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0.1 Introduction

Given any Riemann surface X, we can consider the field of meromorphic functions on X, denoted
K(X). This is always an extension field of C and is isomorphic to C(x, y) with F (x, y) = 0 for
some rational function in x and y. Now if p : X −→ Y is any nonconstant holomorphic mapping of
Riemann surfaces, then we can view K(Y ) as a subfield of K(X) by the injective map f 7→ f ◦p, for
any f ∈ K(Y ). In fact, we have a correspondence between degree n covering maps p : X −→ Y
and degree n field extensions K(X)/K(Y ). The goal of Chapter 1 is to develop enough of the
theory of compact Riemann surfaces to prove part of this correspondence.

In Chapter 2, we turn our attention to the group SL2(Z) of two by two integer matrices with
determinant 1, which has a natural action on the complex vector space C2. This action descends
to an action on the Riemann sphere P1, which in turn descends to an action on the complex upper
half plane H, given by (

a b
c d

)
z :=

az + b

cz + d
.

Clearly, any subgroup Γ of SL2(Z) also acts on H by the same formula. We may therefore consider
the quotient space H/Γ. By the appropriate construction, this space can be made into a compact
Riemann surface X. In particular, for each positive integer N , we study the Riemann surface X(N)
that arises as a quotient of the upper half plane by the principal congruence subgroup of level N
of SL2(Z). These are the normal subgroups Γ(N) of SL2(Z) given as the kernel of the reduction
modulo N map rN : SL2(Z) −→ SL2(Z/NZ). There is a natural map π : X(N) −→ X(1)
that realizes X(N) as a covering space of X(1). We can then use the tools of the first chapter to
show that we have a field extension K(X(N))/K(X(1)). The fact that Γ(N) is normal in Γ(1)
for each N will enable us to show that this is in fact a Galois field extension with Galois group
Γ(1)/± Γ(N) ' SL2(Z/NZ)/± {1}.

In the last chapter, we study the Galois field extensions K(X(N))/K(X(1)). For precisely 5
values of N , namely 1 ≤ N ≤ 5, the Riemann surface X(N) is of genus 0. We will show that this
implies that the field K(X(N)) is generated by a single element over C. We then turn to the theory
of Elliptic functions and construct such a generator for each N of interest. Using this generator,
the group Γ(1)/ ± Γ(N) can be made to act on the Riemann sphere. We show how to interpret
this action as the symmetries of an inscribed solid. Finally, we use the Galois correspondence to
give a degree N field extension of K(X(N)) for each 2 ≤ N ≤ 5 corresponding to an index N
subgroup of Γ(1)/±Γ(N). We know that such a field extension is given by adjoining a root of some
degree N polynomial over K(X(1)). Using the tools of the first two chapters, we construct such
a polynomial. As a consequence, when N = 4 or 5, we obtain a description of the field extension
K(X(N))/K(X(1)) as the spliting field of a degree N polynomial.



Chapter 1

Riemann Surfaces

1.1 Definitions and Notations

A Riemann surface X is a one dimensional connected complex analytic manifold. That is, X is
a connected, Hausdorff topological space S equipped with a complex structure. For every point
P ∈ S, there exists a neighborhood UP of P and a complex chart ϕP from UP to the interior of the
unit disc such that ϕP is a homeomorphism, and ϕP (P ) = 0. These complex charts are required to
be holomorphically compatible; that is, for any charts ϕP , ϕQ the map

ϕQϕ−1
P : ϕP (UP ∩ UQ) −→ ϕQ(UP ∩ UQ)

is biholomorphic. Notice that it is immaterial whether we require a complex chart to map a
neighborhood of a point homeomorphically to the interior of the unit disc or simply onto an open
subset of C as we can easily convert the latter situation into the former by an appropriate Riemann
mapping.

We remark that the usual topological terminology used in describing the space S carries over
to the Riemann surface X. Thus, a point P of X is just the point P of S, a closed subset of X is
a closed subset of S, and so on. In particular, if the space S is compact, we shall say that X itself
is compact.

1.2 Maps Between Riemann Surfaces

Definition 1. Let X and X ′ be two Riemann surfaces with f any map from U ⊂ X into X ′. For
a point P of X, set Q = f(P ) and let ϕP , ϕ′Q be complex charts at P,Q respectively. Recall that f

is said to be analytic at P if the function ϕ′Qfϕ−1
P which maps the interior of the unit disc to itself

is complex analytic at the origin, and that if f is analytic at every point of U then it is an analytic
map from U to X ′. We also call f a holomorphic mapping.

5
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Let X be any Riemann surface and U ⊂ X a neighborhood of a point P0 ∈ X. Let f : U −→ C
be a one to one analytic map such that f(P0) = 0. Then t = f(P ) is said to be a locally uniformizing
variable at P0. Since f is one to one, we will speak of a point t of X, by which we mean the point
P of X such that f(P ) = t. Locally uniformizing variables generalize the idea of complex charts,
since for any point P0 ∈ X, one may take t = ϕP0(P ) as a locally uniformizing variable, where
ϕP0 is a complex chart on X at P0. This shows in particular that every point of X has a locally
uniformizing variable. Any two locally uniformizing variables are related to each other by a power
series, as the following theorem makes evident.

Theorem 1. Suppose that t = f(P ) and s = g(P ) are two locally uniformizing variables at some
point P0 of a Riemann surface X. Then for all P near P0 one has

s = a1t + a2t
2 + · · · , (1.1)

where a1 6= 0. Conversely, if t is any locally uniformizing variable at P0, then any power series of
the above form gives another locally uniformizing variable at P0.

Proof. Let U, V be the domains where f, g are defined. Since both s, t are locally uniformizing
variables, the functions f, g are one to one and analytic. Thus, the map gf−1 : f(U ∩ V ) −→
g(U ∩ V ) is one to one and analytic. Since gf−1(0) = 0, we have s = gf−1(t) = a1t + a2t

2 + · · · for
all P near P0. Since this map is one to one, we must have a1 6= 0. Conversely, any power series of
the form 1.1 gives an analytic one to one function of t and hence an analytic one to one function g
of P near P0 with g(P0) = 0.

We now use Theorem 1 to prove a key result about any analytic map between two Riemann
surfaces.

Theorem 2. Let X, Y be any two Riemann surfaces and let f : X −→ Y be analytic at P0, with
f(P0) = Q0 and f not identically 0. Then there exist locally uniformizing variables t at P0 and s
at Q0 such that

s = tn, n ≥ 1. (1.2)

Proof. Let t = ϕ(P ) and t′ = ϕ′(Q) for P ∈ X near P0 and Q ∈ Y near Q0 be locally uniformizing
variables. The analyticity of f at P0 is equivalent to the condition that t′ = ϕ′fϕ−1(t) be analytic
at t = 0. This amounts to being able to write t′ as a power series in t, viz.

t′ = a1t + a2t
2 + · · · .

Since f is not identically zero, there exists some n ≥ 1 such that an 6= 0, so that

t′ = antn(1 + · · · ).
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Since any power series with leading term antn has an analytic nth root, there exists some power
series

t1 = b1t + b2t
2 + · · · ,

with b1 6= 0 and t′ = tn1 . The converse of Theorem 1 tells us that t1 is a locally uniformizing variable
at P0, and this completes the proof.

The integer n such that s = tn is in fact independent of the choice of uniformizing variable,
which follows from the prrof of Theorem 2.

Theorem 3 (Identity Theorem). Let X, Y be Riemann surfaces, and f : X −→ Y a holomor-
phic mapping. If f = 0 on a set A having a limit point a ∈ X, then f ≡ 0 on X.

Proof. Let U ⊂ X be the set of all points in X having a neighborhood W such that f ≡ 0 on
W . By definition, U is open. We show that it is closed. Let b be a limit point of U . Since f is
continuous, f(b) = 0. Let ϕ1 : U1 −→ V1 and ϕ2 : U2 −→ V2 be locally uniformizing variables at
b and f(b) with the property that U1 is connected. The map

ϕ2 ◦ f ◦ ϕ−1
1 : V1 −→ V2 ⊂ C

is holomorphic since f is. Moreover, U ∩ U1 6= ∅ since b is a limit point of U and U1 is open. By
the identity theorem for holomorphic functions on domains in C [10, pg. 228], we see that f is
identically 0 on U1 and that a ∈ U . Thus, b ∈ U and U is closed. Since X is connected, we must
have U = ∅ or U = X. Since a ∈ U , the first case is impossible and f ≡ 0 on X.

1.3 Functions on a Riemann Surface

Recall that a holomorphic function on an open subset Y of a Riemann surface X is just a holo-
morphic mapping f : Y −→ C. It is not difficult to see that the sum and product of any two
holomorphic functions on an open subset Y of a Riemann surface X are again holomorphic. More-
over, the constant functions are holomorphic. Therefore the set of all holomorphic functions on Y ,
denoted O(Y ), is endowed with the structure of a C-algebra. Every locally uniformizing variable
on Y is clearly holomorphic. Sometimes we will have a function f which is holomorphic on some
deleted neighborhood of a point a ∈ Y ⊂ X and we will want to extend f to a holomorphic
function on the entire (undeleted) neighborhood. The following well known theorem tells us when
this is possible:

Theorem 4 (Riemann’s Removable Singularities Theorem). Let Y be an open subset of a
Riemann surface X and let a ∈ Y. The function f ∈ O(Y \ {a}) may be uniquely continued to a
function f̃ ∈ O(Y ) precisely when f is bounded on some deleted neighborhood of a.
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We do not prove this theorem, but note that it follows easily from the analogous principle for
holomorphic functions on C [4, pg. 5].

Given a Riemann surface X, we would like for the C-algebra O(X) to have the structure of a
field, but this is not possible if we restrict ourselves to working only with holomorphic functions,
as dividing by a function f with a zero at some point a introduces a pole at a. Moreover, we will
be working only with compact Riemann surfaces, and as the following lemma shows, holomorphic
functions on a compact Riemann surface are very uninteresting:

Lemma 1. Every holomorphic function f on a compact Riemann surface X is constant.

Proof. By definition, f is a holomorphic mapping f : X −→ C. Suppose that f is nonconstant.
First, f(X) is open. This follows from Theorem 2, since given a point a ∈ X with f(a) = b, there
exist locally uniformizing variables t, s at a, b with s = tk, so that f maps a neighborhood of a to
a neighborhood of b. Second, f(X) is compact since X is. Thus, f(X) is a compact, open subset
of C, and therefore empty. This is a contradiction.

