
ABELIAN VARIETIES

BRYDEN CAIS

A canonical reference for the subject is Mumford’s book [6], but Mumford generally works over an algebraically
closed field (though his arguments can be modified to give results over an arbitrary base field). Milne’s article [4] is
also a good source and allows a general base field. These notes borrow heavily from van der Geer and Moonen [5],
and differ in the main from [6] and [4] in that we give a more natural approach to the theory of the dual abelian
variety.

1. Basic properties of abelian varieties

Let k be a field. A k-variety is a geometrically integral separated k-scheme of finite type.

1.1. Definitions.

Definition 1.2. A group scheme over k is a k-scheme X equipped with k-morphisms m : X×X → X, i : X → X,
and e : Spec k → X such that for every k-scheme T , the morphisms m, i, e give X(T ) the structure of a group, and
induce composition, inversion, and the identity, respectively. If X is a k-variety as well, we call it a group variety.

This definition is equivalent to the usual one in terms of the commutativity of certain diagrams by Yoneda’s
lemma. We remark that when X is geometrically reduced and locally of finite type over k, it suffices to check such
diagrams commute on k-points of X, since X(k) is dense in the reduced scheme Xk.

Definition 1.3. Let X be a group scheme over k. For any k-scheme T and any point x ∈ X(T ), we define right
translation by x to be the morphism

tx : XT ' XT ×T T
idXT

×xT−−−−−−→ XT ×T XT
m−→ XT ,

where xT is the morphism xT : T x×idT−−−−→ X × T = XT .

For a T -scheme T ′ and a T ′-point y, we have tx(y) = m(y, x) in X(T ′).

Proposition 1.4. A geometrically reduced k-group scheme X locally of finite type is k-smooth.

Proof. The subsetXsm of k-smooth points is open and dense. Since (Xsm)k = (Xk)
sm is stable under all translations

by k-points, we conclude that Xk = (Xk)
sm = (Xsm)k, so X = Xsm. �

Definition 1.5. An abelian variety is a proper group variety.

It follows from Proposition 1.4 that an abelian variety is smooth.

Lemma 1.6. Let X,Y, Z be k-varieties with X proper over k. If f : X × Y → Z is a k-morphism such that
f(X × {y}) = {z} for some y ∈ Y (k) and z ∈ Z(k), then f uniquely factors through prY : X × Y → Y .

Proof. By Galois descent, we can assume k = ksep. Thus, since X is a k-variety (and hence generically k-smooth)
with k separably closed, X(k) 6= ∅. Choose x ∈ X(k) and define

F : Y x×id−−−→ X × Y f−→ Z.

It is necessary and sufficient to show that f = F ◦ prY . To check this, we may extend the base field to k, and thus
may assume that k is algebraically closed.

Let U be an affine neighborhood of z and define V = prY (f−1(Z −U)). Since X is proper, prY is a closed map,
so V is closed in Y . If P is a k-point of Y not contained in V , then f(X × {P}) ⊂ U by construction, and since
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X is proper and U is affine, f(X × {P}) is a single point, so f(X × {P}) = F (P ). It follows that F ◦ prY = f
on X × (Y − V ). Since y is a k-point of Y − V , we see that Y − V is nonempty (hence dense in Y since Y is
irreducible). Thus, since Z is separated, F ◦ prY = f on all of X × Y . �

Corollary 1.7. Every k-morphism f : X → Y of abelian varieties over k factors as the composition of a homo-
morphism and a translation: f = tf(eX) ◦ h.

Proof. Let f : X → Y be a k-morphism of abelian varieties over k and define h = tiY (f(eX)) ◦ f , so h(eX) = eY .
We claim that h is a homomorphism. To verify this, we must show that the morphisms

ϕ : X ×X h×h // Y × Y
mY // Y

ψ : X ×X mX // X
h // Y

agree. But it is easy to see that the composite ξ : X ×X ψ×(iY ◦ϕ)−−−−−−→ Y × Y mY−−→ Y satisfies

ξ(X × {eX}) = ξ({eX} ×X) = {eY }
and hence factors through both projections X ×X ⇒ X. Therefore, ξ is the constant map with image {eY } and
ϕ = ψ. �

Corollary 1.8. The group structure on an abelian variety X is commutative, and is uniquely determined by the
point e ∈ X(k).

Proof. The morphism i : X → X satisfies i(e) = e, so i = ti(e) ◦ h = h for a homomorphism h. Since inversion is
a homomorphism on T -points for all k-schemes T , the group structure on X is commutative. If (X,m, i, e) and
(X,m′, i′, e) are two structures of an abelian variety on X (which we distinguish by writing X,X ′ respectively)
then idX : X → X ′ preserves e and is therefore a homomorphism by Corollary 1.7, so m = m′ and e = e′. �

In view of Corollary 1.8, we will often write x+ y, −x, and 0 for m(x, y), i(x), and e respectively.

1.9. Theorems of the cube and square. Throughout, we will need a method to prove that certain invertible
sheaves are trivial. This is a property that may be checked over an algebraic closure of the ground field, as the
following proposition shows.

Proposition 1.10. Let X/k be a proper variety and K/k any extension of fields. If L is an invertible sheaf on
X that is trivial when pulled back to XK , it is trivial on X.

Proof. Since X is a proper k-variety, the natural map k → H0(X,OX) is an isomorphism. Thus, an invertible
sheaf L on X is trivial if and only if the natural map H0(X,L )⊗k OX → L is an isomorphism. The formation
of this map of quasi-coherent sheaves is compatible with the flat extension of scalars k → K that preserves the
hypotheses, so we are done.

�

Lemma 1.11. Let X,Y be complete varieties and let Z be a geometrically connected k-scheme of finite type. If
x, y, z are k-points of X,Y, Z such that the restrictions of L to {x} × Y × Z, X × {y} × Z, and X × Y × {z} are
trivial, then L is trivial.

Proof. Let f : X × Y × Z → Z be the structure map, so OZ → f∗OX×Y×Z is an isomorphism since X × Y is
geometrically integral and proper over k. Hence, L is trivial if and only if f∗L is invertible and the canonical map
θ : f∗f∗L → L is an isomorphism. The formation of the coherent sheaf f∗L commutes with extension of the base
field, and to check it is invertible it suffices to assume k = k. Likewise, the formation of the map θ commutes with
extension of the base field, and to check that θ is an isomorphism it suffices to check after extension of scalars by
an algebraic closure of k. Thus we may assume that k is algebraically closed. The result now follows from [6, pg.
91]. �

Let X be an abelian variety. For each subset I of {1, 2, . . . , n} let pI = pi1i2,...i#I
: Xn → X be the morphism

sending (x1, . . . , xn) to
∑
i∈I xi.
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Theorem 1.12 (Theorem of the cube). Let L be an invertible sheaf on an abelian variety X. Then

Θ(L ) :=
⊗

∅6=I⊂{1,2,3}

p∗IL
(−1)#I+1

= p∗123L ⊗ p∗12L −1 ⊗ p∗13L −1 ⊗ p∗23L −1 ⊗ p∗1L ⊗ p∗3L ⊗ p∗3L

is trivial on X ×X ×X.

Proof. The restriction of Θ(L ) to {0} ×X ×X is

m∗L ⊗ p∗2L −1 ⊗ p∗3L −1 ⊗m∗L −1 ⊗ OX×X ⊗ p∗2L ⊗ p∗3L = OX×X .

Similarly, the restrictions to X × {0} ×X and X ×X × {0} are also trivial, and the theorem follows from Lemma
1.11. �

Remark 1.13. A closer inspection of the proof of Theorem 1.12 shows that the canonical trivialization of Θ(L )
along the 0-sections of the factors are compatible along (0, 0)-sections of pairs of factors, and consequently (by the
proof of Lemma 1.11) Θ(L ) is canonically trivial on X × X × X. We will not use this, but it shows that the
isomorphisms in Corollaries 1.14–1.17 are canonical.

Corollary 1.14. Let Y be any k-scheme and X an abelian variety over k. If f, g, h : Y → X are k-morphisms
and L is an invertible sheaf on X then

(f + g + h)∗L ⊗ (f + g)∗L −1 ⊗ (f + h)∗L −1 ⊗ (g + h)∗L −1 ⊗ f∗L ⊗ g∗L ⊗ h∗L

is trivial on Y .

