Theorem 0.1. Let X be an arbitrary scheme and Y affine. Then there is a bijection

$$\operatorname{Hom}(X,Y) \longleftrightarrow \operatorname{Hom}(\mathcal{O}_Y(Y),\mathcal{O}_X(X)).$$

Proof. Set $Y = \operatorname{Spec} A$, let $\{U_i\}$ be an affine open cover of X and for each i, j let $\{U_{ijk}\}_{k \in K_{ij}}$ be an affine open cover of $X_i \cap X_j$. Then we the diagram

$$\operatorname{Hom}(X,\operatorname{Spec} A) \longrightarrow \prod \operatorname{Hom}(U_i,\operatorname{Spec} A) \xrightarrow{p_1} \prod_{(i,j)} \prod_{k \in K_{ij}} \operatorname{Hom}(U_{ijk},\operatorname{Spec} A)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Hom}(A,\mathcal{O}_X(X)) \longrightarrow \prod \operatorname{Hom}(A,\mathcal{O}_{U_i}(U_i)) \Longrightarrow \prod_{(i,j)} \prod_{k \in K_{ij}} \operatorname{Hom}(A,\mathcal{O}_{U_{ijk}}(U_{ijk}))$$

in which the two rows are left exact and the two right-hand columns are bijections. It follows that the first column is also a bijection.

1. Examples

(1) Take $\mathbf{A}_{\mathbf{Z}}^n = \operatorname{Spec} \mathbf{Z}[T_1, \dots, T_n]$. To give a map $X \to \mathbf{A}_{\mathbf{Z}}^n$ for any scheme X is to give a ring map $\mathbf{Z}[T_1, \dots, T_n] \to \mathcal{O}_X(X)$, which amounts to picking an element of $\mathcal{O}_X(X)$ for the image of each T_i . Thus, we have the identifications

$$\operatorname{Hom}(X, \mathbf{A}_{\mathbf{Z}}^n) \longleftrightarrow \operatorname{Hom}(\mathbf{Z}[T_1, \dots, T_n], \mathfrak{O}_X(X)) \simeq \mathfrak{O}_X(X)^{\oplus n}.$$

- (2) The natural map $A \to A_f$ for any ring A and any $f \in A$ induces an open immersion $\operatorname{Spec} A_f \to \operatorname{Spec} A$ onto $X_f = \{x \in X : f_x \neq 0 \text{ in } k(x)\}$ (as any open in X can be covered by sets of the form X_{fg}).
- (3) Let k be a field and consider $\mathbf{A}_k^1 = \operatorname{Spec} k[T]$. The point $(0) \in \mathbf{A}_k^1$ is open and dense (since every prime ideal of k[T] contains 0), while all other points are closed and have the form (f) for $f \in k[T]$ a monic irreducible polynomial. The residue field at (0) is k(T) while the residue field at f is k[T]/(f), which is a finite field extension of k.
- (4) If A has a unique minimal prime (for example, if A is a domain) then Spec A has a unique point z, open and dense in Spec A.
- (5) Consider $\mathbf{A}_{\mathbf{Z}}^1 = \operatorname{Spec} \mathbf{Z}[X]$. We have a natural mapping $\mathbf{A}_{\mathbf{Z}}^1 \to \operatorname{Spec} \mathbf{Z}$. The points of $\mathbf{A}_{\mathbf{Z}}^1$ are
 - The unique open and dense point (0). The residue field is $\mathbf{Z}[X]_{(0)} = \mathbf{Q}(X)$ and the fiber over the point $(0) \in \operatorname{Spec} \mathbf{Z}$ is $\mathbf{A}^1_{\mathbf{Q}}$.
 - Prime ideals of the form (f) with $f \in \mathbf{Z}[X]$ irreducible. Such points are open, with closure the set of all prime ideals of the form (p, f) where $p \in \mathbf{Z}$ is a prime such that $f \mod p$ is reducible. The residue field at f is $\operatorname{Frac}(\mathbf{Z}[X]/(f))$, and such (f) lie in the fiber over (0).
 - Maximal ideals of the form (p, f) with f irreducible modulo p. The residue field at (p, f) is $\mathbf{F}_p[X]/(f)$, and these points are in the fiber over (p).

One pictures Spec $\mathbf{Z}[X]$ as in Mumford's Red Book:

- (6) Consider $\mathbf{A}_k^2 = \operatorname{Spec} k[x,y]$ with k algebraically closed. The points are
 - The unique open and dense point (0). The residue field is k(x,y).
 - Prime ideals of the form (f) with $f \in k[x, y]$ irreducible. Such points are open, with closure the set of all maximal ideals of the form (x-a, y-b) with f(a, b) = 0. The residue field at (f) is $\operatorname{Frac}(k[x, y]/(f))$, i.e. the function field of the irreducible subvariety f = 0.
 - Maximal ideals of the form (x-a, y-b). The residue field is just k.

Definition 1.1. Let S be a scheme. Then an S-scheme X is a scheme together with a map $X \to S$. An S-map of S-schemes X, Y is a commutative diagram

As an example, let $S = \operatorname{Spec} A$. By abuse of language, we will often refer to an S-scheme as an A-scheme. An A-scheme X is just a scheme together with a ring map $A \to \Gamma(X, \mathcal{O}_X)$, making $\mathcal{O}_X(U)$ an A-algebra for each open $U \subseteq X$. Thus, \mathcal{O}_X becomes a sheaf of A-algebras, and maps $f: X \to Y$ of A-schemes must have $f^\#$ a map of A-algebras. In classical algebraic geometry, one studies k-schemes for an algebraically closed field k. The base over which a scheme X is considered can make a great difference in the properties and structure of X. For example, consider $X = \operatorname{Spec} \mathbf{C}$. As a scheme over \mathbf{C} , X has no nontrivial automorphisms. Over \mathbf{R} , $\operatorname{Aut}(X) \simeq \mathbf{Z}/2\mathbf{Z}$, while over \mathbf{Z} , $\operatorname{Aut}(X)$ is uncountable. The moral is that algebraic geometry must be developed with respect to an arbitrary base scheme.

Theorem 1.2. Let $f: X \to Y$ be a map of schemes. Then the following are equivalent:

- (1) For all open affines Spec $B \subseteq Y$ and all open affines Spec $A \subseteq f^{-1}(\operatorname{Spec} B)$ the ring A is a finitely generated B-algebra.
- (2) There exists an open cover $\{\operatorname{Spec} B_i\}$ of Y and an open cover $\{\operatorname{Spec} A_{ij}\}$ of $f^{-1}(\operatorname{Spec} B_i)$ for each i such that each A_{ij} is a finitely generated B_i algebra (for all i).

Definition 1.3. Such a map f is said to be *locally of finite type*, (with the "locality" referring to the source scheme).

Proof. It suffices to prove that (2) implies (1). Since for $b_i \in B_i$ we have $f^{-1}(\operatorname{Spec}(B_i)_{b_i})$ covered by $\operatorname{Spec}(A_{ij})_{b_i}$, so the hypothesis is inherited by basic opens of $\operatorname{Spec} B_i$. To reduce to the case $Y = \operatorname{Spec} B$ we must cover $\operatorname{Spec} B$ by basic opens $\operatorname{Spec}(B_i)_{b_i}$ of $\operatorname{Spec}(B_i)_{b_i}$