The remedy to these problems is to allow functions to take the value ∞.

Definition 2. Let Y be an open subset of a Riemann surface X. A meromorphic function f on
Y is a holomorphic mapping(other than the constant mapping f ≡ ∞) to the Riemann sphere:
f : Y −→ P1.

Let z = f(P ) be a meromorphic function on Y ⊂ X and suppose that f is analytic at the point
P0 ∈ Y . We then have two cases:

1. f(P0) = z0 6= ∞. Then z−z0 is a locally uniformizing variable at P0. Now let t be any locally
uniformizing variably at P0. Then by Theorem 1 we may write z = a0 +a1t+a2t

2 + · · · . The
least integer n such that an 6= 0 is the order of f at P0.

2. f(P0) = ∞. Then 1/z is a locally uniformizing variable at P0 and we have 1/z = a1t + a2t
2 +

· · · . This enables us to write z = b−nt−n + b−n+1t
−n+1 + · · · for some positive integer n. The

integer −n is called the order of f at P0.

Thus we see that a zero of f at P0 corresponds to f having positive order at P0 while a pole
corresponds to f having negative order. A function that is identically 0 is defined to have order
∞. By the remark after the proof of Theorem 2, the order of a meromorphic function f at a point
P0 is well defined (that is, it does not depend on a choice of uniformizing variable).

Clearly, the sum and product of any two meromorphic functions on a Riemann surface X
is again meromorphic. Moreover, by Theorem 3, we see that any meromorphic function that
is not identically 0 has isolated zeroes so that its reciprocal is meromorphic. Thus, the set of
all meromorphic functions on X is a field, denoted K(X). Notice that every constant function
f : X −→ P1 excluding f ≡ ∞ is a meromorphic function, so that K(X) contains C. We record
this important fact here:
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Theorem 5. The set of all meromorphic functions on a Riemann surface X forms a field, denoted
K(X), and is an extension field of C.

The field K(X) of meromorphic functions on a Riemann surface X is an important invariant
of X (that is, under isomorphism) and, as we shall see, encodes many of the properties of X.

One might protest that we do not yet know that there are any nonconstant meromorphic
functions on a given Riemann surface. In fact, given any n distinct points P1, P2, . . . , Pn in a
Riemann surface Y , there exists a function f ∈ K(Y ) such that f(Pj) 6= f(Pi) for i 6= j. We will
prove this assuming the following:

Theorem 6. [5, pg. 122] Let P1, P2 be any two distinct points on a Riemann surface X. Then
there exists f ∈ K(X) with a zero of order one at P1 and a pole of order one at P2.

We now show by induction on n that there exists f ∈ K(X) with f(Pj) distinct for j =
1, 2, . . . , n. By Theorem 6, we already know the result for j = 2, so assume that we have some
f ∈ K(X) such that f(P1), . . . , f(Pk) are all distinct. Either f(Pk+1) is distinct from these values
or we may reindex the Pj so that f(Pk) = f(Pk+1). Now we can find some fractional linear
transformation which moves the values f(Pj) for j = 1, . . . , k all away from ∞, with the resulting
composition still being meromorphic. Thus, assume that f(Pj) is finite for each j. By Theorem 6,
we have some g ∈ K(X) with g(Pk) 6= g(Pk+1). Now consider

ϕc = f + cg

with c ∈ C. Clearly, ϕc(Pi) = ϕc(Pj) if and only if

c =
f(Pi)− f(Pj)
g(Pi)− g(Pj)

.

Since there are a finite number of pairs Pi, Pj , we can find a c ∈ C such that ϕc(Pi) 6= ϕc(Pj) for
i 6= j, as claimed.

As an example of working with function fields on a Riemann surface, we give an explicit de-
scription of the field K(P1).

Theorem 7. [4, pg. 11] K(P1) ' C(x).

Proof. Any f ∈ K(P1) is a holomorphic mapping f : P1 −→ P1. Since P1 is compact, we see that
f has at most a finite number of poles, for if not, then the set of all the poles of f would have
a limit point in P1 and by Theorem 3, f would be identically ∞, and hence not a meromorphic
function. Without loss of generality, suppose that ∞ is not a pole of f (otherwise replace f by
1/f). Now let p1, . . . , pn denote the poles of f and let

Rj(z) =
−1∑

i=−kj

ai,j(z − pj)i
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be the principal part of f at pj . The function f−(R1+R2+. . .+Rn) is then a pole-free meromorphic
function; that is, a holomorphic function on P1. From Lemma 1, it must be a constant. Since each
Rj is a rational function of z, we conclude that f must be rational also.

1.4 Branched Covers of a Riemann Surface

Definition 3. Let X, Y be topological spaces. A map p : X −→ Y is a covering map if for any
y ∈ Y , there exists a neighborhood U of y such that

p−1(U) =
n∐

i=1

Vi

where each Vi is mapped homeomorphically by p to U and the Vi are disjoint. If X, Y are Riemann
surfaces, we require that the map p be holomorphic.

As it turns out, the requirement that every point of Y should have n distinct inverses in X
is rather rigid, and excludes most of the holomorphic mappings between Riemann surfaces that
interest us. For example, if n > 1 then x 7→ xn is a holomorphic self-mapping of P1, but it is not a
covering map in the above sense since 0, ∞ have only one inverse image each. Moreover, Theorem
2 tells us that any holomorphic mapping between Riemann surfaces looks locally like xn for some
n. This leads naturally to the idea of branch points and branched coverings.

Definition 4. Let X, Y be Riemann surfaces, p : X −→ Y a holomorphic mapping, and P0, Q0

points of X, Y respectively with Q0 = p(P0). By Theorem 2, there exist locally uniformizing
variables t at P0 and s at Q0 with s = tn for some n ≥ 1. If n 6= 1, the point P0 ∈ X is called a
branch point and Q0 ∈ Y a branch value. The integer n− 1 is called the branch number of p at P0

and will be denoted bp(P0).

We shall also refer to branch points as ramification points, and will often say that P0 has order
n over Q0 or that Q0 is ramified of order n. We can now modify our definition of a covering map
of Riemann surfaces to include branch points:

Definition 5. Let X, Y be Riemann surfaces and p : X −→ Y a holomorphic mapping. If there
is a discrete set A ⊂ Y such that

p : p−1(Y \A) −→ Y \A

is a covering map, then the map p : X −→ Y is a branched covering map.

With this definition, we readily have:

Theorem 8. Let X, Y be compact Riemann surfaces and p : X −→ Y a non-constant holomorphic
mapping. Then p is a branched covering map.
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Proof. Let p be as above. We have shown in the proof of Lemma 1 that any holomorphic mapping
between compact Riemann surfaces is surjective. Moreover, since p is non-constant, we see by
Theorem 3 that the critical points of p form a discrete and therefore finite set B ⊂ X. Thus, p is
a local homeomorphism on X \B. Moreover, the inverse image under p of any point in Y must be
finite since it is discrete. Let y ∈ Y and put p−1(y) = {x1, . . . , xn}. Let Uj be a neighborhood of
xj and Vj a neighborhood of y such that p : Uj −→ Vj is biholomorphic and the Uj are disjoint.
Now let V ⊂

⋂n
j=1 Vj such that p−1(V ) ⊂

⋃n
j=1 Uj and put Wj = Uj ∩ P−1(V ). Then the Wj are

disjoint and p : Wj −→ V is biholomorphic for each j.

Theorem 9. Let X, Y be compact Riemann surfaces and f : X −→ Y a non-constant holomorphic
mapping. There exists a positive integer m such that every point of Y is taken precisely m times
by f , counting multiplicities.

Proof. For each integer n ≥ 1, define

Bn =

Q ∈ Y :
∑

P∈f−1(Q)

(bf (P ) + 1) ≥ n

 .

By Theorem 2, we see that Bn is open. We show that it is also closed. Let Qk ∈ Bn and suppose
that limk→∞ Qk = Q. The proof of Theorem 8 shows that the set of branch points of f is finite.
Thus, without loss of generality we may assume that bf (Qk) = 0 for all k, i.e. that f−1(Qk) has
cardinality n or greater. Let P1k, P2k, . . . , Pnk be n distinct points of f−1(Qk). Again, since X is
compact, for each j = 1, . . . , n, there exists a subsequence of {Pjk} that converges to a limit Pj ,
and f(Pj) = Q. Of course, the Pj might not be distinct, but since f(Pjk) = Qk for all k, we must
have ∑

P∈f−1(Q)

(bf (P ) + 1) ≥ n.

Therefore, since Bn is both open and closed for any n ≥ 1, we see that Bn is either empty of all of
X for each n. Now pick some Q0 ∈ Y and set

∑
P∈f−1(Q0)(bf (P ) + 1) = m. Then by compactness

again, m is finite and we have Bm = X and Bn empty for all n > m.

Definition 6. Let X, Y, f, and m be as above. Since f is a branched covering map by Theorem
8, we call the integer m the degree of the cover f , or simply the degree of f . We also refer to f as
an m-sheeted branched cover of Y by X.

Geometrically, we view X as consisting of m copies of Y , each copy mapping biholomorphically
(after the branch points have been excluded) to Y . The branch points are intuitively where the
copies of Y (“sheets”) are glued together to form X.
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1.5 Deck Transformations

Definition 7. Let X, Y be Riemann surfaces and p : X −→ Y a branched covering map. A deck
transformation is a fiber preserving biholomorphic map, that is, a map f such that the diagram

X
f−−−−→ X

p

y yp

Y Y

commutes. It is not difficult to see that the set of all deck transformations of the cover p forms a
group under composition. We denote this group Deck(X/Y ).

Definition 8. Let X, Y be Riemann surfaces, p : X −→ Y a branched covering map, and A ⊂ Y
the set of branch values of p. The covering is normal if the Deck group Deck(X/Y ) acts transitively
on the fiber p−1(Q) for all points Q ∈ Y \A.

The notation Deck(X/Y ) is suggestive. Namely, the group of Deck transformations of a cover
is intuitively very much like the Galois group of a field extension since mappings f ∈ Deck(X/Y )
are required to “fix” the base space, Y , while permuting the points in any given fiber p−1(Q). The
analogy in fact turns out to be a correspondence.