Proof. The pullback along (f, g, h) : Y → X ×X ×X of the trivial sheaf Θ(L ) on X ×X ×X is clearly trivial; it
is also the sheaf on Y above. �

Corollary 1.15 (Theorem of the square). Let X be an abelian variety and L an invertible sheaf on X. Choose a
k-scheme T and x, y ∈ X(T ), and let LT denote the pullback of L to XT . There is an isomorphism

t∗x+yLT ⊗LT ' t∗xLT ⊗ t∗yLT ⊗ pr∗T
(
(x+ y)∗L ⊗ x∗L −1 ⊗ y∗L −1

)
,

where prT : XT → T is projection onto T . In particular, if T = Spec k there is an isomorphism

t∗x+yL ⊗L ' t∗xL ⊗ t∗yL .

Proof. Apply Corollary 1.14 to f = prX : XT → X, g = x ◦ prT : XT → X and h = y ◦ prT : XT → X, noting that

f + g = prX ◦ tx : XT → X, f + h = prX ◦ ty : XT → X, g + h = (x+ y) ◦ prT : XT → X,

and
f + g + h = prX ◦ tx+y : XT → X.

�

Definition 1.16. Let X be a commutative k-group scheme. For any n ∈ Z, we let [n]X : X → X be the group
morphism corresponding (via Yoneda’s Lemma) to multiplication by n on X(T ), for every k-scheme T . Where
convenient, we abbreviate [n]X by n.

Corollary 1.17. Let X be an abelian variety and L an invertible sheaf on X. Then for all n ∈ Z there is an
isomorphism

n∗L ' L ⊗(n(n+1)/2) ⊗ (−1)∗L ⊗(n(n−1)/2).

Proof. Apply Corollary 1.14 with f = n, g = 1, h = −1 to deduce that

(n+ 1)∗L ⊗L ' n∗L ⊗2 ⊗ (n− 1)∗L ⊗L −1 ⊗ [1]∗XL ⊗ [−1]∗L

Now induct on n in both directions, starting from the easy cases n = 0, 1,−1. �

Theorem 1.18. Every abelian variety X/k is projective.
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Proof. Choose a nonempty open affine U ⊂ X and let D = X \ U with the reduced structure. We claim that D is
a Cartier divisor (that is, its coherent ideal sheaf is invertible). Since X is regular, it is equivalent to say that all
generic points of D have codimension 1. Mumford omits this explanation in [6], so let us explain it more generally.

We claim that for any separated normal connected noetherian scheme X and any nonempty affine U 6= X,
the nowhere dense closed complement Y = X \ U with its reduced structure has pure codimension 1. That is,
for a generic point y ∈ Y , the local ring OX,y has dimension 1. The inclusion i : Spec OX,y → X is an affine
morphism since X is separated, so S = i−1(U) = Spec OX,y \ {y} is affine, whence the injective map on global
sections OX,y → H0(S,OS) is not surjective. Since OX,y is a normal noetherian domain, it is the intersection of all
localizations at height 1-primes, and if dim OX,y > 1 then the local rings at such primes are local rings on S. Since
any f ∈ H0(S,OS) is in each such localization, we conclude that OX,y ↪→ H0(S,OS) is surjective, a contradiction.

With D now known to be an effective Cartier divisor, it suffices to prove more generally that if D ⊂ X is any
(possibly non-reduced) nonempty Cartier divisor with affine open complement U = X \D, then the inverse ideal
sheaf OX(D) is ample on X. In view of the cohomological criterion for ampleness and the fact that our assumptions
are preserved by extension of the base field, we can assume k = k. By [6, pg. 60–61] it suffices to prove that

H = {x ∈ X(k) : t∗xD = D}
is finite (equality of divisors in the definition of H). By making a translation, we may assume 0 6∈ D(k). Let
U = X \D as an open subscheme of X. If h ∈ H then h + U = U, so h ∈ U since 0 ∈ U(k). That is, H ⊆ U(k).
If H is Zariski-closed in X(k) then H will be closed in U(k) and hence is both affine and proper (in the sense of
classical algebraic geometry, identifying reduced k-schemes of finite type with their subsets of k-points), whence
finite. To show H is Zariski-closed we pick x ∈ X(k) \H and seek a Zariski-open V ⊆ X(k) around x in X(k) \H.
Since x 6∈ H, we have t−1

x (s) ∈ U(k) for some s ∈ D(k). That is, −x + s ∈ U(k). Thus, V = s − U(k) is an open
neighborhood of x in X(k) contained in X(k) \H. �

2. Isogenies

2.1. Definitions.

Proposition 2.2. Let f : X → Y be a homorphism of abelian varieties. The following are equivalent:
(1) f is surjective and dimX = dimY .
(2) ker(f) is a finite group scheme and dimX = dimY .
(3) f is finite, flat, and surjective (so f∗OX is a locally free OY -module of finite rank).

Proof. See [4, §8] or [5, Prop. 5.2]. �

Definition 2.3. Any homomorphism f : X → Y of abelian varieties satisfying the equivalent properties of
Proposition 2.2 will be called an isogeny. The degree of an isogeny is the degree of the field extension [k(X) : k(Y )].

Since f in Definition 2.3 is affine and f∗OX is a locally free OY -module of finite rank, we see that for any y ∈ Y ,
the k(y)-scheme f−1(y) = Spec((f∗OX)y/my) is k(y)-finite with rank equal to the degree of f .

Proposition 2.4. Let X be an abelian variety. If n 6= 0 then [n]X is an isogeny of degree n2 dimX . Moreover, if
char(k) - n then [n]X is finite étale.

Proof. Since X is projective, there is an ample L on X, and since [−1]X is an automorphism of X, [−1]∗XL is also
ample. Since n 6= 0 it follows from Corollary 1.17 that [n]∗XL is ample. Thus the restriction of L to ker[n]X is
ample and trivial, which implies that ker[n]X has dimension 0, whence [n]X is an isogeny. To compute the degree
of [n]X , one uses intersection theory as in [6, pg. 62].

The immersions i1, i2 : X ⇒ X × X given on points by i1(x) = (x, 0) and i2(x) = (0, x) canonically realize
the tangent space at the identity T0(X × X) as the direct sum T0X ⊕ T0X. Moreover, since the composite

X
ij−→ X ×X m−→ X is the identity for j = 1, 2, the differential dm : T0X ⊕ T0X → T0X is addition of components.

It follows by induction that [n]X induces multiplication by n on T0X. When char(k) - n, we therefore see that [n]X
is étale at the origin, and hence étale. �

Corollary 2.5. If char(k) - n then X[n](ksep) ' (Z/nZ)2g. If char(k) = p > 0, then X[pm](k) ' (Z/pmZ)r for
some 0 ≤ r ≤ g independent of m ≥ 1.
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Proof. We prove only statements concerning n not divisible by char(k). For the rest, we refer to [5, 5.20]. We
remark that the corollary is obvious in characteristic 0 via the complex-analytic theory.

For every divisor d of n, X[d] is an étale group scheme of rank d2g killed by [d]; it follows that X[d](ksep) is an
abelian group of rank d2g killed by d, and the conclusion follows (exactly as in the case of elliptic curves). �

Corollary 2.6. If X/k is an abelian variety then X(k) is a divisible group.

Proof. The surjectivity of [n]X implies that the map on k-points is surjective. �

Definition 2.7. Let X be a scheme of characteristic p > 0. For any affine open SpecA in X, define the absolute
Frobenius morphism SpecA→ SpecA to be the map induced by the ring homomorphism f 7→ fp. These morphisms
glue to give a morphism, also called the absolute Frobenius,

FrobX : X → X

characterized by the properties:

(1) FrobX is the identity on the underlying topological space of X.
(2) Frob#

X : OX → OX is given on sections by f 7→ fp.

Let S be an Fp-scheme and X an S-scheme. The map FrobX is not in general a morphism of S-schemes. To remedy
this situation, we introduce the relative Frobenius morphism. Define X(p/S) to be the fiber product S×SX given by
the morphism FrobS : S → S (it is denoted X(p) if S is understood). The structure morphism f (p/S) : X(p/S) → S
is simply the pullback of X along FrobS . If f : X → S is the structure map then f ◦ FrobX = FrobS ◦f due to the
pth-power map respecting all ring homomorphisms of Fp-algebras. Thus, there is a unique morphism

FrobX/S : X → X(p/S)

making the diagram

X

FrobX/S

F
F

##F
F

FrobX

%%
f

��

X(p/S) //

f(p/S)

��

X

f

��
S

FrobS

// S

commute.

Example 2.8. If S = SpecA and X = SpecA[T1, . . . , Tn]/(h1, . . . , hm) then

X(p/S) = SpecA[T1, . . . , Tn]/(h
(p)
1 , . . . , h(p)

m ),

where h(p) =
∑
apIT

I for h =
∑
aIT

I . Also, FrobX/S : X → X(p/S) corresponds to Ti 7→ T pi . Loosely speaking,
FrobX/S is “pth-power on relative coordinates.”

