1. Closed immersions

Definition 1.1. A map of ringed spaces $(\iota, \iota^{\#}): (Y, \mathcal{O}_{Y}) \to (X, \mathcal{O}_{X})$ is a closed immersion if

- (1) $\iota: Y \to X$ is a closed embedding, i.e. a homeomorphism onto a closed subset of X.
- (2) $\iota^{\#}: \mathcal{O}_X \to \iota_* \mathcal{O}_Y$ is surjective.

Condition (2) roughly says that functions on Y locally lift to X.

Remark 1.2. If $\iota: Y \hookrightarrow X$ is an embedding and \mathcal{F} is a sheaf on Y then $(\iota_*\mathcal{F})_x = \mathcal{F}_x$ if $x \in \iota(Y)$. If $x \notin \iota(Y)$, the situation is more complicated, but if $\iota(Y)$ is closed then $U = X - \iota(Y)$ is open and $U \cap Y = \emptyset$, so that $(\iota_*\mathcal{F})_x = 0$ when $x \notin \iota(Y)$.

As an example, suppose that X,Y are C^{∞} manifolds. Then $\iota:Y\to X$ is a closed immersion if and only if $\iota(Y)$ is a closed submanifold. This follows from the Immersion Theorem. Indeed the difficult direction is to show that surjectivity of $\mathcal{O}_{X,\iota(y)}\to\iota_*\mathcal{O}_{Y,\iota(y)}\to\mathcal{O}_{Y,y}$ implies that Y is locally described as the zero-locus of some local functions. That is, we need to show that $T_y(Y)\stackrel{d\iota(y)}{\longrightarrow}T_{\iota(y)}(X)$ is injective, or dually, that $T_y(Y)^*\longleftarrow T_{\iota(y)}(X)^*$ is surjective. But we have the identification $\mathcal{O}_{X,x}/\mathfrak{m}_x^2\simeq \mathbf{R}\oplus\mathfrak{m}_x/\mathfrak{m}_x^2$ and $T_x(X)^*\simeq\mathfrak{m}_x/\mathfrak{m}_x^2$, so that surjectivity of the map $\mathcal{O}_{X,\iota(y)}\to\mathcal{O}_{Y,y}$ implies the surjectivity of $T_y(Y)^*\longleftarrow T_{\iota(y)}(X)^*$.

Remark 1.3. Given a closed immersion $\iota: Y \to X$ we let $\mathfrak{I}_Y = \ker(\mathfrak{O}_X \to \iota_*\mathfrak{O}_Y)$. Then \mathfrak{I}_Y is a sheaf of ideals in \mathfrak{O}_X and $\iota_*\mathfrak{O}_Y \simeq \mathfrak{O}_X/\mathfrak{I}$, so pulling back we obtain $\mathfrak{O}_Y \simeq \iota^{-1}(\mathfrak{O}_X/\mathfrak{I}_Y)$. We conclude that closed immersions are "classified" by sheaves of ideals. One should take this interpretation with a grain of salt, however, as many ideal sheaves will correspond to "crazy" spaces Y that one would not want to work with.

Definition 1.4. Let X be a topological space and \mathscr{B} a base for the topology. A \mathscr{B} -presheaf is an assignment $U \mapsto \mathfrak{F}(U)$ for all $U \in \mathscr{B}$ with restriction maps $\rho_{U,V} : \mathfrak{F}(U) \to \mathfrak{F}(V)$ whenever $V \subseteq U$ for $U, V \in \mathscr{B}$. A \mathscr{B} -presheaf is a \mathscr{B} -sheaf if

(1) it is separated: for all $U \in \mathcal{B}$ and $\{U_i\}$ an open cover of U by $U_i \in \mathcal{B}$ the map

$$\mathfrak{F}(U) \longrightarrow \prod_i \mathfrak{F}(U_i)$$

is injective.

(2) glueing works: if $U \in \mathcal{B}$ and $\{U_i\}$ is a cover of U by $U_i \in \mathcal{B}$ then for any covers $\{U_{ijk}\}_{k \in K_{ij}}$ of $U_i \cap U_j$ with $U_{ijk} \in \mathcal{B}$, the sequence

$$\mathfrak{F}(U) \longrightarrow \prod_{i} \mathfrak{F}(U_{i}) \rightrightarrows \prod_{\substack{(i,j)\\k \in K_{ij}}} \mathfrak{F}(U_{ijk})$$

is exact.

Observe that condition (2) says that for a collection of $s_i \in \mathcal{F}(U_i)$ with $s_i|_{U_{ijk}} = s_j|_{U_{ijk}}$ for all k there exists $s \in \mathcal{F}(U)$ with $s|_{U_i} = s_i$. This s is unique by condition (1). We remark that any sheaf on X restricts to a \mathscr{B} -sheaf and that if $f: X' \to X$ is continuous, and $\mathscr{B}', \mathscr{B}$ are bases on X', X respectively, such that $f^{-1}(U) \in \mathscr{B}'$ fir all $U \in \mathscr{B}$, then the pushforward under f of any \mathscr{B}' -sheaf is a \mathscr{B} -sheaf.