1.6 The Main Correspondence

Given any branched covering map p : X −→ Y , any function f ∈ K(Y ) gives rise to a function
g ∈ K(X) via the pullback p∗(f) = fp = g. We in fact have an injection p∗ : K(Y ) −→ K(X) so
that we may view K(Y ) as a subfield of K(X), and we will often exploit this fact.

Theorem 10 (Main Theorem). Let X, Y be compact Riemann surfaces and p : X −→ Y an n-
sheeted branched covering map. Then K(X)/p∗K(Y ) is a degree n field extension. Conversely, let Y
be a Riemann surface and L/K(Y ) a degree n field extension. Then there exists a Riemann surface
X, an n-sheeted branched covering map p : X −→ Y , and f ∈ K(X) such that L ' K(X) =
p∗K(Y )(f). In both cases, the Deck group Deck(X/Y ) is isomorphic to Aut(K(X)/p∗K(Y )).

We will only prove the first assertion. For proofs of the rest, see [4].

Proof. Let f ∈ K(X) and denote the set of branch values of p by A. We know that A is finite and
that the inverse image under p of a point Q ∈ Y \A consists of n distinct points P1, . . . Pn. Since
p is a branched covering map, for each such Q we have a neighborhood UQ of Q such that

p−1(UQ) =
n∐

i=1

Vi
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with Vi a neighborhood of Pi, the neighborhoods Vi, Vj disjoint for i 6= j, and p : Vi −→ UQ

biholomorphic. Denote the restriction of p to Vi by pi. Since p−1
i is well defined on Y ,

(p−1
i )∗f = fp−1

i

is a meromorphic function on UQ for each i. Therefore, the elementary symmetric functions

sj =
∑

1≤i1<···<ij≤n

j∏
k=1

(p−1
ik

)∗f

for j = 1, 2, . . . , n are meromorphic functions on UQ. Repeathing this argument for each Q ∈ Y \A,
we see that these functions piece together to form meromorphic functions sj defined on all of Y \A.
Call these functions the elementary symmetric functions of f with respect to the covering p. We
now show that the elementary symmetric functions of f may be continued meromorphically to all
of Y . Let a ∈ A. Since X is compact, p−1(a) is finite, say p−1(a) = {b1, . . . , bk}. Since f is
meromorphic, it has isolated poles, so that we may take a neighborhood U of a so that the only
possible poles of f in V = p−1(U) occur at the bj . Let t be a locally uniformizing variable on
U at a. Then t(a) = 0, so that the function p∗t = tp ∈ O(V ) vanishes at each bj . Since f is
meromorphic, it has finite order at each of the bj so that we can find an integer k such that

(p∗t)kf

is holomorphic, and hence bounded, on V . Thus, if rj are the elementary symmetric functions
of (p∗t)kf , then the rj are bounded on U \ {a}. By Theorem 4, the rj can be holomorphically
extended to all of U . Since p∗t is a meromorphic function on V ⊂ X, the elementary symmetric
functions of p∗t are just

( n
j

)
tj , so that we have

rj = tkjsj

for each j. Since t is a meromorphic function on U ⊂ Y and rj may be holomorphically continued
to all of U , we see that the sj can be meromorphically continued to U for all j. This shows that
the elementary symmetric functions of f with respect to p are in K(X). Therefore, for every point
P ∈ X, we have

fn − p∗s1f
n−1 + p∗s2f

n−1 + · · ·+ (−1)np∗sn = 0.

This shows that the minimal polynomial of f over K(Y ) has degree at most n.
We showed after Theorem 6 that given n distinct points in X, there exists some f ∈ K(X)

that separates them. Thus, for a point Q0 ∈ Y with n distinct preimages p−1(Q0) = {P1, . . . , Pn},
we have a f ∈ K(X) with f(Pi) 6= f(Pj) for i 6= j. Moreover, since f is continuous, there exists a
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neighborhood U of Q0 such that f takes on n distinct values for every P ∈ p−1(U). Let m < n
and suppose that the minimal polynomial of f over K(Y ) is

fm + c1f
m−1 + · · ·+ cm

where cj ∈ K(Y ) for each j. Then the polynomial fm + c1(Q)fm−1 + · · · + cm(Q) ∈ C[f ] has
n distinct roots for every Q ∈ U , which implies that the cj are identically zero on U , and by
Theorem 3, identically zero on K(Y ). This is a contradiction, and the minimal polynomial of f
has degree n.

Since K(Y ) is of characteristic zero, the primitive element theorem applies and K(X) is gener-
ated as a field extension of K(Y ) by a single element. We claim that

K(X) = K(Y )(f). (1.3)

To see this, notice that since the minimal polynomial of f over K(Y ) has degree n, we have
[K(Y )(f) : K(Y )] = n. Now let g ∈ K(X). Again, by the primitive element theorem we have
K(Y )(f, g) = K(Y )(h) for some h ∈ K(X). But we have shown that the minimal polynomial of h
has degree at most n. We then have

n = [K(Y )(f) : K(Y )] ≤ [K(Y )(f, g) : K(Y )] ≤ n,

from which we conclude that g ∈ K(Y )(f) already. This gives our claim and completes the
proof.

Theorem 10 is a very deep result. From it we obtain

Theorem 11. Let X, Y be compact Riemann surfaces. Then X ' Y if and only if K(X) ' K(Y ).

In the particular case of branched covering maps p : X −→ P1 from a compact Riemann surface
to the Riemann Sphere, we see by 1.3 and Theorem 7 that

K(X) = K(P1)(f) ' C(x, s) (1.4)

with

F (x, s) = 0, (1.5)

where f ∈ K(X) and F is a rational function of two variables and degree [K(X) : p∗K(Y )].



Chapter 2

The Group SL2(Z) and its Subgroups

2.1 Definitions and Properties

Given a ring R, we let SL2(R) denotes the group of two by two matrices with entries in R of
determinant 1 in R. Now SL2(Z) has a natural action on C2 which descends to (C2 \ {0})/C∗.
Since (C2 \ {0})/C∗ ' P1, we see that SL2(Z) acts on P1, and the resulting action is called
fractional linear transformation. Explicitly, write z ∈ P1 as x/y for (x, y) ∈ C2 \ {0}. For any
α =

(
a b
c d

)
∈ SL2(Z) we have

α

(
x
y

)
=
(

ax + by
cx + dy

)
,

which gives

αz =
ax + by

cx + dy

=
az + b

cz + d
.

This action in fact descends to H, which is verified by the formula

=(α(z)) =
=(z)

|cz + d|2
, (2.1)

where α is as before. In fact, since

−az − b

−cz − d
=

az + b

cz + d
,

we see that SL2(Z)/ ± 1 = PSL2(Z) acts on H, where 1 denotes the identity matrix. Given any
subgroup Γ ⊂ SL2(Z), we will denote by Γ̄ the image of Γ in SL2(Z)/{±1}. We now define an
important class of normal subgroups of SL2(Z).

15
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Definition 9. For any positive integer N define Γ(N) to be the subgroup of SL2(Z) consisting of
those matrices that are congruent modulo N to the identity. That is,

Γ(N) =
{(

a b
c d

)
∈ SL2(Z) : a ≡ d ≡ 1, b ≡ c ≡ 0 mod N

}
.

We call Γ(N) the principal congruence subgroup of level N . Notice that that Γ(N) acts on H
since it is a subgroup of Γ(1) = SL2(Z).

2.2 The Structure of Γ(N)

Let rN : SL2(Z) −→ SL2(Z/NZ) denote the reduction modulo N map. Clearly, Γ(N) is the kernel
of rN and is hence a normal subgroup of Γ(1). More is true, however, as the following theorem
makes evident:

Theorem 12. [8, pg. 61] The sequence

1 −−−−→ Γ(N) −−−−→ SL2(Z) rN−−−−→ SL2(Z/NZ) −−−−→ 1,

where the first two maps are the obvious inclusions and the last map is trivial, is exact.

Proof. The only thing that is not obvious is the surjectivity of rN . Let

α =
(

a b
c d

)
be an element of GL2(Z) with ad − bc ≡ 1 mod N . Recall [8, pg. 61] that there exist γ, δ ∈
PSL2(Z) such that γαδ is diagonal. We may therefore assume that α is diagonal since rN is a
homomorphism. Put

α =
(

a 0
0 d

)
with ad ≡ 1 mod N . Since d has an inverse modulo N , we have (d, N) = 1, and hence there exist
integers u, v such that

ud + vN = 1.

Let ad = 1 + rN for some integer r. Then the matrix

β =
(

a− ruN rvN
N d

)
satisfies rN (β) = α and has determinant 1 since ad − ruNd − rvN2 = 1 + rN(1 − ud − vN) = 1.
Thus rN is surjective.
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We can now determine the structure of Γ(1)/Γ(N).

Corollary 1. For any positive integer N , we have Γ(1)/Γ(N) ' SL2(Z/NZ).

Proof. This follows from an application of the first isomorphism theorem to the exact sequence
given in Theorem 12.

2.3 Fundamental Domains

Since Γ(N) acts on H, we may consider the quotient space H/Γ(N) consisting of the Γ(N) orbits
on H.

Definition 10. Given a subgroup Γ of Γ(1), a fundamental domain for Γ is a connected open
subset F ⊂ H such that any point z of H is equivalent modulo Γ to some point of the closure of F
and no two points of F are equivalent under Γ.

As an example, we determine a fundamental domain for Γ(1).

Theorem 13. A fundamental domain F for Γ(1) is the open set in H bounded by the lines <(z) =
−1

2 , <(z) = 1
2 and the unit circle {z : |z| = 1}. Moreover,

T :=
(

1 1
0 1

)
and S :=

(
0 −1
1 0

)
generate Γ(1).

Proof. (Adapted from [12, pg. 16] and [8, pg. 30]) Let Γ′ be the subgroup of Γ(1) generated by
S, T. First we show that every z ∈ H is equivalent under Γ′ to some z′ in the closure of F . Let
z ∈ H and put σ =

(
a b
c d

)
∈ Γ′. Since the set

{cz + d : c, d ∈ Z}

is a lattice in C, the quantity |cz + d| for (c, d) ∈ Z2 \ {0} is bounded below. By 2.1, the set
{=(σ(z)) : σ ∈ Γ′} is bounded above, say by σ0(z) = w. Since σ0, S ∈ Γ′, we have

=(Sσ0(z)) = =
(
−1
w

)
=

=(w)
|w|2

≤ =(w),

so that |w| ≥ 1. Now there exists some n ∈ Z such that

−1
2
≤ <(Tnw) ≤ 1

2
.

and obviously =(Tnw) = =(w), so that z′ = Tnσ0(z) lies in the closure of F and is Γ′ equivalent to
z. Since Γ′ ⊂ Γ(1), we trivially have that every point of H is equivalent under Γ(1) to a point in F .
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Now we show that no two elements of F are equivalent under Γ(1) (and hence under Γ′). Let
z, z′ be distinct points of F and suppose that there exists σ =

(
a b
c d

)
∈ Γ(1) with z′ = σ(z).

Without loss of generality, assume that =(z) ≤ =(z′) = =(z)/|cz + d|2. We therefore have

|c| =(z) ≤ |cz + d| ≤ 1.

Notice that if c = 0 then d = ±1 which forces a = d and z′ = z ± b which is impossible since b is
a nonzero integer. Hence, c 6= 0. From the definition of F , we see that =(z) ≥

√
3/2. Therefore,

|c|
√

3/2 ≤ 1 so that c = ±1 and |z + d| ≤ 1. Again from the definition of F we see that if |d| ≥ 1
then |z + d| > 1 for any z ∈ F , so that d = 0 and |z| ≤ 1. This contradicts z ∈ F . In fact, we
have shown that if z, z′ in the closure of F are Γ(1) equivalent, then z′ = T±1z or z′ = Sz. In
both cases, z, z′ lie on the boundary of F and are equivalent under Γ′.

We have shown that F is a fundamental domain for both Γ′ and Γ(1). Together with the fact
that Γ′ ⊂ Γ(1), this implies that Γ′ = Γ(1). Indeed, let α ∈ Γ(1) and z ∈ F . Since F is a
fundamental domain for Γ′, there exists β ∈ Γ′ with w = βα(z) in the closure of F . In fact, we
have shown above that w must be in F and hence w = z (since F is a fundamental domain for
Γ(1)). Therefore, βα = 1 so that α ∈ Γ′.

By Theorem 13, we see that

F ∪ {z ∈ H : <(z) = −1/2, |z| ≥ 1} ∪ {z ∈ H : −1/2 ≤ <(z) ≤ 0, |z| = 1}

is a set of representatives for H/Γ(1). Similarly, one can find an explicit set of representatives for
H/Γ(N). We would like to put a topology on the resulting set so that the space is compact. To do
this, however, we need to add some points. The situation is completely analogous to that of the
one point compactification of C by adding the point at infinity.

2.4 Cusps

It is obvious that any subgroup Γ of Γ(1) acts on Q∪{∞} = P1(Q) by the same formula that gives
its action on H.

Definition 11. The cusps of a subgroup Γ of Γ(1) are the Γ orbits of P1(Q). We will denote by
CΓ any complete set of representatives of cusps of Γ. By abuse of terminology, will often refer to a
single point as a cusp.

The following theorem describes the set CΓ(N) for each positive integer N .

Theorem 14. [12, pg. 23] With the convention that ∞ = ±1/0, two points a/b, c/d of Q with
(a, b) = (c, d) = 1 are equivalent under Γ(N) iff ±

[
a
b

]
≡
[

c
d

]
mod N.
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Proof. In one direction, suppose that
[

a
b

]
≡
[

c
d

]
mod N. Since (c, d) = 1, we have integers r, s

such that rc − ds = 1. Then τ =
[

c s
d r

]
∈ Γ(1) satisfies τ

[
1
0

]
=
[

c
d

]
, so that τ−1

[
a
b

]
≡
[

1
0

]
mod N . Thus, if we can find some σ ∈ Γ(N) with σ

[
1
0

]
= τ−1

[
a
b

]
, then we have τστ−1

[
c
d

]
=
[

a
b

]
.

Since Γ(N) is normal in Γ(1), this shows that a/b and c/d are equivalent under Γ(N). It therefore
remains to show the result when

[
c
d

]
=
[

1
0

]
. Since (a, b) = (a,N) = 1, there exist integers p, q so

that ap + bq = (1− a)/N . Now let σ =
[ a −Nq

b 1+Np

]
. Then clearly σ ∈ Γ(N) and σ

[
c
d

]
=
[

a
b

]
. This

shows in any case that a/b and c/d are equivalent under Γ(N). Conversely, suppose that there
exists σ =

[
p q
r s

]
∈ Γ(N) with a/b = σ(c/d). Then a/b = (cp + dq)/(rp + sq), so that there exists

some λ = m/n ∈ Q with (m,n) = 1 and λ
[

a
b

]
=
[

p q
r s

][
c
d

]
. Equivalently, we have ma = n(pc + qd)

and mb = n(rc + sd), from which we conclude (since (m,n) = 1) that n|a and n|b. But (a, b) = 1
so that n = ±1. Similarly, since σ has determinant 1 and (c, d) = 1, we have m = ±1. Therefore,
since σ ∈ Γ(N) we have ±

[
a
b

]
≡
[

c
d

]
mod N .

Using this theorem, we easily see that CΓ(1) = {∞}.

Definition 12. We shall let H∗ denote the extended complex plane, that is, the subset of P1 given
by H∗ = H ∪Q ∪ {∞}.

From our remarks above, Γ(N) acts on H∗ for any N , so that the quotient H∗/Γ(N) makes
sense. Note that since Γ(N) preserves P1(Q), we alwsys have H∗/Γ(N) = H/Γ(N) ∪ CΓ(N). We
now specify a topology on H∗/Γ(N) so that the resulting space is compact.

2.5 Topology

First, we topologize H∗ by specifying a fundamental system of open neighborhoods of any point
z ∈ H∗. If z ∈ H, then a fundamental system of open neighborhoods of z is just the usual
one under the standard topology on C. If z 6= ∞ is in Q, we take as a fundamental system of
open neighborhoods all sets of the form {z} ∪ Sz, where Sz is a circle of radius r > 0 centered at
z + ir. Finally, as a fundamental system of open neighborhoods of ∞, we take all sets of the form
{∞} ∪ {z ∈ H : =(z) > c}, where c > 0 is constant. Clearly, this specifies a topology on H∗.
Moreover, in this topology, every σ ∈ Γ(N) is a homeomorphism σ : H∗ −→ H∗.

We now endow H∗/Γ(N) with the quotient topology. That is, if π : H∗ −→ H∗/Γ(N) is the
quotient map, then a set X ⊂ H∗/Γ(N) is open precisly when π−1(X) is open in H∗. It can be
shown [12, pg. 12] that H∗/Γ(N) with the above topology is Hausdorff and locally compact, though
we will not prove these facts. From our discussion of a fundamental domain for H∗/Γ(1) above, it is
not difficult to prove that H∗/Γ(1) is compact. Indeed, H∗/Γ(1) = (H/Γ(1))∪{∞} is the one-point
compactification of H/Γ(1). Using this fact, we readily show that H∗/Γ(N) is compact for each N .

Theorem 15. For every N , the topological space H∗/Γ(N) is compact.
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Proof. Since Γ(N) is of finite index in Γ(1), we may write

Γ(1) =
m⋃

i=1

giΓ(N),

where gi ∈ Γ(1) and m = [Γ(1) : Γ(N)]. Therefore, we have

H∗/Γ(N) =
m⋃

i=1

gi(H∗/Γ(1)),

which is a finite union of compact spaces, and hence compact.

2.6 Fixed Points

Now that we have made H∗/Γ(N) into a compact topological space, we would like to make it into
a compact Riemann surface. Before we can endow H∗/Γ(N) with a smooth structure, however, we
need to understand the points of H that have nontrivial Γ(N) stabiliziers.

Definition 13. By the isotropy subgroup of a group Γ acting on a topological space S at a point
z ∈ S we mean the stabilizer of z in Γ, that is, the group Γz = {σ ∈ Γ : σ(z) = z}.
Theorem 16. Every point z ∈ H with nontrivial stabilizer Γ̄(1)z ⊂ Γ̄(1) is equivalent under
Γ(1) to i or ω = e2πi/3. Every s ∈ Q is Γ(1) equivalent to ∞. Moreover, the isotropy subgroups
corresponding to i and ω are 〈S〉, 〈ST 〉 respectively, and the isotropy subgroup of Γ̄(1) at ∞ is
generated by T .

Proof. Suppose that z ∈ H is fixed by some nontrivial α ∈ Γ̄(1). By Theorem 13 there exists some
σ ∈ Γ(1) so that σ(z) ∈ F̄ . We then have σα(z) = σ(z), so that σασ−1 fixes σ(z) ∈ F̄ . Thus, it
is enough to consider the fixed points of F̄ . Let γ =

[
a b
c d

]
∈ Γ(1) fix z ∈ F̄ . Then from 2.1, we

see that |c| |z| ≤ |cz + d| = 1. If c = 0 then a = d = ±1 and z ∈ H is not fixed by γ. Hence c 6= 0.
Since z ∈ F̄ we have |z| ≥ 1 so that |c| = |z| = 1. If d ≥ 1 then |cz +d| > 1 unless d = 1 and z = ω
or d = −1 and z = ω + 1. If d = 0 then b = ∓c = ±1. Since in this case we have z = ±a − 1/z,
we conclude a = 1 or 0 from the fact that |z| = 1. Thus we see that z = i, ω or 1 + ω and that the
isotropy subgroups are

Γ̄(1)i =
〈(

0 −1
1 0

)〉
= 〈S〉, and

Γ̄(1)ω =
〈(

0 −1
1 1

)〉
= 〈ST 〉.

Now by Theorem 14, every s ∈ Q is Γ(1) equivalent to ∞. Moreover if z 7→ (az + b)(cz + d)
stabilizes ∞, we must have c = 0. This forces a = d = ±1, so that every γ ∈ Γ̄(1) fixing ∞ has
the form γ =

(
1 b
0 1

)
for some integer b. Since T b = γ and T also fixes ∞, we see that T generates

Γ̄(1)∞, as claimed.
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2.7 The Riemann Surface H∗/Γ(N)

We can now specify a smooth structure on H∗/Γ(N). We will need the following useful lemma,
which we do not prove:

Lemma 2. Let z ∈ H∗, and as before let Γ(N)z be the isotropy subgroup of Γ(N) at z. Then there
exists an open neighborhood U of z with

Γ(N)z = {γ ∈ Γ(N) : γ(U) ∩ U 6= ∅}.

For a proof of this lemma, see [12, pg. 17]. Now let z,Γ(N)z, U be as in Lemma 2, and denote
by π the natural projection (i.e. the quotient map)

πN : H∗ −→ H∗/Γ(N).

We know by Theorem 16 that Γ̄(N)z is a finite cyclic subgroup of Γ(N) if z ∈ H, and that if z is a
cusp, then there exists g ∈ Γ(1) with gz = ∞ and hence gΓ̄(N)zg

−1 = 〈T k〉 for some k ≥ 1. From
the definition of U , it is easy to see that the natural map (given by inclusion)

U/Γ(N)z −→ H∗/Γ(N)

is injective. Moreover, U/Γ(N)z is an open neighborhood of πN (z) in H∗/Γ(N).

1. If Γ̄(N)z is trivial, then πN : U −→ U/Γ(N)z is a homeomorphism. We therefore use
U/Γ(N)z as an open neighborhood of z and π−1

N as a locally uniformizing variable at πN (z).

2. If Γ̄(N)z is cyclic of order n > 1, (where in the cases that we are dealing with, n = 2 or
3), then let λ : H −→ ∆ be a biholomorphic mapping of the upper half plane to the unit
disc with λ(z) = 0. Notice that λΓ̄(N)zλ

−1 is a cyclic group of automorphisms of the disc
preserving 0. As such, λΓ̄(N)zλ

−1 consists of the mappings w −→ ζk
nw, where ζn = e2πi/n is

a primitive nth root of unity. Therefore, the map p : U/Γ(N)z −→ C given by

p(πN (z)) = λn(z)

is a homeomorphism of U/Γ(N)z with an open subset of C, so we have an open neighborhood
U/Γ(N)z and a locally uniformizing variable p for the point πN (z).

3. Finally, if z is a cusp, then we have seen in Theorem 16 that Γ̄(N)z is Γ(1) conjugate to
Γ̄(N)∞ and that Γ̄(N)∞ as a subgroup of Γ̄(N) is generated by some power T k. (It is, in
fact, not difficult to see that k = N since N is the smallest power of T such that TN ∈ Γ̄(N)).
We therefore reduce everything to the case z = ∞ by letting g ∈ Γ(1) be some element taking
z to ∞. Now the map p : U/Γ(N)z −→ C given by

p(πN (z)) = e2πig(z)/k (2.2)
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certainly maps U/Γ(N)z onto an open neighborhood of C. That it is an injection follows
from the fact that e2πig(z1)/k = e2πig(z2)/k if and only if (T k)m(g(z1)) = g(z2) for some m,
that is, if and only if πN (g(z1)) = πN (g(z2)). We therefore have an open neighborhood and
a uniformizing variable corresponding to the cusp z.

It may readily be checked that the complex charts specified above are compatible, and that we
have thus defined a Riemann surface.

Definition 14. We define the modular curve X(N) to be the Riemann surface H∗/Γ(N).

2.8 The Natural Map H∗/Γ(N) −→ H∗/Γ(1)

Consider the diagram

H∗ H∗

πN

y yπ1

X(N)
f−−−−→ X(1)

where πN , π1 are the natural quotient maps and f is the natural map which makes the diagram
commute. That is, for any point πN (z) ∈ X(N), the value f(πN (z)) is defined to be π1(z). Using
the complex structures on X(N) and X(1), it can be shown that f is in fact a holomorphic mapping
of Riemann surfaces and is the quotient mapping

f : X(N) −→ X(N)/G, (2.3)

where G = Γ̄(1)/Γ̄(N). Theorem 8 tells us that f is a branched covering map. Moreover, we see
that f is of degree [Γ̄(1) : Γ̄(N)] since every point in X(1) has [Γ̄(1) : Γ̄(N)] inverse images under
f (counting multiplicities). We are now in precisely the situation analyzed in Chapter 1, and we
shall use the techniques developed there to study the function fields K(X(N)) for certain value of
N . First, however, we determine the genus of the surface X(N).

2.9 Genus

Let X, Y be compact Riemann surfaces of genus g, g′ respectively, and p : X −→ Y a degree n
branched covering map. Let bp(P ) denote the branch number of p at P ∈ X. Then the Hurwitz
formula [12, pg. 19] tells us that

2g′ − 2 = n(2g − 2) +
∑
P∈X

bp(P ). (2.4)
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We have shown in the proof of Theorem 16 that the branch points of the covering f : X(N) −→
X(1) are all equivalent under Γ(1) to one of ω = e2πi/3, i, ∞. Moreover, it is not difficult to
determine the branch number for each point. Explicitly, since S =

(
0 1

−1 0

)
and ST =

(
0 −1
1 1

)
, we

see that S, ST 6∈ Γ(N) for any N > 1. Therefore, S, ST ∈ Γ̄(1)/Γ̄(N) = G, so that by 2.3 we
have:

1. Every point P ∈ X(N) that is equivalent under Γ(1) to ω has bf (P ) = 2.

2. Every point P ∈ X(N) that is equivalent under Γ(1) to i has bf (P ) = 1.

Now let µN = [Γ̄(1) : Γ̄(N)] be the degree of the branched covering map f . Then we clearly have

1. The number of distinct points P ∈ X(N) that are equivalent under Γ(1) to ω is µN/|Γ̄(N)ω| =
µN/3.

2. The number of distinct points P ∈ X(N) that are equivalent under Γ(1) to i is µN/|Γ̄(N)i| =
µN/2.

Finally, we must compute the branch number at infinity and the size of CΓ(N). Notice that TN =(
1 N
0 1

)
is the smallest power of T contained in Γ̄(N). Therefore, G∞ as a subgroup of G is cyclic of

order N so that X(N) has precisely µN/N inequivalent cusps, that is,
∣∣CΓ(N)

∣∣ = µN/N . Finally,
since each cusp has stabilizer conjugate to G∞, we see that bf (s) = N − 1 for any cusp s. Let gN

denote the genus of the Riemann surface X(N). Then putting all of our information together and
using 2.4, we find

2gN − 2 = µN (2g1 − 2) + 2µN/3 + µN/2 + (N − 1)µN/N

= µN

(
2g1 +

N − 6
6N

)
,

so that

gN = 1 + µN

(
g1 +

N − 6
12N

)
. (2.5)

In the next chapter, we will show that g1 = 0.



Chapter 3

Modular Functions

3.1 Definitions

Definition 15. By a modular function of level N we shall mean a meromorphic function on the
modular curve X(N).

Clearly, any modular function f of level N may be extended to a meromorphic function f̃ on
H∗ by the pullback f̃ = π∗Nf . We then see that f̃ is a meromorphic function on H∗, invariant
under the action gf̃(z) = f̃(gτ) for all g ∈ Γ(N) and τ ∈ H∗. Such functions may be viewed as
meromorphic functions on H invariant under Γ(N) with the following additional property: For each
g ∈ Γ(1), the function gf̃(τ) = f̃(gτ) admits a laurent expansion in the variable q1/N := e2πiτ/N

with only finitely many negative powers of q1/N . That f̃ admits such an expansion may be seen as
follows:

1. f̃ is invariant under the action of Γ(N), and in particular the transformation TN , so that by
standard results from fourier analysis, f(τ) has such an expansion for all τ ∈ H.

2. At the cusps, 2.2 tells us that such an expansion exists since e2πih(z)/N is a uniformizing
variable at z where h takes z to ∞.

3. The expansion has only finitely many negative powers of q1/N because f̃ is meromorphic on
H∗.

3.2 The Field Extension K(X(N))/K(X(1))

We have seen in section 2.8 that the natural map f : X(N) −→ X(1) is a branched covering
map of degree [Γ̄(1) : Γ̄(N)], and therefore that K(X(N))/K(X(1)) is degree [Γ̄(1) : Γ̄(N)] field
extension. In fact, we have

24
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Theorem 17. The extension K(X(N))/K(X(1)) is Galois, with Galois group Γ̄(1)/Γ̄(N).

Proof. Let G = Γ̄(1)/Γ̄(N). By 2.3, we have X(1) = X(N)/G. We show that G injects into
Aut(K(X(N))/K(X(1))). Let g, h ∈ G be distinct. Then there exists some point z ∈ X(N) with
gz 6= hz. By Theorem 6, there exists f ∈ K(X(N)) with f(gz) 6= f(hz), that is, gf 6= hf . This
completes the proof.

3.3 Elliptic Functions

Let ω1, ω2 ∈ C be such that =(ω1/ω2) > 0, fix L ⊂ C2 to be the lattice generated by ω1, ω2, and
put L′ = L \ {0} Recall that the Weierstrass function defined by

℘(z, L) :=
1
z2

+
∑
ω∈L′

{
1

(z − ω)2
− 1

ω2

}
(3.1)

is a meromorphic doubly periodic function of z with periods ω1 and ω2. The function ℘(z, L)
admits the Laurent series expansion

℘(z, L) =
1
z2

+
1
20

g2(L)z2 +
1
28

g3(L)z4 + · · · ,

where

g2(L) := 60
∑
ω∈L′

1
ω4

and

g3(L) := 140
∑
ω∈L′

1
ω6

are the Eisenstein series of weights 4 and 6 [8, pg. 10]. Obviously, g2(L) and g3(L) satisfy

g2(λL) = λ−4g2(L)
g3(λL) = λ−6g3(L)

for any λ ∈ C∗; that is, they are homogenous of degrees −4 and −6, respectively. The discriminant

∆(L) = g3
2(L)− 27g2

3(L),

so named because it is the discriminant of the cubic polynomial y2 = 4x3 − g2x − g3 satisfied by
(x, y) = (℘(z, L), ℘′(z, L)), is therefore homogenous of degree −12. It is furthermore true [8, pg.
11] that ∆(L) 6= 0 for any lattice L ⊂ C2. This fact will be crucial when we define the modular
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function J . More than this is true, however. When L is the lattice generated by 1 and τ ∈ H, we
in fact have the product expansion [8, pg. 249]

∆(L) = (2πi)12q
∞∏

n=1

(1− qn)24, (3.2)

where q = e2πiτ .
Recall that the Weierstrass sigma and zeta functions are defined as [8, pg. 239]

σ(z, L) := z
∏

ω∈L′

(
1− z

ω

)
ez/ω+ 1

2
(z/ω)2 (3.3)

and

ζ(z, L) :=
σ′(z, L)
σ(z, L)

. (3.4)

Taking the logarithm of the product 3.3 and differentiating twice with respect to z, it may be seen
using 3.1 and 3.4 that

ζ ′(z, L) = −℘(z, L).