If X is an abelian variety over a field k of characteristic p > 0, then the relative Frobenius morphism FX/k is an
isogeny because it satisfies Proposition 2.2 (1). In fact, since it is finite flat and the identity on topological spaces,
its degree can be computed as the degree of the induced map

FX/k,e : ÔX(p),e → ÔX,e

where ÔX,e is the complete local ring at the origin. Arguing as in Example 2.8 and using k-smoothness, we conclude
degFX/k = pdimX since the map k[[t1, . . . , td]]→ k[[t1, . . . , td]] given by tj 7→ tpj is finite flat with degree pd.



6 BRYDEN CAIS

2.9. The isogeny category.

Theorem 2.10. If f : X → Y is an isogeny of degree n then there exists an isogeny g : Y → X such that
f ◦ g = [n]Y and g ◦ f = [n]X .

Proof. Since ker(f) is a group scheme of rank n it is killed by [n]X , so by viewing Y as the fppf quotient of X
modulo ker(f) (see Proposition 2.2) we see that [n]X factors as

X
f−→ Y

g−→ X.

Then g ◦ (f ◦ g) = [n]X ◦ g = g ◦ [n]Y and (f ◦ g − [n]Y ) : Y → Y maps Y into ker(g), a finite group scheme. It
follows that f ◦ g − [n]Y = 0. �

Theorem 2.10 shows that “there exists an isogeny fromX to Y ” is an equivalence relation, and clearly Hom(X,Y )
is torsion-free as a Z-module, due to Corollary 2.6.

Definition 2.11. The isogeny category of abelian varieties over k is the Q-linear category whose objects are abelian
varieties over k, with morphisms between two objects X,Y given by Q⊗Z Hom(X,Y ).

3. The dual abelian variety

3.1. The Picard functor.

Definition 3.2. Let X be a scheme. We define the Picard group Pic(X) to be the group (under ⊗OX
) of iso-

morphism classes of invertible sheaves on X. This is contravariant in X. There is an evident isomorphism of
groups

Pic(X) ' Ȟ1(X,O×
X) ' H1(X,O×

X).

In order to study the relative situation, we let X and T be S-schemes and define a functor PX/S by

PX/S(T ) = Pic(XT ).

Observe that this is a contravariant functor. What we would like is for this functor to be representable; however,
this is never the case if X is nonempty because PX/S is not even a sheaf for the Zariski topology on a k-scheme T
in general. In order to obtain a representable functor, we “rigidify” the situation.

From now on we will assume that X
f−→ S is a morphism of schemes such that:

(1) The structure map f is quasi-compact and separated.
(2) For all S-schemes T , the natural map OT → fT ∗(OX×ST ) is an isomorphism.
(3) There is a section ε : S → X to f .

These assumptions hold in the situations we wish to study: S = Spec k and X is proper with a k-rational point. By
Grothendieck’s theory of coherent base change, condition (2) holds more generally whenever f : X → S is proper,
finitely presented, and flat, with geometrically integral fibers.

Definition 3.3. For any S-scheme T let εT : T → XT be the map induced by ε and let L be an invertible sheaf
on XT . A rigidification of L along εT (or simply along ε) is an isomorphism

α : OT
∼−→ ε∗T (L ).

We call such a pair (L , α) an ε-rigidified sheaf, or simply a rigidified sheaf if no confusion will arise, and will abuse
notation by writing ε for εT . A homomorphism of rigidified sheaves

h : (L1, α1)→ (L2, α2)

is a homomorphism of sheaves h : L1 → L2 making the diagram of sheaves on T

OT
α2 //

α1

""EE
EE

EE
EE

ε∗L2

ε∗h

��
ε∗L1

commute.



ABELIAN VARIETIES 7

Observe that a rigidified sheaf has no non-trivial automorphisms: any automorphism L
h−→ L is an element of

Γ(XT ,OXT
) = Γ(T, fT ∗(OXT

)) = Γ(T,OT )

satisfying ε∗(h) = 1, so h = id.

Definition 3.4. Let X be an S-scheme satisfying the assumptions (1)–(3) above. We define the contravariant
functor PX/S,ε : Sch/S → Set by

PX/S,ε(T ) = {isomorphism classes of rigidified sheaves (L , α) on XT } ,
where a morphism T ′ → T induces a morphism PX/S,ε(T )→ PX/S,ε(T ′) by pullback of rigidified sheaves.

For every S-scheme T , the set PX/S,ε has the structure of a commutative group: we define the product of
(L1, α1), (L2, α2) in PX/S,ε(T ) to be the class of

(L1 ⊗L2, α1 ⊗ α2),

where
α1 ⊗ α2 : OT

∼−→ OT ⊗OT
OT

α1⊗α2−−−−→ ε∗L1 ⊗OT
ε∗L2

∼−→ ε∗(L1 ⊗L2).
Inversion is defined using the dual invertible sheaf. Observe that the group structure on PX/S,ε(T ) is functorial in
T , so PX/S,ε is a group functor. Thus, if PX/S,ε is representable, it is represented by a commutative group scheme.

Theorem 3.5. (1) If f : X → S is flat, projective, and finitely presented with geometrically integral fibers then
PX/S,ε is represented by a scheme PicX/S,ε of locally finite presentation and separated over S.

(2) If S = Spec k and f is proper, then PX/S,ε is represented by a scheme PicX/k,ε of locally finite type over S.

Proof. See Grothendieck [2] for (1) and Murre [8] for (2). �

Let us derive some properties of the scheme PicX/S,ε. We first claim that the functor PicX/S,ε does not depend
on the choice of rigidifying section ε. Let f : XT → T be the structure map and suppose we have a rigidification
ϕ1 of L ∈ PicX/S(T ) along the section ε1 : T → XT . For any section ε2 : T → XT , observe that for the invertible
sheaf

Ψ(L , ε2) := L ⊗ f∗ε∗2L −1,

its pullback along ε2 is canonically trivialized:

ε∗2Ψ(L , ε2) ' ε∗2L ⊗ ε∗2f∗ε∗2L −1 ' OT .

Moreover, any trivialization ϕ2 : ε∗2L
∼−→ OT identifies Ψ(L , ε2) with L and the canonical trivialization above

with ϕ2. Thus, there are maps PX/S,ε1(T )↔ PX/S,ε2(T )

(L1, ϕ1)
� // (Ψ(L1, ε2), canonical trivialization)

(Ψ(L2, ε1), canonical trivialization) (L2, ϕ2)
�oo

and one readily checks that these maps are inverse to each other. This shows that PX/S,ε1 and PX/S,ε2 are isomorphic
as functors, and that the isomorphisms are transitive with respect to a third choice of rigidifying section. In this
precise sense, PX/S,ε is “independent of ε.” From now on, we will feel free to omit the rigidifying section in our
notation where convenient.

Example 3.6. If S = SpecR for a local ring R then PX/S(R) ' Pic(X) via (L , ϕ) 7→ L .

We have already remarked that PicX/S is an S-group scheme. Under a choice of isomorphism of functors
PX/S ' Hom(−,PicX/S), the identity morphism PicX/S → PicX/S gives a universal rigidified sheaf (P, ν) on
X ×S PicX/S : for any rigidified sheaf (L , α) on XT , there exists a unique morphism g : T → PicX/S such that
there exists an isomorphism (L , α) ' (idX ×g)∗(P, ν), this latter isomorphism clearly being unique due to the
rigidification.

Definition 3.7. Let k be a field and suppose that X/k satisfies one of the sets of hypotheses of Theorem 3.5. We
define Pic0

X/k to be the connected component of the identity of PicX/k. The restriction of (P, ν) to Pic0
X/k is called

the Poincaré sheaf, (P0, ν0).
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A priori, Pic0
X/k is merely locally of finite type. However, it is automatically quasi-compact (i.e. finite type)

due to:

Lemma 3.8. Let G be a group scheme locally of finite type over a field. The identity component G0 is an open
subgroup scheme that is geometrically connected and of finite type.

Proof. We follow [5, 3.17]. Let us show first that a connected k-scheme of locally finite type with a rational point
is geometrically connected. Let p : Xk → X be the projection map. We claim (without using the connectivity or
k-rational point hypotheses) that p is both open and closed. It will suffice to show this in the case that X is affine
and of finite type, as if {Uα} is a covering of X by open affines of finite type then {Uαk} is a covering of Xk and if
p : Uαk → Uα is both open and closed, then so is p : Xk → X. With these reductions, any open or closed Z ⊂ Xk

is defined over a finite extension K of k (in the sense that it is the base change of an open or closed Z ′ ⊆ XK),
and so it will suffice to show that the finite flat morphism p : XK → X is open and closed. As any finite morphism
is closed and any flat morphism of finite type between noetherian schemes is open, we conclude that p is open and
closed. Now we use the assumptions on X to show that Xk is connected. Let U be a nonempty closed and open
subset of Xk. Then p(U) = X as X is connected, so the unique point over x ∈ X lies in U . If Xk −U is nonempty,
then the same argument shows x ∈ Xk − U , an absurdity. Therefore, Xk − U is empty. Hence Xk = U and Xk is
connected.

We now claim that G0 is geometrically irreducible. Since (Gk)
0 = (G0)k by the preceeding paragraph, we may

suppose that k = k. In this case, G0
red is a smooth group scheme by Proposition 1.4. If G0 were reducible, then

G0
red would also be reducible, and since we have shown that G0 is connected (and its set of irreducible components

is locally finite), we can find two distinct irreducible components C1, C2 of G0
red with nonempty intersection. For

x ∈ (C1 ∩C2)(k) the local ring OX,x is regular (hence a domain) yet has at least two minimal primes (arising from
C1 and C2), an absurdity.

Now let U ⊆ G0 be any nonempty open affine. Then since G0 is geometrically irreducible, Uk and g(U−1

k
) are

dense in G0
k

for any g ∈ G0(k). It follows that m : U × U → G0 is surjective, and hence that G0 is quasi-compact.
Therefore, G0 is of finite type (since G is of locally finite type). �

We conclude from Lemma 3.8 that Pic0
X/k is a k-group scheme of finite type whose formation commutes with

extension of k. That Pic0
X/k is separated is a consequence of the following lemma.

Lemma 3.9. Let k be a field. Then any k-group scheme (G,m, i, e) is separated.

Proof. Observe that the diagram

G

��

∆G/k // G×k G

m◦(idG ×i)
��

Spec k
e

// G

is cartesian on T -valued points for every k-scheme T . Thus, by Yoneda’s lemma, it is cartesian and ∆G/k is the
base change of the closed immersion e : Spec k → G, and hence a closed immersion. �

Theorem 3.10. If X/k is a smooth, proper k-variety with a section e ∈ X(k) then Pic0
X/k is proper over Spec k.

Proof. We have seen via Lemmata 3.8 and 3.9 that the k-scheme PicX/k is finite type and separated over k. We
apply the valuative criterion of properness to Pic0

X/k. Since SpecR is connected for any discrete valuation ring
R, it suffices to show that for every discrete valuation ring R containing k with Frac(R) = K, any morphism
SpecK → PicX/k extends uniquely to a morphism SpecR → PicX/k. That is, given a rigidified invertible sheaf
(L , α) on XK we must show that there is a unique rigidified invertible sheaf (L̃ , α̃) on XR restricting to (L , α).
Since X is smooth, XR is R-smooth and hence regular. Thus, the notions of Cartier divisor and Weil divisor on
XR coincide. Since XK is a nonempty open subset of XR, by using scheme-theoretic closure we can extend the
sheaf L on XK to an invertible sheaf L̃ on XR. We must also show that the rigidification of L extends to a
rigidification of L̃ . This follows from the fact that given α ∈ K× there is a K×-scaling of α to a unit of R (since
R is a discrete valuation ring). �
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We define Pic0(X) ⊆ Pic(X) = PicX/k(k) to be Pic0
X/k(k), so Pic0(XK) ∩ Pic(X) = Pic0(X) inside Pic(XK)

for any extension of fields K/k. Geometrically, Pic0(X) consists of isomorphism classes of invertible sheaves on X
that lie in a connected algebraic family with the trivial class.

Theorem 3.11. The tangent space of PicX/k at the identity is naturally k-isomorphic to H1(X,OX).

Proof. Let S = Spec k[ε]/(ε2). Giving a morphism S → PicX/k sending Spec k to 0 is equivalent to giving an
element of the tangent space at 0. This is equivalent to giving an invertible rigidified sheaf (L , α) on X×k S whose
restriction to X is trivial, i. e. an element of Pic(XS) that restricts to 0 in Pic(X).

Consider the exact sequence of sheaves on the topological space X,

0→ OX
h−→ O×

XS

r−→ O×
X → 1,

where h is given on sections by h : f 7→ 1 + εf and r is the restriction map (given on sections by mapping ε to
zero). This gives rise to a long exact sequence of cohomology:

0 // k // (k[ε]/(ε2))× // k× // H1(X,OX) // Pic(XS) // Pic(X).

Since (k[ε]/(ε)2)× → k× is surjective, we see that the evident diagram

0→ H1(X,OX)→ PicX/k(k[ε])→ PicX/k(k)

is exact. This shows that the tangent space at the origin of PicX/k and H1(X,OX) are naturally isomorphic as
abelian groups. To show that they are isomorphic as k-vector spaces, we must investigate the k-structures on each.

For any covariant functor F on artin local k-algebras R with residue field k such that the natural map

F (R′ ×R R′′)→ F (R′)×F (R) F (R′′)

is always bijective (e.g. any functor HomSpec k(−, Y ) for a k-scheme Y ), there is a natural k-vector space structure
on fibers of F (k[ε])→ F (k) given by the morphisms

k[ε]→ k[ε] k[ε]×k k[ε] ' k[ε1, ε2]/(ε1ε2, ε21, ε22)→ k[ε]
ε 7→ cε ε1, ε2 7→ ε.

If F = HomSpec k(−, Y ) for a commutative k-group Y locally of finite type over k, the argument with tangent
spaces in the proof of Proposition 2.4 shows that the resulting group structure on ker(F (k[ε])→ F (k)) agrees with
the group functor structure on F . In this way, the kernel of PicX/k(k[ε])

r−→ PicX/k(k) inherits a natural structure
of a k-vector space. In particular, let L ,L ′ be in the kernel of this map, and let {Uα} be an open cover of X such
that L ,L ′ are trivialized by {Uα} with transition data 1 + εfαβ , 1 + εf ′αβ on Uα ∩ Uβ respectively (we know the
reductions mod ε yields the trivial sheaf). Then L ⊗L ′ is trivialized by {Uα} with transition data

(1 + εfαβ)(1 + εf ′αβ) = (1 + ε(fαβ + f ′αβ))

on Uα ∩Uβ . Moreover, multiplication by a scalar c sends L to the sheaf that is trivialized by {Uα} with transition
data 1 + cεfαβ on Uα ∩ Uβ .

To understand the k-structure on H1(X,OX), we work with Čech cohomology. Let γ ∈ H1(X,OX) be repre-
sented on an open covering {Uα} of X by a Čech 1-cocycle fαβ ∈ OX(Uα∩Uβ). Then h(γ) is the isomorphism class
of the invertible sheaf on XS which is trivial on each Uα with transition data given by multiplication by 1 + εfαβ .
Thus, for any c, c′ ∈ k, and γ, γ′ ∈ H1(X,OX) with γ, γ′ represented on a common open covering {Uα} by the
1-cocycles fαβ , f ′αβ respectively, we see that cγ + c′γ′ is represented by the 1-cocycle cfαβ + c′f ′αβ . It follows that
the morphism h respects the k-structures, as desired. �

3.12. The cohomology of an abelian variety. When X is an abelian variety, Theorems 3.5 and 3.10 guarantee
that Pic0

X/k is a proper connected k-group scheme. The goal of this section is to use Theorem 3.11 to show that
Pic0

X/k is smooth, hence an abelian variety, and that its dimension is the same as that of X. This is a subtle fact
in positive characteristic, as there exist examples of smooth projective surfaces S over algebraically closed fields k
with char(k) > 0 such that the proper k-group Pic0

S/k is not smooth.
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3.13. Graded bialgebras.

Definition 3.14. A graded k-bialgebra is an associative graded k-algebra

H =
⊕
i≥0

Hi

with H0 = k, together with a co-multiplication map of graded k-algebras f : H → H⊗kH, such that for all h ∈ Hn

with n > 0,
f(h) = h⊗ 1 + 1⊗ h+

∑
i

xi ⊗ yi,

with xi ∈ Hei , yi ∈ Hn−ei for ei > 0. That is, the components of f(h) in H ⊗k H0 ' H and H0 ⊗k H are h. A
graded bialgebra is anticommutative if h1h2 = (−1)n1n2h2h1 for hi ∈ Hni with ni ≥ 0.