Lemma 1.5. If X and \mathcal{B} are as above and \mathcal{F} is a \mathcal{B} -sheaf on X, then there exists a sheaf \mathcal{F}^+ on X together with an isomorphism $\mathcal{F}^+|_{\mathcal{B}} \simeq \mathcal{F}$ which is universal in the sense that given any sheaf \mathcal{G} on X and any map of \mathcal{B} -sheaves $\varphi: \mathcal{F} \to \mathcal{G}|_{\mathcal{B}}$, there exists a unique sheaf map $\varphi^+: \mathcal{F}^+ \to \mathcal{G}$ such that $\varphi^+|_{\mathcal{B}} = \varphi$.

Proof. For any open $V \subset X$ let

$$\mathfrak{F}^+(V) = \left\{ (s_U) \in \prod_{\substack{U \in \mathscr{B} \\ U \subseteq V}} \mathfrak{F}(U) : s_U\big|_W = s_{U'}\big|_W \text{ for all } W \subseteq U \cap U' \text{ with } W, U, U' \in \mathscr{B} \right\}.$$

Since \mathcal{F} is a \mathscr{B} -sheaf and \mathscr{B} is a base, it is not hard to check that \mathcal{F}^+ is a sheaf with $\mathcal{F}^+|_{\mathscr{B}} = \mathcal{F}$. Verification of the stated universal property is left as an exercise, or one can consult EGA I, §3.2.

Let A be a commutative ring and put $X = \operatorname{Spec} A$ with the Zariski topology. A base of opens for X is given by

$$X_a = \operatorname{Spec} A_a \simeq \{ \mathfrak{p} \in X : a \notin \mathfrak{p} \} = \{ \mathfrak{p} \in X : a \neq 0 \text{ in } \kappa(\mathfrak{p}) = \operatorname{Frac}(A/\mathfrak{p}) \}.$$

Lemma 1.6. With this notation, the assignment $X_a \mapsto A_a$ is a \mathscr{B} -sheaf.

Observe that the ring A_a depends only on the set X_a , and not on the particular element a, for we have the description $A_a = S^{-1}A$ where $S = \{\alpha \in A : \alpha(x) \neq 0 \text{ for all } x \in X_a\}$.

Proof. Notice that $X_{a_1} \cap X_{a_2} = X_{a_1 a_2}$ and that X_a is quasi-compact. It therefore suffices to check the sheaf condition for a finite cover of X_a by X_{a_1}, \ldots, X_{a_n} . Moreover, since $X_a \supseteq X_{a_i}$ for all i, we see that $a \in A$ is nonvanishing on X_{a_i} , so that the map $A \to A_{a_i}$ takes a to a unit, that is a is inverted in A_{a_i} so $A_{a_i} = A_{aa_i}$ for all i. Therefore, replacing a_i by aa_i throughout, we reduce to the case a = 1, so that $\{X_{a_i}\}$ cover Spec A, and hence $\{a_1, \ldots, a_n\} = 1$. We must show that

$$(1) A \longrightarrow \prod_{i=1}^{n} A_{a_i} \Longrightarrow \prod_{(i,j)} A_{a_i a_j}$$

is exact.

Suppose $\alpha, \alpha' \in A$ have the same image in A_{a_i} for all i. Since the a_i generate the unit ideal, any $\mathfrak{p} \in \operatorname{Spec} A$ fails to contain some a_i , so that $A_{\mathfrak{p}}$ is a localization of A_{a_i} whence α, α' have the same image in $A_{\mathfrak{p}}$. As this holds for all \mathfrak{p} , we see that $\alpha = \alpha'$.

Now given $(s_i) \in \prod_{i=1}^n A_{a_i}$ such that s_i, s_j have the same image in $A_{a_i a_j}$, we must construct some $a \in A$ with $a \mapsto s_i$ in A_{a_i} . For this, we use faithfully flat descent.

Let $A' = \prod_{i=1}^n A_{a_i}$. Since this is a finite product of localizations of A it is faithfully flat over A. Since $A_{a_i a_j} = A_{a_i} \otimes_A A_{a_j}$ we have

$$A' \otimes_A A' = \prod_{(i,j)} A_{a_i} \otimes_A A_{a_j} = \prod_{(i,j)} A_{a_i a_j}.$$

Moreover.

The maps of diagram (1) are *precisely* the maps $A' \to A' \otimes_A A'$ given by $a' \mapsto 1 \otimes a'$ and $a' \mapsto a' \otimes 1$. Since A' is faithfully flat over A, we have an injection $A \hookrightarrow A'$. We must then check that the diagram

$$A \hookrightarrow A' \xrightarrow{a' \mapsto a' \otimes 1} A' \otimes_A A'$$

is exact. We begin with this next lecture.