It follows that

ζ(z + ω, L) = ζ(z, L) + η(ω, L),

for some constant η(ω, L) and any ω ∈ L. In fact, η(ω, L) extends to a function η(z, L) which is
R-linear in z [7, pg. 27]. Both ζ(z, L) and η(z, L) are homogenous of degree −1, that is

ζ(λz, λL) = λ−1ζ(z, L),

η(λz, λL) = λ−1η(z, L), (3.5)

while σ(z, L) is homogenous of degree 1:

σ(λz, λL) = λσ(z, L), (3.6)

for any λ ∈ C∗. Furthermore, the sigma function satisfies [7, pg. 28]

σ(z + ω, L) = ε(ω)eη(ω,L)(z+ω/2)σ(z, L), (3.7)

where ω ∈ L is arbitrary and ε(ω) is defined by

ε(ω) :=

{
1 if ω ∈ 2L

−1 otherwise
.
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Since we will work exclusively with the lattice L generated by 1, τ with τ ∈ H, set W =
(

ω1
ω2

)
=(

τ
1

)
. Further, let a = (a1, a2) ∈ Q2 and fix z = a ·W = a1τ + a2. We now define the Klein forms

κa(W ) = κ(z, L) := e−η(z,L)z/2σ(z, L). (3.8)

For fixed a, it is evident that κa(W ) is a function only of τ , and we will often write κa(τ) = κa(W ).
The Klein forms satisfy several properties:

1. They are homogenous of degree 1:

κa(λW ) = λκa(W ) (3.9)

for any λ ∈ C∗. This follows from 3.5 and 3.6.

2. Using 3.7, it can be shown [7, pg. 28] that

κa+b(W ) = ε(a, b)κa(W ), (3.10)

where b ∈ Z2 is arbitrary and ε(a, b) is a dth root of unity with d the least common multiple
of the denominators of the components of a.

3. Finally, let α ∈ SL2(Z). Then

κa(αW ) = κaα(W ). (3.11)

This last property follows from the Definition 3.8.

Our main use of Klein forms will be in the explicit construction of modular functions of level
N . Let a ∈ 1

N Z2 and suppose that α ∈ Γ(N). Then by 3.10 and 3.11, we have

κa(αW ) = ε(α)κa(W ),

where ε(α) is in fact a (2N)th root of unity. Thus, the Klein forms may be used as the “building
blocks” of modular functions. In section 3.7, we will see how this explicit construction is carried
out. We conclude this section by noting the q-product expansion for the Klein forms and a useful
corollary of this formula: with z = a ·W = a1τ + a2, put q = e2πiτ as before and qz = e2πiz. We
then have

κa(τ) = −q(1/2)(a2
1−a1)

2πi
eπia2(a1−1)(1− qz)

∞∏
n=1

(1− qnqz)(1− qn/qz)
(1− qn)2

. (3.12)

Notice that if we change a to a + b for some b ∈ Z2 then the q-series 3.12 changes by a root of
unity. Therefore, from now on we consider a to be the representative of its class modulo Z2 such
that

0 ≤ a1 < 1 and 0 ≤ a2 < 1.
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Corollary 2. Let a be as above. Then the Klein form ka(τ) is holomorphic on H and the order of
ka(τ) at ∞ is

1
2
(a2

1 − a1). (3.13)

Proof. This follows directly from the formula 3.12.

We remark that we can use Corollary 2 to find the order of κa(τ) at any cusp s. Explicitly, let
αs ∈ Γ(1) take s to ∞. Then the order of κa(τ) at s is simply the order of κaαs(τ) at ∞.

3.4 The J Function

We now construct a modular function of level 1. As before, let τ ∈ H and L = 〈1, τ〉 be the lattice
generated by 1 and τ . Since ∆(L) and g2(L)3 are both homogenous of degree −12, the function

J(τ) :=
g3
2(L)
∆

(3.14)

=
g3
2(L)

g3
2(L)− 27g2

3(L)
(3.15)

is homogenous of degree 0. Therefore, since the lattices L = 〈1, τ〉 and L = 〈1,−1/τ〉 satisfy the
obvious relation L = τL, we see that J(τ) is invariant under the transformation τ → −1/τ = Sτ .
Moreover, since 〈1, τ + 1〉 = L, we have J(τ + 1) = J(τ). Finally, the nonvanishing of ∆ for any
τ ∈ H tells us that J(τ) is holomorphic on H. Expanding 3.15 as q-series, we see that

J(τ) =
1

1728

(
1
q

+ 744 + 196884q + · · ·
)

. (3.16)

Therefore, J(τ) has a pole of order 1 at ∞. Since J is invariant under S and T , by Theorem 13 we
see that J defines a meromorphic function on X(1), that is, J ∈ K(X(1)). We then have:

Theorem 18.

K(X(1)) = C(J).

Proof. (See [8, pg. 63]) Let f ∈ K(X(1)). If f has a pole of order r at z0 ∈ H then the function
f(J −J(z0))r is analytic at z0. Therefore, there exists some polynomial Q ∈ C(J) such that Qf is
holomorphic on H. By Lemma 1, if Qf is not constant on X(1), it has a pole at infinity (the only
cusp) of order m, say. Since J has a simple pole at infinity, there exists a constant c0 ∈ C so that
Qf − cJm has a pole of at most order m− 1. By descent, there exists some polynomial P ∈ C(J)
so that Qf−P has no pole at infinity and no pole in H. But then Qf−P is a holomorphic function
on X(1) and therefore constant by Lemma 1. We conclude that f ∈ C(J), as desired.
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Notice that this proof only uses two facts:

1. The surface X(1) is compact.

2. The function J ∈ K(X(1)) has only a single pole, of order one at infinity.

Therefore, we see that the same proof will work for any compact Riemann surface R provided we
can find a function J ∈ K(R) that has only a single pole of order one at infinity (or equivalently
at any cusp).

3.5 Special Values of J

Since the only points in H∗ with nontrivial stabilizer in Γ̄(1) are equivalent under Γ(1) to i, ω,∞,
(Theorem 16), these points are in some sense “special” points. We therefore compute the value of
J at each of them, since we will use these values frequently.

Proposition 1. We have

J(ω) = 0
J(∞) = ∞
J(i) = 1.

Proof. The value at ∞ follows from the q-series 3.16. Let Lτ be the lattice generated by 1, τ . Then

g3(Li) =
∑

(m,n)∈Z2\{0}

1
(m + ni)6

= i6
∑

(m,n)∈Z2\{0}

1
(mi− n)6

= −g3(Li),

from which it follows that g3(Li) = 0. Similarly,

g2(Lω) =
∑

(m,n)∈Z2\{0}

1
(m + nω)4

= ω4
∑

(m,n)∈Z2\{0}

1
((m− n)ω − n)4

= ωg2(Lω),

so that g2(Lω) = 0. The proposed values of J now follow.
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3.6 The Function Field K(X(N))

Theorem 18 tells us that K(P1) ' K(X(1)). By Theorem 10, we conclude that X(1) ' P1, as was
alluded to in section 2.9. Then by 2.5, we have that the genus gN of X(N) is

gN = 1 + µN
N − 6
12N

, (3.17)

where µN = [Γ̄(1) : Γ̄(N)] is the degree of the natural covering map f : X(N) −→ X(1) of section
2.8 and N > 1. Therefore, for 1 ≤ N ≤ 5, gN = 0 so that the field K(X(N)) is rational, that is,
generated by a single element over C. Moreover, it follows immediately from 3.17 that for N > 6,
we have gN > 1, while g6 = 1. Therefore, the five values of N in the range 1 ≤ N ≤ 5 are the only
values of N for which X(N) has genus 0 and the corresponding function field K(X(N)) is rational.

We have already constructed a generator for K(X(1)) over C; namely, the function J of section
3.4. The goal of the next two sections is to determine such functions for the other four values of N
cited above.

3.7 Products of Klein Forms

As mentioned in section 3.3, we will use the Klein forms to explicitly construct modular functions
of level N . To do this, we need to know when a product of Klein forms (taken to both positive and
negative integer exponents) is a modular function. The following theorem tells us when this is so:

Theorem 19. Fix a positive integer N ≥ 1 and let A ⊂ Z2 be a finite set consisting of pairs of
integers not both divisible by N . Put

A =
{

1
N

a : a ∈ A

}
and to α = (a1/N, a2/N) ∈ A associate the integer m(α). Suppose that∑

α∈A
m(α) = 0,

and let

f(τ) =
∏
α∈A

κm(α)
α (τ).

Then if N is odd, f is a modular function of level N if and only if∑
α∈A

m(α)a2
1 ≡

∑
α∈A

m(α)a2
2 ≡

∑
α∈A

m(α)a1a2 ≡ 0 mod N,
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while if N is even, f is a modular function of level N if and only if∑
α∈A

m(α)a2
1 ≡

∑
α∈A

m(α)a2
2 ≡ 0 mod 2N and∑

α∈A
m(α)a1a2 ≡ 0 mod N.

Proof. See [7, pg. 68].

3.8 Generators for K(X(N)), N ≤ 5

Theorem 20. Set ζk = e2πi/k and let the functions JN for 2 ≤ N ≤ 5 be given by

J2 =
κ4

(0, 1
2
)

κ4
( 1
2
,0)

J3 =
κ3

( 1
3
,0)

κ4
(0, 1

3
)

= 16q1/2

( ∞∏
n=1

1− q2n

1− qn/2

)8

=
1

i
√

27
q−1/3

( ∞∏
n=1

1− qn/3

1− q3n

)3

J4 =
κ3

(0, 1
4
)
κ( 1

2
, 1
4
)

κ3
( 1
4
,0)

κ( 1
4
, 1
2
)

J5 =
κ( 2

5
,0)κ( 2

5
, 1
5
)κ( 2

5
, 2
5
)κ( 2

5
, 3
5
)κ( 2

5
, 4
5
)

κ( 1
5
,0)κ( 1

5
, 1
5
)κ( 1

5
, 2
5
)κ( 1

5
, 3
5
)κ( 1

5
, 4
5
)

= ζ3
8

√
8q1/4

∞∏
n=1

(1− q4n)2(1− qn/2)
(1− qn/4)2(1− q2n)

= ζ5q
−1/5

∞∏
n=1

(1− q5n−2)(1− q5n−3)
(1− q5n−4)(1− q5n−1)

.

Then for 2 ≤ N ≤ 5, K(X(N)) = C(JN ).

Proof. In section 3.4, we showed that any function on X(N) with a single simple pole generates
K(X(N)). Thus, it is enough to show that JN ∈ K(X(N)) and that JN has only a single pole of
order one, for each N with 2 ≤ N ≤ 5. That each JN is a modular function of level N follows after
a short calculation from Theorem 19. We then use Theorem 14 to compute the set of cusps CΓ(N)

for the above values of N . We find:

CΓ(2) = {0, 1,∞} ,

CΓ(3) = {0, 1/2, 1,∞} ,

CΓ(4) = {0, 1/3, 1/2, 2/3, 1,∞} ,

CΓ(5) = {0, 2/9, 1/4, 2/7, 1/3, 2/5, 1/2, 5/8, 2/3, 3/4, 1,∞} .

Finally, we use Corollary 2 to compute the order of JN at each cusp and find that JN has only a
single simple pole for each N with 2 ≤ N ≤ 5. This completes the proof.
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As a consequence of this theorem, we are now able to give an explicit isomorphism X(N) −→ P1.
In particular, since the parameter x of C(x) induces the trivial isomorphism id : P1 −→ P1, the
map

τ −→ JN (τ) (3.18)

is an isomorphism of X(N) with P1. We shall use this in the next section to show how Γ̄(1)/Γ̄(N)
acts on P1 for 2 ≤ N ≤ 5.

3.9 The Action of Γ(1) on JN

We showed in section 3.2 that the field extension K(X(N))/K(X(1)) is Galois with Galois group
Γ̄(1)/Γ̄(N). Since by Theorem 13 the transformations S =

(
0 1
−1 0

)
and T =

(
1 1
0 1

)
generate Γ(1),

we can determine the action of the Galois group Γ̄(1)/Γ̄(N) on JN by determining the action of S
and T on JN .

Now if f ∈ K(X(N)) satisfies K(X(N)) = C(f), then we certainly have gf = R(f) for any
g ∈ Γ(1), where R ∈ C(x). However, it is not difficult to see that f has only a single simple pole
if and only if gf has only a single simple pole. Therefore, C(gf) = C(f), so that we may write
f = Q(gf) where Q ∈ C(x). Then we have f = Q◦R(f) so that Q◦R = 1 which implies that Q,R
are degree one rational maps. Put more simply, the automorphism group of P1 is just PSL2(C) [9,
pg. 12], and since f 7→ gf induces an automorphism of K(P1), it follows that f = φg(gf) for some
fractional linear transformation φg ∈ PSL2(C). Moreover, it is not difficult to explicitly determine
φg. Without loss of generality, we may suppose that f has a simple pole at infinity (if not, replace
f by 1/(f − c1) where c1 is the constant term in the q-expansion of f). If gf has a simple pole at
infinity, then there exists r ∈ C such that f−r(gf) has no poles in X(N) and is therefore constant.
Otherwise, let cg be the constant term in the q-expansion of gf . Then 1/(gf − cg) has a simple
pole at infinity and we are reduced to the previous case. We now use this process to determine the
action of S and T on JN for 2 ≤ N ≤ 5.

With ζk = e2πi/k as before, we have

T ◦ J2 =
−J2

1 + J2
S ◦ J2 =

1
J2

(3.19)

T ◦ J3 = ζ3 + ζ2
3J3 S ◦ J3 =

−1
J3

(3.20)

T ◦ J4 =
ζ4J4

1− J4
S ◦ J4 =

1
ζ4J4

(3.21)

T ◦ J5 = ζ−1
5 J5 S ◦ J5 =

ζ2
5 + (1 + ζ5 + ζ2

5 )J5

J5 − (1 + ζ5 + ζ2
5 )

(3.22)

Now by 3.18, the above action of Γ̄(1)/Γ̄(N) on JN for 2 ≤ N ≤ 5 induces an action on P1. That
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is for each N , for any point z ∈ P1, and any g ∈ Γ̄(1)/Γ̄(N), we define

gz := JN (gJ−1
N (z)).

We can give a simpler description of this action. We begin with N = 2, though this is in
some senses the least intuitive of the 4 cases. The 3 cusps may be viewed as the 3 vertices of the
equatorial triangle of a double triangular pyramid inscribed in the unit sphere. Moreover, the
two preimages of 0, i.e. the Γ̄(1)/Γ̄(2) orbit of ω, correspond to the two polar tips of this double
pyramid. Projecting this solid to a triangulation of P1 by 6 triangles, it is evident that Γ̄(1)/Γ̄(2) '
S3 acts on P1 via symmetries of the double pyramid. The group is generated by rotations of 2π/3
fixing polar points (corresponding to the order 3 stabilizer of ω generated by ST ) and by the order
2 symmetry that interchanges the two tips (which corresponds to the transformation T ).

Viewing the 4 cusps of X(3) as the four vertices of a regular tetrahedron inscribed in P1,
which has been projected to a triangulation of P1 by 4 triangles, we see that Γ̄(1)/Γ̄(3) acts on
P1 by symmetries of the tetrahedron: the group is generated by rotations of 2π/3 about a vertex
(corresponding to the transformation T , which stabilizes ∞) and by rotations of π about the
midpoints of the edges (corresponding to S). We therefore see that the points in the orbit of i (i.e.
the preimage of 1 under J) correspond to the midpoints of the vertices of this tetrahedron.

Similarly, we view the 6 cusps of X(4) as the vertices of a regular octrahedron (projected to
a triangulation of P1). Then Γ̄(1)/Γ̄(4) acts on P1 by symmetries of the octahedron. As before,
the group is generated by T (rotations by π/2 about a vertex) and S (rotations by π about the
midpoint of an edge). The 12 midpoints of the vertices correspond to the points in P1 in the orbit
of i.

Finally, the 12 cusps of X(5) give us the 12 vertices of a regular icosahedron, and Γ̄(1)/Γ̄(5)
acts on P1 via the A5 action on the icosahedron. The group is generated by rotation by 2π/5
about a vertex (again corresponding to T—a fact that is made clear by 3.22) and rotation through
π about the midpoint of any edge. The 20 edge midpoints correspond, as before, to the points in
the orbit of i.

3.10 Index N Subgroups of Γ̄(1)/Γ̄(N) and the Associated Curves

By Theorem 12, we have the isomorphism

Γ̄(1)/Γ̄(N) ' SL2(Z/NZ)/{±1}.

For small values of N , we can easily determine the size and structure of SL2(Z/NZ)/{±1}. Indeed,
the description given in the previous section of the action of Γ̄(1)/Γ̄(N) on P1 realizes the group
Γ̄(1)/Γ̄(N) as a subgroup of a permutation group. Moreover, the four groups Γ̄(1)/Γ̄(N) for 2 ≤
N ≤ 5 enjoy a special property: namely, for each of the above N , the group Γ̄(1)/Γ̄(N) contains
an index N subgroup. In summary, we have
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1. C3 ⊂ S3 ' Γ̄(1)/Γ̄(2).

2. V4 ⊂ A4 ' Γ̄(1)/Γ̄(3).

3. S3 ⊂ S4 ' Γ̄(1)/Γ̄(4).

4. A4 ⊂ A5 ' Γ̄(1)/Γ̄(5).

Let GN denote an index N subgroup of Γ̄(1)/Γ̄(N). By Theorem 17 and the Galois correspondence,
for each GN we obtain a degree N extension of the field C(J) of rational functions in J . One way to
describe these extensions is to use Theorem 10, which tells us that there is some Riemann surface
Y (N) and some f ∈ K(Y (N)) such that our degree N extension is just K(Y (N)) = C(J)(f) with
RN (J, f) = 0 for some degree N rational map RN over C. In order to give as simple and complete
a description of these extensions as possible, we would like to explicitly find the maps RN . That is
the goal of the next section.

3.11 The Polynomials

As above, let Y (N) be the Riemann surface corresponding to the index N subgroup GN of
Γ̄(1)/Γ̄(N). Since X(N) is rational over C, so is Y (N)—that is, we have an isomorphism fN :
Y (N) −→ P1 with K(Y (N)) = C(fN ). Since Y (N) is a degree N cover of P1, the map

J : Y (N) −→ P1 (3.23)

is of degree N . Viewing Y (N) as P1 by the isomorphism τ −→ fN (τ), we see that 3.23 is a degree
N map of P1 to itself. By Theorem 7, there exists RN (x) ∈ C(x) of degree N with RN (fN ) = J .
All this may be viewed in the following commutative diagram:

Y (N) ∼−−−−→
fN

P1

J

y yRN

P1 P1

.

Using that the automorphism group of P1 is PSL2(C), it is not difficult to see that the map RN

is unique up to fractional linear transformation. Since fN : Y (N) −→ P1 is an isomorphism, the
map fN is unbranched. However, by Theorem 16 and Proposition 1, we see that J as a map from
Y (N) to P1 is branched above 0, 1,∞ (and only these points). By composing fN with a fractional
linear transformation, we can ensure that fN has a simple pole at ∞. Theorem 16 tells us that
Γ̄(1)∞ = 〈T 〉. Moreover, it is not difficult to see that T has order N in Γ̄(1)/Γ̄(N). Since N divides
the order of Γ̄(1)/Γ̄(N) only once, for each 2 ≤ N ≤ 5, the group GN cannot contain an element of
order N , the upshot being that GN has trivial intersection with (Γ̄(1)/Γ̄(N))∞ when N is prime.
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That this is so for N = 4 follows from the fact that the square of any order 4 element in S4 is a
double transposition and hence is not contained in S3.

Since X(N) is a degree [Γ̄(1) : Γ̄(N)] cover of X(1), the preimage of ∞ under the map J :
X(N) −→ P1 consists of [Γ̄(1) : Γ̄(N)]/N points of order N . Since GN ∩ (Γ̄(1)/Γ̄(N))∞ = {1},
the group GN acts transitively on these points. Therefore, the preimage of ∞ under the map
J : Y (N) −→ P1 consists of a single point of order N . Since fN has a simple pole at ∞, we see
that the map RN has a pole of order N at ∞. Since RN is a degree N rational map, we have shown
that in fact RN is a polynomial of degree N .