Example 3.15. Let V be a vector space over a field k and let H = ∧V = ⊕i≥0 ∧i V be the exterior algebra on
V . Then H0 = ∧0V = k by definition, and (f, g) 7→ f ∧ g gives H the structure of a graded anticommutative
k-algebra. The diagonal map V → V ⊕ V induces a map of graded k-algebras H → ∧(V ⊕ V ). The identifications
∧i(V ⊕ V ) ' ⊕j+k=i ∧j V ⊗ ∧kV show that ∧(V ⊕ V ) ' H ⊗ H, so we obtain a map of graded k-algebras
h : H → H⊗H which is readily seen to be a co-multiplication. Thus, H is an anticommutative graded k-bialgebra.

There is a very important structure theorem for anticommutative graded bialgebras:

Theorem 3.16. Let k be a perfect field and H a anticommutative graded bialgebra over k. If Hi = 0 for all i > g
(some g) then H is isomorphic to the associative graded anticommutative k-algebra freely generated by X1, . . . , Xm

with homogenous degrees ri and satisfying the relations Xsi
i = 0 for 1 < si ≤ ∞, with “si = ∞” understood to

mean that there is no relation on Xi.

Proof. See [1, Theorem 6.1]. �

Corollary 3.17. Let H be an anticommutative graded bialgebra over any field k with H0 = k and Hi = 0 for all
i > g. Then dimkH

1 ≤ g, with equality only if the canonical map ∧H1 → H is an isomorphism.

Proof. Since the hypotheses are stable under field extension and the conclusion descends, we may assume that
k is perfect. Let X1, . . . , Xm be as in Theorem 3.16. The product X1 · · ·Xm is nonzero (since all si > 1) and∑

deg(Xi) = deg(
∏
Xi) ≤ g, so the number of Xi of degree 1 is at most g; since H1 is k-linearly spanned by the

Xi of degree 1, the first part is immediate and equality holds if and only if deg xi = 1 for all i. If every Xi has
degree 1, then for all i the monomial X1 · · ·X2

i · · ·Xm has degree g + 1 and is therefore 0. It follows that X2
i = 0

and the natural map ∧H1 → H is an isomorphism. �

Proposition 3.18. Let X/k be an abelian variety of dimension g. Then dimkH
1(X,OX) ≤ g.

Proof. Define
H = H(X,OX) =

⊕
i≥0

Hi(X,OX).

Since X is projective, H0 = k. Moreover, Grothendieck’s vanishing theorem ensures that Hi = 0 for all i > g. Cup
product gives H the structure of a graded anticommutative k-algebra. Now the Künneth formula shows that using
pullback and cup product defines a canonical graded anticommutative k-algebra map

H(X,OX)⊗H(X,OX)→ H(X ×X,OX×X)

that is an isomorphism. The addition morphism m : X ×X → X induces a graded k-algebra map

h : H(X,OX)→ H(X ×X,OX×X) ' H(X,OX)⊗H(X,OX).

Similarly, because m ◦ i is the identity, the map i : X → X ×X given by x 7→ (x, 0) induces a section

s : H(X ×X,OX×X)→ H(X,OX)

that identifies H as the direct summand H ⊗H0 of H ⊗H, and such that projection of H ⊗H onto this summand
sends h(x) to x⊗1. Similarly, projection onto H0⊗H sends h(x) to 1⊗x. It follows that H is a graded k-bialgebra,
satisfying the hypotheses of Corollary 3.17, so dimkH

1 ≤ g. �
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3.19. The dual abelian variety.

Definition 3.20. Let X be an abelian variety and L ∈ Pic(X). The Mumford sheaf on X ×X is

Λ(L ) = m∗L ⊗ pr∗1L
−1 ⊗ pr∗2L

−1.

Observe that
(e× 1)∗Λ(L ) ' L ⊗ f∗e∗L −1 ⊗L −1 ' f∗e∗L −1

where f : X → Spec k is the structure morphism and e∗L −1 is an invertible sheaf on Spec k, hence trivial. Although
there is not a canonical trivialization of f∗e∗L −1, any two trivializations differ by a (unique) k×-multiple. Choose
a trivialization. By the universal property of the pair (PicX/k,P) there is a unique k-morphism φL : X → PicX/k
such that there exists an isomorphism θ : (idX ×φL )∗P ∼−→ Λ(L ) as (e × 1)-rigidified sheaves, and if we change
the (e× 1)-rigidification of Λ(L ) it merely scales by some c ∈ k×, so by using c−1θ, we see that φL is independent
of the choice of (e× 1)-rigidification of Λ(L ).

To understand φL on points x ∈ X(k), we pull back Λ(L ) along X
(id,x)−−−→ X ×X. We obtain the sheaf

t∗xL ⊗L −1 ∈ Pic(X).

Thus, φL (x) ∈ PicX/k(k) = Pic(X) (see Example 3.6) corresponds to the isomorphism class of the sheaf t∗xL⊗L −1.
Since PicX/k(k) = PicXk/k

(k), the theorem of the square implies that φL : X → PicX/k is a homomorphism on

k-points. Since X is k-smooth, by going up to k (where Gred is a subgroup of G for any k-group G locally of finite
type, such as G = PicXk/k

), we conclude that φL is a homomorphism of group schemes. Since φL (0) = 0 and X

is connected, φL factors through Pic0
X/k. A subtle point is that we do not yet know that PicX/k is reduced (and

even k-smooth).

Theorem 3.21. If L is an invertible sheaf on X classified by a point in Pic0
X/k(k) ⊆ PicX/k(k) = Pic(X) then

φL = 0.

Remark 3.22. This is a partial result toward relating our approach (resting on Grothendieck’s general theory of
the Picard scheme) with the “bare hands” approach in [6].

Proof. We first relativize the construction of φL . For any k-scheme T , we have a group map

τe : Pic(XT )→ PicX/k,e(T ) given by L 7→ LT ⊗ f∗T e∗TL −1
T ,

where f : X → Spec k is the structure morphism. If T is local (e.g. T = SpecK for a field K/k) then τe(L ) ' L
is invertible sheaves). Thus, for any L on XT we get a map XT → (PicX/k,e)T via

x′ 7→ τε
(
t∗x′LT ′ ⊗L −1

T ′

)
for x′ ∈ X(T ′) for T -schemes T ′. This corresponds to a T -map

φL : T ×X → T × PicX/k,e

satisfying φL (T ×{e}) = 0. By geometric connectivity of X, this map factors through T ×Pic0
X/k,e, recovering our

earlier definition for T = Spec k. On geometric fibers we therefore know that φL is a group-scheme map, and by
[7, Proposition 6.1], it follows that φL is a group map. Since φL +φL ′ = φL⊗L ′ , the map L 7→ φL defines a map
of functors φ : PicX/k → Hom(X,Pic0

X/k). The content of the theorem is that φ vanishes on Pic0
X/k.

Since X is projective and geometrically integral over k, both X and the k-proper Pic0
X/k are projective over

k (for general projective k-varieties X, the scheme Pic0
X/k is merely quasi-projective). Thus, by Grothendieck’s

theory of Hom-schemes, the group functor Hom(X,Pic0
X/k) is represented by a k-scheme locally of finite type. To

get vanishing of φ on Pic0
X/k it is therefore enough to show that the locally finite type k-scheme Hom(X,Pic0

X/k) is
étale, since then it breaks up over k as a disjoint union of copies of Spec k, and φ must map connected components
of PicXk/k

to single points. To show that Hom(X,Pic0
X/k) is étale, we work over k and study the tangent space at

the origin, which we want to vanish. It is therefore enough to show that the zero map X → Pic0
X/k has no nonzero

liftings over k[ε]. This again follows from [7, Theorem 6.1]. �
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Proposition 3.23. If f, g : T → X are k-morphisms with X/k an abelian variety and T any k-scheme, then for
all L on X lying in Pic0

X/k(k) ⊆ PicX/k(k) = Pic(X) we have

(f + g)∗L ' f∗L ⊗ g∗L .

Proof. By Theorem 3.21 the morphism φL is zero, so Λ(L ) = m∗L ⊗ p∗1L −1p∗2L
−1 is trivial on X ×X. Pulling

back by (f, g) : T → X ×X gives the desired result. �

Corollary 3.24. If L ∈ Pic0
X/k(k) then [n]∗XL ' L ⊗n.

Proof. Use induction on n and Proposition 3.23. �

Theorem 3.25. If L is an ample invertible sheaf on X then the kernel K(L ) of φL : X → Pic0
X/k is a finite

k-group scheme.

Proof. See [5, II, 2.17]. �

We can now finally show that PicX/k is smooth when X is an abelian variety.

Theorem 3.26. Let X be an abelian variety. Then PicX/k is smooth and Pic0
X/k is an abelian variety of the same

dimension as X.

Proof. Since X is projective, there exists an ample invertible sheaf L on X. Since PicX/k is a k-group locally
of finite type, it is pure-dimensional. Theorem 3.25 implies that the morphism φL : X → Pic0

X/k has finite
kernel, from which it follows that dim Pic0

X/k ≥ dimX = g. Proposition 3.18 and Theorem 3.11 show that
g ≥ dimkH

1(X,OX) ≥ dim Pic0
X/k. Combining these, we find that

g = dimX = dim Pic0
X/k = dimkH

1(X,OX) = dimk TPicX/k,0,

where TPicX/k,0 is the tangent space at the origin. We conclude that 0 ∈ Pic0
X/k is a smooth point, and since PicX/k

is a k-group locally of finite type, that PicX/k is k-smooth. By Theorem 3.10, the open subgroup Pic0
X/k is a proper

geometrically connected and smooth k-group, so it is a proper group variety over k. �

Definition 3.27. Let X be an abelian variety. The dual abelian variety, denoted Xt, is the abelian variety Pic0
X/k.

Corollary 3.28. For 1 ≤ i ≤ g cup product induces an isomorphism ∧iH1(X,OX) ∼−→ Hi(X,OX). In particular,
dimkH

1(X,OX) =
(
g
i

)
.

Proof. In the proof of Theorem 3.26 we showed that dimkH
1(X,OX) = g. Now apply Corollary 3.17 to get the

first statement, remembering that the multiplication on H = ⊕iHi(X,OX) is cup product. The second statement
is immediate from the first. �

Let f : X → Y be a map of abelian varieties. Then f × 1 : X × Y t → Y × Y t is another such map, and we
can consider the pullback of the (eY × idY t)-rigidified Poincaré sheaf (P0, ν0)Y for Y along f × 1. This gives an
(eX × idY t)-rigidified invertible sheaf (f × 1)∗(P0, ν0)Y on X × Y t, so there is a unique morphism of k-schemes
f t : Y t → Xt satisfying (1× f t)∗(P0, ν0)X ' (f × 1)∗(P0, ν0)Y . Note that since (P0, ν0)Y restricts to OY along
the zero-section of Y t we have f t(0) = 0. Thus, by Corollary 1.7, f t is a k-group map.

Definition 3.29. The map f t : Y t → Xt of abelian varieties is the dual morphism.

Concretely, on T -points f t is induced by is just pullback along f × 1 : X × T → Y × T . Taking T = Spec k, we
conclude by Corollary 3.24 that [n]tX = [n]Xt , and more generally by Proposition 3.23 that (f + g)t = f t + gt. In
particular, by Theorem 2.10 we see that f t is an isogeny if f is.

Theorem 3.30. If f : X → Y is an isogeny of abelian varieties then f t : Y t → Xt is again an isogeny, and there
is a canonical isomorphism

ker(f t) ∼−→ ker(f)D,
where for a finite locally free commutative group scheme G over a scheme S,

GD = Hom(G,Gm)

is the Cartier dual.
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Proof. See [9, Theorem 1.1, Corollary 1.3]. �

The isomorphism in Theorem 3.30 is induced by the functorial, bilinear pairing

e : ker(f)× ker(f t)→ Gm

given on T -points as follows. Let x ∈ Y (T ) be such that fT (x) = 0 and let L be an invertible sheaf on YT with
f∗L trivial on XT and fix a trivialization ι : f∗L ∼−→ OXT

. Since fT (x) = 0, the diagram

XT
tx //

fT !!CC
CC

CC
CC

XT

fT}}{{
{{

{{
{{

YT

commutes, and it follows that we have an isomorphism

(1) OXT

ι−1
∼−−→ f∗TL ' t∗xf∗TL

t∗x(ι)
∼−−−→ t∗xOXT

' OXT

which must be multiplication by a unit u ∈ Γ(XT ,O
×
XT

) = Γ(T,O×
T ) = Gm(T ). We define e(x,L ) = u. Observe

that this is independent of change in ι, as any such change must be via multiplication by a unit s ∈ Γ(T,OT ), and
this does not effect the isomorphism (1).

Let PX on X ×Xt be the Poincaré sheaf. Observe that the restriction of PX to X × {0} is OX : this follows
from the fact that it induces the morphism 0 → Xt. As any two rigidifications of PX along X × {0} differ by a
unique k×-multiple, there is a unique rigidification of PX along X × {0} that agrees when restricted to {0} × {0}
with the rigidification ν along {0}×Xt that comes with PX . This rigidified sheaf induces a morphism of k-varieties

κX : X → Xtt

satisfying κX(0) = 0 (since the pullback of (1×κX)∗PXt to {0}×X along (0× idX) : 0×X → Xt×X is trivial).
Thus, κX is a homomorphism. It is clearly natural in X.

Theorem 3.31. Let X be an abelian variety. The map κX is an isomorphism, and “triple duality” holds: κtX =
κ−1
Xt .

Proof. We follow [5, pg. 92]. For abelian varieties A,B, let s : A×B → B×A be the morphism switching the two
factors, and fix an invertible sheaf L on X. There is a canonical isomorphism s∗Λ(L ) ' Λ(L ) as follows easily
from the definition of Λ(L ). For any k-scheme T and x ∈ X(T ), the morphism φL takes x to the class of

(X × T id×x−−−→ X ×X)∗Λ(L ) ' (X × T id×x−−−→ X ×X s−→ X ×X)∗Λ(L )

' (X × T id×x−−−→ X ×X s−→ X ×X id×φL−−−−→ X ×Xt)∗PX

' (X × T φL×id−−−−→ Xt × T id×x−−−→ Xt ×X s−→ X ×Xt)∗PX ,

and since κX(x) corresponds to the sheaf (Xt × T
id×x−−−→ Xt × X)∗s∗PX and φtL is given by pullback along

X × T φL×id−−−−→ Xt × T , the above sheaf is in the class of φtL ◦ κX(x). This shows that

(2) φL = φtL ◦ κX .
As we noted in Definition 3.20, any two rigidifications of Λ(L ) differ by a unique k×-multiple. Thus, if the

isomorphisms above are not a priori isomorphisms of rigidified sheaves, they can be altered by a unique unit scalar
to respect the rigidifications. This is why we need not track the rigidifying data in the string of isomorphisms
above.

Now let L be an ample invertible sheaf on X. Then by Theorem 3.25, the kernel K(L ) of φL is a finite group
scheme, and since φtL is an isogeny, we see by (2) that κX is also an isogeny. Using Theorem 3.30, we compute

rank(K(L )) = deg(φL ) = deg(φtL ) · deg(κX) = rank(K(L )D) · deg(κX) = rank(K(L )) · deg(κX),

so deg(κX) = 1 and κX is an isomorphism.
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Finally, we must show κ−1
Xt = κtX . By the characterization of the dual morphism, this says

(1X × κ−1
Xt)∗PX ' (κX × 1Xttt)∗PXtt ,

or equivalently
(1X × κXt)∗(κX × 1Xttt)∗PXtt 'PX .

Letting sA : A×At ' At ×A denote the flip isomorphism as above, the left side is isomorphic to

(κX × 1Xt)∗(1Xtt × κXt)∗PXtt ' (κX × 1Xt)∗s∗XtPXt

' s∗X(1Xt × κX)∗PXt

' s∗X((s−1
X )∗PX)

'PX ,

where we have used the definition of κX in the first and third isomorphisms above, and this is what we wanted to
show. �

Remark 3.32. Via the double-duality isomorphism κX , the equality (2) may be rephrased as “φL = φtL .”

Theorem 3.33. Let f : X → Y be an isogeny with kernel Z. Then there is a canonical exact sequence

0→ ZD → Y t
ft

−→ Xt → 0.

Proof. This follows from Theorem 3.30. �

Remark 3.34. Many of the properties of the dual abelian variety can be summarized as follows. If X,Y are abelian
varieties, then the functor Sch/k → Ab given by

T 7→ HomT (XT , YT )

is representable by a commutative étale k-group scheme, Hom(X,Y ), and the map

Hom(X,Y )→ Hom(Y t, Xt)

given on points by f 7→ f t is a homomorphism of k-group schemes; in particular, (f+g)t = f t+gt and [n]tX = [n]Xt .
See [5, 7.12] for more details.

4. The Tate module and Weil pairings

4.1. The Tate module. Let ` be a prime different from char(k). We have a homomorphism of group schemes

` : X[`n+1]→ X[`n]

which gives a Gal(ksep/k)-equivariant homomorphism of Galois modules

` : X[`n+1](ksep)→ X[`n](ksep).

These homomorphisms form a projective system of Galois modules.

Definition 4.2. For an abelian variety X/k and a prime ` 6= char(k), the `-adic Tate module is

T`X
def= lim←−

n

X[`n](ksep),

with the projective limit taken in the category of Gal(ksep/k)-modules with respect to the maps above.

