restriction and extension of scalars in the category of modules over a ring. To see this, let A, B be a rings, and A-module and $f: A \to B$ a map of rings. For any A-module M we obtain the B-module $M \otimes_A B$, and for any B- module N, we get an A-module N by restriction of scalars. The A-module N is very much like the pushforward construction, while the N-module N is analogous to the pullback. We will see this more clearly when we investigate sheaves of modules; but for now, observe that we have the adjoint property

$$\operatorname{Hom}_B(B \otimes_A M, N) = \operatorname{Hom}_A(M, {}_AN).$$

Theorem 2.3. Let \mathcal{F} be a presheaf of sets on the topological space Y and let

$$X' \xrightarrow{g} X \longrightarrow Y$$

be continuous maps of topological spaces. There exists a natural isomorphism

$$(1) (f^{-1}\mathfrak{F})_x \xrightarrow{\sim} \mathfrak{F}_{f(x)}$$

Moreover, we have

(2)
$$f^{-1}\theta: f^{-1}\mathfrak{F} \xrightarrow{\sim} f^{-1}(\mathfrak{F}^+)$$

(3)
$$\alpha_{g,f}: g^{-1}f^{-1}\mathcal{F} \xrightarrow{\sim} (f \circ g)^{-1}\mathcal{F}$$

and (3) induces, via (1)

$$\mathrm{id}: \mathfrak{F}_{f(g(x'))} \xrightarrow{\sim} (f^{-1}\mathfrak{F})_{g(x')} \xrightarrow{\sim} \mathfrak{F}_{f \circ g(x')}.$$

Finally, (1) is functorial in \mathfrak{F} , so that if $\varphi: \mathfrak{F} \to \mathfrak{G}$ is a map of presheaves, we have

$$(f^{-1}\mathfrak{F})_{x} \xrightarrow{\sim} \mathfrak{F}_{f(x)}$$

$$(f^{-1}\varphi)_{x} \downarrow \qquad \qquad \downarrow f(x)$$

$$(f^{-1}\mathfrak{F})_{x} \xrightarrow{\sim} \mathfrak{F}_{f(x)}.$$

Proof. We will construct (1). First observe that $(f^{-1}\mathcal{F})_x = "f^{-1}\mathcal{F}"_x$, so that

$$(f^{-1}\mathcal{F})_x = \underset{U \ni x}{\varinjlim} \underset{V \supseteq f(U)}{\varinjlim} \mathcal{F}(V).$$

Now any V containing f(U) with U containing x must contain f(x). This gives a map

$$(f^{-1}\mathfrak{F})_x = \varinjlim_{U\ni x} \varinjlim_{V\supseteq f(U)} \mathfrak{F}(V) \longrightarrow \varinjlim_{W\ni f(x)} \mathfrak{F}(W).$$

Conversely, $W \supseteq f(f^{-1}(W))$ and since f is continuous, $f^{-1}(W)$ is open for any open W and contains x when $f(x) \in W$, so we obtain a map in the other direction. It is not difficult to see that these maps are inverse to each other.

2.4. **Adjointness.** Let $f: X \to Y$ be a continuous map of topological spaces and \mathcal{F}, \mathcal{G} sheaves on X, Y respectively. Then we have

$$\operatorname{Hom}_X(f^{-1}\mathcal{G}, \mathcal{F}) = \operatorname{Hom}_Y(\mathcal{G}, f_*\mathcal{F}).$$

To see this, it suffices to produce natural maps $\mathcal{G} \longrightarrow f_*(f^{-1}\mathcal{G})$ and $f^{-1}(f_*\mathcal{F}) \to \mathcal{F}$, for given such maps the functoriality of f_* and f^{-1} show that any map $f^{-1}\mathcal{G} \longrightarrow \mathcal{F}$ gives rise to a map

$$\mathfrak{G} \longrightarrow f_* f^{-1} \mathfrak{G} \longrightarrow f_* \mathfrak{F}$$

and any map $f\mathcal{G} \longrightarrow f_*\mathcal{F}$ gives rise to a map

$$f^{-1}\mathcal{G} \longrightarrow f^{-1}f_*\mathcal{F} \longrightarrow \mathcal{F}.$$