In the following analysis, especially for N = 4, 5, we shall need the following proposition:

Proposition 2. Let S be a topological space and let G be a group acting on S. If z1, z2 ∈ S are
in the same G orbit then their stabilizers in G are conjugate.

The proof follows directly from the definition of the stabilizer of a point, so we omit it. We now
proceed to determine the degree N polynomial RN for 2 ≤ N ≤ 5. We shall implicitly use the fact
from section 2.5 that Γ̄(1)i ∩ Γ(N) = Γ̄(1)ω ∩ Γ(N) = {1} for all N ≥ 2

3.11.1 N = 2

Here, Γ̄(1)/Γ̄(2) ' S3 and the (unique, normal) index 2 subgroup of interest is G2 = C3. We first
compute the preimages of the points 0, 1 of the map J : X(2) −→ P1.

1. Since the stabilizer Γ̄(1)ω is generated by the order 3 element ST , we see that the preimage
of 0 consists of 2 points of order 3.

2. Similarly, we have Γ̄(1)i = 〈S〉, which is of order 2. Therefore, the preimage of 1 consists of
3 points of order 2.

With this information, we can then determine the preimages of each of the points 0, 1 in Y (2). In
particular,

1. The group Γ̄(1)ω is isomorphic to C3. Therefore, the preimages of 0 in X(2) are branch points
of order 3 above the preimages of 0 in Y (2). Thus, the preimage of 0 in Y (2) consists of two
single points.

2. Since Γ̄(1)i ' C2 has trivial intersection with C3, the latter acts transitively on the preimages
of 1 under J in X(2). Therefore, the preimage of 1 in Y (2) is a single double point.

Item 1 above enables us to write R2(x) = c(x− a)(x− b) for some a, b, c ∈ C, while item 2 tells us
that R2(x)− 1 has a double root. Therefore, R2(x)− 1 has a root in common with R′

2(x). We have

R′
2(x) = c(x− a)(x− b)

(
1

x− a
+

1
x− b

)
= c(2x− a− b),
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so that

−c

(
a− b

2

)2

= 1.

Since a fractional linear transformation exists taking any three points to any other three points, we
may suppose that b = 0 and a = 2 (since we have already specified that the preimage of ∞ under
f2 should be ∞). This gives c = −1 and we find that fN satisfies the polynomial

−x(x− 2) = J,

which may be rewritten as

−(x− 1)2 = J − 1,

that is, the degree two extension K(Y (2))/K(X(1)) is generated by a root of the polynomial

Z2 − (J − 1). (3.24)

This is, of course, expected: since C contains all roots of unity and K(Y (2))/K(X(1)) is a Galois
extension with cyclic Galois group (since C3 is normal in S3 and the quotient is C2), we know that
K(Y (2)) = K(X(1))(

√
g), for some g ∈ K(X(1)) which is not a square in K(X(1)). In fact, using

3.15 and 3.2, we see that

J − 1 =
g3
2

g3
2 − 27g2

3

=
27g2

3

g3
2 − 27g2

3

=
27g2

3

(2πi)12q
∏∞

n=1(1− qn)24
,

where q = e2πiτ as usual. We now see explicitly that we can exrtract a square root of J − 1 to
obtain the function

√
J − 1 =

3
√

3
(2πi)6

g3

q1/2
∏∞

n=1(1− qn)12
,

which generates K(Y (2)).

3.11.2 N = 3

Since Γ̄(1)/Γ̄(3) ' A4, we have the unique, normal index 3 subgroup G3 = V4. As for N = 2,
we first determine the preimages in X(3) of 0 for the map J : X(3) −→ P1 and then use this
information to find the preimage of 0 in Y (3).
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1. The stabilizer Γ̄(1)ω is generated by an element of order 3 corresponding to a 3-cycle in A4.
Therefore, the preimage of 0 in X(3) consists of 4 points of order 3.

Since every nontrivial element of V4 has order 2, we see that Γ̄(1)ω ' C3 has trivial intersection
with G3. We have:

1. The 4 order 3 points in X(3) above 0 form a single orbit under G3. Therefore, the preimage
of 0 in Y (3) is a single point of order 3.

Thus, we can write R3(x) = c(x − a)3. Therefore, since C is algebraically closed (and hence the
value of c is immaterial), we find that the degree 3 field extension K(Y (3))/K(X(1)) is the splitting
field (since it is a Galois extension) of

Z3 − J. (3.25)

As for N = 2, this could have been predicted. The Galois group of K(Y (3))/K(X(1)) is C3 and
therefore cyclic. Since C contains all roots of unity, the extension is obtained by extracting a cube
root, in this case, of J . As for N = 2, we find

3
√

J =
1

(2πi)4
g2

q1/3
∏∞

n=1(1− qn)8
.

3.11.3 N = 4

The situation for N = 4 and 5 is somewhat different. Most notably, in these cases the group GN is
not normal in Γ̄(1)/Γ̄(N) so that the field extension K(Y (N))/K(X(1)) is not Galois. We proceed
as above.

1. We have Γ̄(1)/Γ̄(4) ' S4, so that the preimage of 0 in X(4) consists of 8 points of order 3.

2. Similarly, over 1 we have 12 points of order 2.

By considering the irreducible two dimensional representation of S4, it can be seen that the stabi-
lizer (Γ̄(1)/Γ̄(4))i corresponds to a 2-cycle in S4 and not a double transposition. Moreover, from
Proposition 2, it follows that each 2-cycle in S4 (there are six in total) generates the stabilizer of
two of the 12 points above 1. Fixing a copy of S3 = G3 in S4 shows that for 6 of these 12 points,
the stabilizer is contained in G3, while G3 acts transitively on the other 6. Since in any case the
stabilizer has order 2, the six points whose stabilizer is contained in G3 break up into two orbits
under G3.

The situation for 0 is similar. The stabilizer (Γ̄(1)/Γ̄(4))ω viewed as a subgroup of S4 is generated
by a 3-cycle. It follows from Proposition 2 that the 8 points of order 3 above 0 have isotropy
subgroups generated by the 8 elements of order 3 in S4. Since our particular copy G3 of S3

contains precisely 2 of the 3-cycles in S4, we see that 2 of the 8 points in the preimage of 0 have
stabilizer contained in G3, while G3 acts transitively on the other 6 points. We have therefore
shown that
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1. The preimage of 0 in Y (2) consists of a single point and a triple point.

2. The preimage of 1 consists of a double point and two single points.

Therefore, the polynomial R4(x) is

c(x− a)(x− b)3,

for some a, b, c ∈ C. Now since the preimage of 1 contains a double point, the polynomials

R3(x)− 1 = c(x− a)(x− b)3 − 1 and

R′
3(x) = R3(x)

(
1

x− a
+

3
x− b

)
= c(x− b)2(4x− b− 3a)

have a common root. Since b is a root of R3(x), it cannot be a root of R3(x)− 1, and therefore we
see that (b + 3a)/4 must be a root of R3(x)− 1. We are then led to the equation

−27c

28
(b− a)4 = 1.

As before, we can make an affine change of variable so that a, b are any values we like, as long as
they are not equal. So let a = 3, b = −1. Then we must have c = −1/27, so that the field extension
K(Y (4))/K(X(1)) is generated by a root of

(Z − 3)(Z + 1)3 + 27J. (3.26)

The fact that the smallest normal subgroup of S4 containing (not necessarilly properly) S3 is
S4 itself tells us that the normal closure of the extension K(Y (4))/K(X(1)) is the field K(X(4))
and consequently that K(X(4))/K(X(1)) may be described as the splitting field of the degree 4
polynomial 3.26.

3.11.4 N = 5

In this case we have Γ̄(1)/Γ̄(5) ' A5 and G5 = A4. We at once see that

1. The preimage of 0 in X(5) consists of 20 points of order 3. Moreover, by Proposition 2, the
20 isotropy subgroups at these points are generated by the 20 3-cycles in A5.

2. The preimage of 1 consists of 30 points of order 2. The stabilizer of any point is generated
by a double transposition (since A5 contains no other elements of order 2). Since there are
15 double transpositions in A5, each double transposition generates the isotropy subgroup at
precisely two points in the preimage of 1.
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Now any copy of A4 inside A5 contains exactly 8 3-cycles and 3 double transpositions. Therefore,
the 20 points above 0 break up into 3 orbits under G5: one orbit consists of 12 points (unramified
above the preimages of 0 in Y (5)) and the other two orbits consist of 4 points of order 3 above the
preimages of 0 in Y (5). Similarly, the 30 points in X(5) above 1 form 3 orbits under G5. Six of
the 30 points have their stabilizers contained in our copy of A4, so that they form a single orbit of
points of order 2 over Y (5). The action of G5 on the remaining 24 points is therefore transitive, so
that we obtain 2 orbits of points of order 1 over Y (5). Thus, we see that

1. The preimage of 0 in Y (5) consists of 2 single points and one triple point.

2. The preimage of 1 in Y (5) consists of 2 double points and one single point.

Therefore, the desired polynomial has the form

d(x− a)(x− b)(x− c)3

for some a, b, c, d ∈ C. As before, we can make an affine change of variable to ensure that a =
1, b = −1, say. The condition at 1 above then tells us that the polynomial

d(x2 − 1)(x− c)3 − 1

has two double roots, that is, that is shares two roots with its derivative

d(x− c)2(5x2 − 2cx− 3).

We therefore see that

x1 =
c +

√
c2 + 15
5

and x2 =
c−

√
c2 + 15
5

must both be roots of

d(x2 − 1)(x− c)3 − 1.

This gives two equations in two unknowns, which we readily solve to find

c = − 1
32

i
√

15

d =
34 · 52

211
i
√

15.

Therefore, the field extension K(Y (5))/K(X(1)) is generated by a root of

34 · 52

211
i
√

15
(
x2 − 1

)(
x +

1
32

i
√

15
)3

− J.
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We can simplify this equation by absorbing a factor of i
√

15 into x to obtain the polynomial

(15Z2 + 1)(9Z − 1)3 +
(

211

54

)
J. (3.27)

As for N = 4, since the smallest normal subgroup of A5 is A5 itself, we see that the Galois closure
of K(Y (5))/K(X(1)) is K(X(5)) and therefore that K(X(5)) is the splitting field of the degree 5
polynomial 3.27.
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