The Tate module of an abelian variety X is an extremely useful tool for proving certain finiteness theorems
regarding X.

Let g = dimX. By Corollary 2.5, we know that X[n](ksep) ' (Z/nZ)2g noncanonically, whence T`X is a free
Z`-module of rank 2g. Thus, we may also define

V`X
def= Q` ⊗Z`

T`X.

Since multiplication by ` commutes with any homomorphism f : X → Y of abelian varieties, we obtain a map
T`f : T`X → T`Y , hence also a map V`X → V`Y , which we denote by V`f .
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Theorem 4.3. Let f : X → Y be an isogeny of abelian varieties with kernel N . Then there is a natural exact
sequence

0→ T`X
T`f−−→ T`Y → N`(ksep)→ 0,

where N`(ksep) is the `-primary part of N(ksep). In particular, V`f : V`X → V`Y is an isomorphism.

Proof. Since
0→ N`(ksep)→ X[`∞](ksep)→ Y [`∞](ksep)→ 0

is exact (as X(ksep) is `-divisible), and X[`∞](ksep) ' (Q`/Z`)2 dimX is Z`-injective, applying HomZ`
(Q`/Z`,−)

gives an exact sequence
0→ T`X → T`Y → Ext1(Q`/Z`, N`(ksep))→ 0.

SinceN`(ksep) is killed by some `r, and `r acts as an automorphism on Q`, we conclude that Ext1Z`
(Q`, N`(ksep)) = 0

for reasons of bifunctoriality, and hence the connecting map

N`(ksep) = HomZ`
(Z`, N`(ksep)) δ−→ Ext1(Q`/Z`, N`(ksep))

induced by
0→ Z` → Q` → Q`/Z` → 0

is an isomorphism.
�

Define
Z`(1) = lim←−

n

µ`n(ksep),

with the transition maps given by `th-power. Note that this is a free Z` module of rank 1 endowed with a continuous
action of Gal(ksep/k).

Theorem 4.4. If X is an abelian variety then there is a canonical isomorphism of Z`[Gal(ksep/k)]-modules

T`X
t ' (T`X)∨ ⊗Z`

Z`(1).

Proof. By Theorem 3.30, there are canonical isomorphisms of Galois-modules

Xt[`n](ksep) ' Hom(X[`n](ksep),Gm(ksep)) = Hom(X[`n](ksep), µ`n(ksep)),

so taking projective limits gives the desired result. �

Theorem 4.5. Let X,Y be abelian varieties. Then the natural map

Z` ⊗Homk(X,Y )→ HomZ`[Gal(ksep/k)](T`X,T`Y )

is injective.

Proof. We may assume k = k. See [6, §19, Theorem 3], which is the same as the argument for elliptic curves. �

Corollary 4.6. Let X,Y be abelian varieties. Then Homk(X,Y ) is a free Z-module of rank at most 4 dimX dimY .

Proof. Since T`X and T`Y are free Z`-modules of ranks 2 dimX and 2 dimY respectively, HomZ`
(T`X,T`Y ) is a

finite, free Z`-module of rank 4 dimX dimY . In the proof of [6, §19, Theorem 3], Mumford shows that Homk(Xk, Yk)
is finitely generated as a Z-module (via exactly the same methods as for elliptic curves). The rank bound then
follows from Theorem 4.5. �

Observe that the continuous action of Gal(ksep/k) on T`X gives rise to a continuous `-adic representation

ρ` : Gal(ksep/k)→ GL(T`X).
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4.7. The Weil pairing. Let f : X → Y be an isogeny of abelian varieties. By Theorem 3.30, there is a canonical
isomorphism β : ker(f t) ∼−→ ker(f)D, or in other words, a canonical perfect bilinear pairing of finite flat group
schemes

ef : ker(f)× ker(f t)→ Gm

given by ef (x, y)
def= β(y)(x). If n ∈ Z kills ker(f) then by perfectness (or the proof of Theorem 2.10) it also kills

ker(f t) and ef takes values in µn.

Definition 4.8. Let X/k be an abelian variety. For a positive integer n, the Weil n-pairing is

en = en,X
def= e[n]X : X[n]×Xt[n]→ µn.

We would like to give a concrete description of en on k-points when char(k) - n. Let x ∈ X[n](k) and y ∈ Xt[n](k).
Then y is an invertible rigidified sheaf L ∈ Pic0

X/k(k) with L ⊗n trivial (as a rigidified sheaf). By Corollary 3.24,
we have that n∗L ' L ⊗n is trivial. If we let D be a Weil divisor such that L ' OX(D), then L ⊗n ' OX(nD)
and [n]∗L ' OX([n]−1D), so nD and [n]−1

X D are linearly equivalent to 0. It follows that there are functions
f, g ∈ k(X)× with (f) = nD and (g) = [n]−1

X D. Thus,

(f ◦ [n]X) = [n]−1
X (f) = [n]−1

X (nD) = n([n]−1
X D) = n(g) = (gn),

from which it follows that gn/(f ◦ [n]X) = α ∈ k× Thus, for any u ∈ X(k)

g(u+ x)n = αf(nu+ nx) = αf(nu) = g(u)n,

so
g

g ◦ tx
∈ µn(k) ∩ k(X)× = µn(k).

Theorem 4.9. Let g ∈ k(X)× be any function such that (g) = nD, where y = L (D). Then

en(x, y) =
g

g ◦ tx
∈ µn(k).

Proof. We can assume k = k. See [6, §20] for this case. �

Proposition 4.10. Let X/k be an abelian variety and let m,n be integers not divisible by char(k). Choose x ∈
X[mn](ksep), y ∈ Xt[mn](ksep). Then

en(mx,my) = emn(x, y)m.

Proof. We may assume k = k, and this case is addressed in [6, §20]. The result may also be proved as in [4, §16],
by appealing to the explicit description of emn in Theorem 4.9. �

Letting n = `r and m = ` for a prime ` 6= char(k), we obtain the commutative diagram

X[`r+1](ksep)×Xt[`r+1](ksep)

`×`
��

e`r+1 // µ`r+1(ksep)

`

��
X[`r](ksep)×Xt[`r](ksep)

e`r // µ`r (ksep)

of Galois-modules, and hence by passing to the limit we obtain a pairing

e` = e`,X : T`(X)× T`(Xt)→ Z`(1).

Proposition 4.11. Let X/k be an abelian variety and choose a positive integer n not divisible by char(k). Then
(1) The pairing e` is Z`-bilinear and perfect for any prime ` 6= char(k).
(2) If f : X → Y is a homomorphism of abelian varieties then for any x ∈ X[n](ksep) and y ∈ Y t[n](ksep)

en(x, f t(y)) = en(f(x), y).

(3) For any prime ` 6= char(k) and any f as in (2),

e`(x, T`(f t)(y)) = e`(T`(f)(x), y).

Proof. We can assume k = k. See [6, §20]. �
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Remark 4.12. See [9, Section 1] for a discussion of properties of the Weil pairing on torsion-levels possibly divisible
by char(k).

5. The Weil conjectures

Let κ be a finite field of size q and κn an extension of κ of degree n.

Definition 5.1. Let X/κ be κ-scheme of finite type. We define the zeta function of X to be

ZX(t) def=
∏
x∈X0

(1− tdegκ(x))−1 ∈ Z[[t]],

with X0 the set of closed points in X.

Since
#X(κm) =

∑
d|m

d#{x∈X0 : degκ(x)=d},

one also has

ZX(t) = exp

∑
m≥1

#X(κm)
tm

m

 .

Here, κm is “the” degree-m extension of κ.
Let X/κ be a smooth projective κ-variety of dimension g. In 1949, A. Weil made the following conjectures:
(1) (Rationality) ZX(t) ∈ Q(t).
(2) (Functional Equation) Let χ = ∆.∆ be the self-intersection number of ∆ ⊆ X ×X. Then

ZX

(
1
qgt

)
= ±qgχ/2tχZX(t).

(3) (Riemann Hypothesis) One has

ZX(t) =
P1(t) · · ·P2g−1(t)
P0(t) · · ·P2g(t)

,

where P0(t) = 1− t, P2g(t) = 1− qgt and for 1 ≤ r ≤ 2g − 1,

Pr(t) =
βr∏
i=1

(1− ai,rt) ∈ Z[t]

for certain algebraic integers ai,r with absolute value qr/2 under all embeddings into C.
These statements were proved for curves and abelian varieties by A. Weil in 1948, and in general by B. Dwork,

A. Grothendieck, M. Artin, and P. Deligne (and later by Deligne for any κ-proper variety X) during 1964–1974.
Let X be an abelian variety over a field k and fix a prime ` 6= char(k). Any α ∈ End0

k(X) acts on the Q`-vector
space V`X as the homomorphism of rings T` : Endk(X)→ EndZ`

T`(X) extends to a homomorphism

V` : End0
k(X)→ EndQ`

(V`(X)).

Let Pα,`(t) be the characteristic polynomial of α acting on V`(X). A priori, Pα,` depends on `, is monic of degree
2 dimX, and has coefficients in Q`.

Theorem 5.2. The polynomial Pα
def
= Pα,` is independent of ` and has coefficients in Q. If α ∈ Endk(X) then Pα

has integer coefficients and is monic. Moreover, for any integer n we have

Pα(n) = deg(α− n),

where the degree function deg : End0
k(X) → Q is extended from the usual degree map Endk(X) → Z by using the

quadratic property deg(nf) = n2 dimX deg(f) for any f ∈ Endk(X) and n ∈ Z.

Proof. We refer to [6, §19] for a proof when k = k, which suffices. �
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Definition 5.3. The polynomial Pα(t) is called the characteristic polynomial of α, the coefficient of −t2 dimX−1

is the trace of α, denoted Tr(α), and the constant term of Pα(t) is the norm of α, denoted Nm(α). These are the
trace and determinant of V`(α) acting on V`X.

Fix an ample invertible sheaf L on X and let φL : X → Xt be the corresponding homomorphism; it is an
isogeny as it has finite kernel and dimX = dimXt. Let φ−1

L ∈ Hom(Xt, X)⊗Q be the inverse of φL .

Definition 5.4. The Rosati involution on End0
k(X) with respect to L (or to φL ) is the morphism

α 7→ α′ = φ−1
L ◦ α

t ◦ φL

The Rosati involution is an involution because of Remark 3.32 and it has the following properties (see [6, §20]):

(1) If α, β ∈ End0
k(X) and a ∈ Q then (aα)′ = aα′, (α+ β)′ = α′ + β′, and (αβ)′ = β′α′.

(2) If ` 6= char(k) then for any x, y ∈ V`X,

e`(αx, T`(φL )y) = e`(x, T`(φL )α′y).

(3) The map End0
k(X)→ Q given by α 7→ Tr(αα′) is a positive-definite quadratic form.

Proposition 5.5. Let X be an abelian variety and suppose α ∈ End(X) satisfies α′α = a ∈ Z, so a ≥ 0. Then
any root of the characteristic polynomial Pα of α has absolute value a1/2 under every embedding into C.

The proof of Proposition 5.5 will make use of the following lemma:

Lemma 5.6. Let K be a number field with an involution σ such that for all x ∈ K× one has TrK/Q(x · σ(x)) > 0.
Then K is totally real with σ = id or a CM field with σ acting as complex conjugation.

Proof. Let F = Kσ denote the fixed field of σ. Let r be the number of real embeddings of F , and s the number of
complex conjugate pairs of complex embeddings of F . Then there is an isomorphism of R-algebras

R⊗Q F
∼−→ Rr ×Cs,

so x 7→ TrF/Q(x2) has signature (r+ s, s). Since TrF/Q = 1
2TrK/Q on F , the positive-definiteness of TrK/Q ensures

that TrF/Q(x2) = TrF/Q(x · σx) > 0 for all x ∈ F×, from which it follows that s = 0 and hence that F is totally
real.

If K 6= F , then K = F (
√
a) for some a ∈ F× with σ(

√
a) = −

√
a. Observe that

R⊗Q K ' (R⊗Q F )⊗F K '
∏
τ

Rτ ⊗F K,

where the product runs over all embeddings of F , and Rτ is R considered as an F -algebra via τ . Since Rτ ⊗F K
is isomorphic to R ×R or to C, with σ switching the factors in the first case (τ(α) > 0) and acting as complex
conjugation in the second (τ(α) < 0), we see (again using that Tr(x ·σx) > 0 for x ∈ K×) that the first case cannot
occur, and hence that K/F is a purely imaginary extension with σ acting as complex conjugation. �

Proof of Proposition 5.5. Since Pα(t) ∈ Z[t], it will suffice to show that every root of Pα(t) has absolute value a1/2.
By the positive definiteness of the Rosati involution, if a = 0 then α = 0. Thus, we may assume a > 0 so α is
an isogeny. The algebra Q[α] is finitely generated so α−1 ∈ Q[α], and since α′ = aα−1 we see that Q[α] is stable
under the Rosati involution. Let Qβ be the minimal polynomial an element β ∈ Q[α]. We claim that Pβ and Qβ
have the same roots in Q. Indeed, since Pβ has Q-coefficients and Pβ(β) = 0, we have Qβ |Pβ . On the other hand,
since Pβ is the characteristic polynomial of T`(β) ∈ End(T`X), any root ξ ∈ Q` of Pβ is an eigenvalue of T`(β) so
Qβ(ξ) is an eigenvalue of T`(Qβ(β)) = T`(0) = 0. Therefore Qβ(ξ) = 0. We conclude that Pβ and Qβ have the
same roots in Q. In particular, as Pβ and Qβ have Z-coefficients, we must in fact have Pβ = Q

nβ

β for some positive
integer nβ . In particular, nβ |2 dimX for all β.

The restriction of the positive-definite bilinear form (β, γ) 7→ Tr(βγ′) to Q[α] is positive-definite, so e′ = e for
all primitive idempotents e ∈ Q[α] and Q[α] is semisimple. Thus, Q[α] is isomorphic to a product of number fields

Q[α] ' K1 × · · · ×Kr

with the factor decomposition preserved by the Rosati involution.
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The identity Pβ = Q
nβ

β for β ∈ Q[α] in the first paragraph now shows (by taking β in the Zariski-dense set of
elements that primitively generate Q[α] with components βi ∈ Ki having pairwise distinct minimal polynomials
over Q) that

Tr
∣∣
Q[α]

=
2 dimX

dimQ Q[α]

∑
TrKi/Q.

Thus, by Lemma 5.6, we see that each Ki is either totally real with the Rosati involution acting as the identity, or
a totally imaginary extension of a totally real field with the Rosati involution acting as complex conjugation. Since
the roots of Pα(t) are the images of α under the embeddings φj of each Ki into C (as Pα and Qα have the same
complex roots) and since

a = φj(αα′) = φj(α)φj(α) = |φj(α)|2

we conclude that the roots of Pα have absolute value a1/2 under all embeddings into C, as desired. �

Theorem 5.7. Let X/κ be an abelian variety over a finite field of size q, and FrobX,q the Frobenius q-endomorphism
of X/κ. Let P = PFrobX,q

have roots a1, . . . , a2g where 2g = dimX. Then

#X(κm) =
2g∏
i=1

(1− ami )

and
|ai| = q1/2.

Proof. Since for any morphism f : Z →W of κ-schemes one has

f ◦ FrobZ,q = FrobW,q ◦f,

it follows that the fixed points of FrobmX,q −1 acting on X(κ) are precisely the points X(κm) since κm is the set of
solutions to tq

m

= t in κ.
Now (dFrobmX,q)

∣∣
0

: T0X → T0X is the zero map, as Dfq
m

= 0 for any derivation D of a ring A of characteristic
p and any f ∈ A. Thus, d(FrobmX,q −1) = −1, so FrobX,q −1 is a separable endomorphism, so

#X(κm) = # ker(FrobmX,q −1) = deg(FrobmX,q −1) = PFrobm
X

(1),

where the last equality uses Theorem 5.2. Since the ai are the eigenvalues of FrobX,q acting on V`X, it follows that
ami are the eigenvalues of FrobmX,q, and hence that

PFrobm
X,q

(t) =
2g∏
i=1

(t− ami ),

from which the first part of the theorem follows.
We now claim that for α = FrobX,q we have α′α = q. Indeed, α′α = φ−1

L αtφLα, so it is enough to check on
geometric points x ∈ X that

αtφLα(x) = qφL (x).

The left side is
α∗t∗α(x)L ⊗ α

∗L −1 = (tα(x)α)∗L ⊗ α∗L −1,

and since α is a homomorphism, tα(x)α = αtx. Thus, the above is

(αtx)∗L ⊗ α∗L −1 = t∗xα
∗L ⊗ α∗L −1.

But since α acts on OX via f 7→ fq and as the identity on the underlying topological space, it follows that

α∗L = L ⊗q,

so
αtφLα(x) = t∗xL

⊗q ⊗
(
L −1

)⊗q
= φL (x)⊗q.

This gives the desired formula α′α = q. Now apply Proposition 5.5. �
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