The commutative algebra analog is instructive: Let A, B be rings, $f: A \to B$ a ring-map and N a B-module and M an A-module. Then we have maps

$$\alpha_M: M \longrightarrow {}_A(B \otimes_A M)$$

and

$$\beta_N: B\otimes_A ({}_AN) \longrightarrow N$$

given by $m \mapsto (1 \otimes m)$ and $b \otimes n \mapsto bn$ respectively. It is straightforward to check that these maps give the natural bijection

$$\operatorname{Hom}_B(B \otimes_A M, N) = \operatorname{Hom}_A(M, {}_AN).$$

2.5. Examples of pushforward.

Proposition 2.6. Let $f: X \to Y$ be a continuous map of topological spaces and $\underline{\Sigma}_Y, \underline{\Sigma}_Y$ the constant sheaf on Y, X respectively, associated to the set Σ . Then there exists a natural isomorphism $f^{-1}(\underline{\Sigma}_Y) \xleftarrow{\sim} \underline{\Sigma}_X$.

Observe that the analog for pushforward is false as the preimage of a connected open set need not be connected.

Proof. We have a map

$$\Sigma \longrightarrow "f^{-1}\underline{\Sigma}_{V}"(X) \longrightarrow f^{-1}\underline{\Sigma}_{V}(X)$$

which, by the property that a map of Σ to the global sections of any sheaf determines a map of $\underline{\Sigma}$ to that sheaf, gives a unique $\underline{\Sigma}_X \xrightarrow{\sim} f^{-1}\underline{\Sigma}_Y$ such that the induced map of stalks $\Sigma \simeq (\underline{\Sigma}_X)_x \longrightarrow (\underline{\Sigma}_Y)_{f(x)} \simeq \Sigma$ is the identity mapping of Σ (which is evident from the construction).

Because of this Proposition, we often abuse notation and write $\underline{\Sigma}$ for the constant sheaf associated to Σ and omit the space on which it is considered.

As another example, let $f: X \to Y$ be a map of topological spaces, and $\pi: Y' \to Y$ a covering space. Put $X' = X \times_Y Y'$, that is, $X' = \{(x, y') : f(x) = \pi(y')\}$. Let $\mathcal{F} = \Gamma_{Y'/Y}$ be the sheaf of sections of Y' over Y. Then we have

$$f^{-1}\mathfrak{F} \simeq \Gamma_{X'/X}.$$

Definition 2.7. Let (X, \mathcal{O}_X) be a ringed space. If U is an open set we define the induced ring space structure on U to be (U, \mathcal{O}_U) where $\mathcal{O}_U = \mathcal{O}_X|_U$. A map $(f, f^\#) : (X', \mathcal{O}_{X'}) \to (X, \mathcal{O}_X)$ is an *open immersion* if $f : X' \to X$ is a homeomorphism onto an open $U \subseteq X$ and $f^\# : \mathcal{O}_X \to f_*\mathcal{O}_{X'}$ is adjoint to $f^{-1}\mathcal{O}_X \to \mathcal{O}_{X'}$.

As an example, let k be a field and consider the map $f: \operatorname{Spec} k \hookrightarrow \operatorname{Spec} k[y]/y^2$ given by mapping the unique point of $\operatorname{Spec} k$ to the unique point of $\operatorname{Spec} k[y]/y^2$ and the surjective k-algebra map $f^\#: k[y]/y^2 \twoheadrightarrow k$ given by $y \mapsto 0$. This is not an open immersion.

Definition 2.8. A complex manifold is a ringed space of C-algebras (X, \mathcal{O}_X) such that there exists an open cover (U_i, \mathcal{O}_{U_i}) that are isomorphic (as ringed spaces) to opens in finite dimensional complex vector-spaces endowed with the sheaf of holomorphic functions.

3. Glueing of ringed spaces

Let (X_i, \mathcal{O}_{X_i}) be a collection of ringed spaces and $X_{ij} \subseteq X_i$ open sets, together with isomorphisms of ringed spaces $\varphi_{ij}: X_{ij} \simeq X_{ji}$ such that

- (1) $X_{ii} = X_i$ and $\varphi_{ii} = id$.
- $(2) \varphi(X_{ij} \cap X_{ik}) = X_{jk} \cap X_{ji}.$
- (3) $\varphi_{jk} \circ \varphi_{ij} = \varphi_{ik}$ on triple overlaps.

Then there exists a unique ringed space (X, \mathcal{O}_X) equipped with open immersions

$$\psi_i: (X_i, \mathcal{O}_{X_i}) \hookrightarrow (X, \mathcal{O}_X)$$

covering with overlaps " $X_{ij} = X_{ji}$ " heving the correct universal property:

