Siegfried Bosch
Werner Liitkebohmert
Michel Raynaud

Néron Models

Springer-Verlag Berlin Heidelberg New York
London Paris Tokyo Hong Kong

o Rt W LS



Ergebnisse der Mathematik
und ihrer Grenzgebiete

3.Folge - Band 21
A Series of Modern Surveys in Mathematics

FEditorial Board

E.Bombieri, Princeton  S.Feferman, Stanford
N.H.Kuiper, Bures-sur-Yvette -~

P.Lax, New York H.W. Lenstra, Jr., Berkeley
R.Remmert (Managing Editor), Miinster

W. Schmid, Cambridge, Mass. J-P. Serre, Paris
J.Tits, Paris K.K.Uhlenbeck, Austin




Siegfried Bosch

Werner Liitkebohmert '
Westfilische Wilhelms—Universitéit
Mathematisches Institut
EinsteinstraB3e 62

D-4400 Miinster

Michel Raynaud

Université de Paris-Sud
Bat. 425, Campus Universitaire
F-91405 Ors_ay

b

Mathematics Subject Classification (1980):
14Kxx, 14115, 14H40, 14B12

ISBN 3-540-50587-3 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-50587-3 Springer-Verlag New York Eerﬁn Heidelberg

Library of Congress Cataloging-in-Publication Data !
Bosch, S. (Siegfried), 1944- |

Néron models/ Siegfried Bosch, Werner Liitkebohmert, Michel Raj’naud. p.cm.
(Ergebnisse der Mathematik und ihrer Grenzgebiete; 3. Folge, Bd. 21) Includes bibliogra-
phical references. S

ISBN 0-387-50587-3 (U.S.: alk. paper) !

1. Néron models. 2. Abelian varieties. I Liitkebohmert, Wemer.} II. Raynaud, Michel.
1L Title. IV. Series. QAS564.B587 1990 516.3'5-dc20 89-21963 CIP

|

This work is subject to copyright. All rights are reserved, whether [hie whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data
banks. Duplication of this publication or parts thereof is only permitted under the provisions
of the German Copyright Law of September 9, 1965, in its version of June 24, 1985, and a
copyright fee must always be paid. Violations fall under the prosecution act of the German

Copyright Law.

© Springer-Verlag Berlin Heidelberg 1990
Printed in the United States of America

Typesetting: Asco Trade Typesetting Ltd., Hong Kong
2141/3140-543210  Printed on acid-free paper

a la mémoire d’André Néron



Preface

Néron models were invented by A. Néron in the early 1960’s with the intention to
study the integral structure of abelian varieties over number fields. Since then,
arithmeticians and algebraic geometers have applied the theory of Néron models
with great success, usually without going into the details of Néron’s construction
process. In fact, even for experts the existence proof given by Néron was not easy to
follow. Quite recently, in connection with new developments in arithmetic algebraic
geometry, the desire to understand more about Néron models, and even to go back
to the basics of their construction, was reactivated. We have taken this as an
incentive to present a treatment of Néron models in the form of a book.

The three of us have approached Néron models from different angles. The senior
author has been involved in the developments from the beginning on. Immediately
after the discovery of Néron models, it was one of his first assignments from
A. Grothendieck to translate Néron’s construction to the language of schemes. The
other two authors worked in the early 1980’s on the uniformization of abelian
varieties, thereby finding a rigid analytic approach to Néron models. It was at this
time that we realized that we had a common interest in the field and decided to write
a book on Néron models and related topics.

At first we had the idea of covering a much wider variety of subjects than we
actually do here. We wanted to start with a presentation of the construction of
Néron models, on an elementary level and understandable by beginners, and then
to continue with a general structure theory for rigid analytic groups, with the
intention of applying it to the discussion of uniformizations and polarizations of
abelian varieties. However, it did not take long to realize that an appropriate
treatment of Néron models would require a book of its own. So we changed our
plans; colleagues watching the project encouraged us in doing so. Now, having
finished the manuscript, we hope that the “elementary” part of the book, which
consists of Chapters 1 to 7, is, indeed, understandable by beginners.

We are, of course, indebted to Néron for the original ideas leading to the
construction of Néron models, and to the work of Grothendieck which provides
language and methods of expressing these ideas in an adequate context. There are
other sources from which we have borrowed, most noteworthy the work of A. Weil
as well as various contributions of M. Artin.

In preparing this book we received help from many sides. We thank the Deutsche
Forschungsgemeinschaft for its constant support during the entire project.
Similarly we wish to thank the Centre National de 1a Recherche Scientifique, as well
as the Institute des Hautes Etudes Scientifiques for its hospitality. Finally, we are
indebted to our home universities and Mathematics departments in Miinster and
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Orsay for their interest in the project, for their help whenever possible, and for
granting sabbaticals during which substantial work on the subject was done. Also
we thank the Heinrich-Hertz-Stiftung.

During the project Dr. W. Heinen from Miinster was of invaluable help to us; he -

proofread the manuscripts and set up the index. We thank him heartily for his work.
Last but not least, our thanks go to the publishers for their cooperation.

Miinster and Orsay Siegfried Bosch
June 1989 Werner Liitkebohmert

Michel Raynaud
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Introduction

Let K be a number field, S the spectrum of its ring of integers, and Ay an abelian
variety over K. Standard arguments show that A, extends to an abelian scheme A’
over a non-empty open part §' of S. Thus Ay has good reduction at all points s of
S’ in the sense that A, extends to an abelian scheme or, what amounts to the same,
to a smooth and proper scheme over the local ring at s. In general, one cannot
expect that A also has good reduction at the finitely many points in § — S’. How-
ever, one can ask if, even at these points, there is a notion of “good” models which
generalizes the notion of good reduction. It came as a surprise for arithmeticians
and algebraic geometers when A. Néron, relaxing the condition of properness and
concentrating on the group structure and the smoothness, discovered in the years
1961—1963 that such models exist in a canonical way; see Néron [2], see also
his lecture at the Séminaire Bourbaki [1]. Gluing these models with the abelian
scheme A, one obtains a smooth S-group scheme A of finite type which may be
viewed as a best possible integral group structure over S on Ag. Itis called a Néron
model of Ay and is characterized by the universal property that, for any smooth
S-scheme Z and any K-morphism uy: Zy — Ay, there is a unique S-morphism

“u:Z —> A extending ug. In particular, rational points of Ay can be interpreted as

integral points of A4.

Néron himself used his models to study rational points of abelian varieties over
global fields, especially their heights. In his paper [3], he shows that the local height
contribution at a non-archimedean place can be calculated on the local Néron
model in terms of intersection xjnultiplicities between divisors and integral points.

Before Néron’s discovery, in 1955, Shimura systematically studied the reduction
of algebraic varieties over a discrete valuation ring R, in the affine, projective, as
well as in the “abstract” case; see Shimura [1]. In particular, he defined the speciali-
zation of subvarieties as well as the reduction of algebraic cycles. In the years 1955
to 1960, several other authors bécame interested in the reduction of abelian varieties,
either in the abstract form or in the form of Albanese and Picard varieties. Koizumi
[1] proved that if an abelian variety Ag over K extends to a proper and smooth
R-scheme A, then the group structure of Ay also extends. Furthermore, it follows
from Koizumi and Shimura [1] that 4 is essentially uniquely determined by Ag.
The latter corresponds to the fact that 4 is a Néron model of Ax and therefore
satisfies the universal mapping property characterizing Néron models. Igusa [1]
showed that the Jacobian of a curve with good reduction has good reduction. He
also considered the case where the reduction of the curve has an ordinary double

point as singularity.



2 Introduction

Concerning the reduction of elliptic curves, a systematic investigation of de-
generate fibres was carried out by Kodaira [1] for the special case of holomorphic
fibrations of smooth surfaces by elliptic curves. Among other things, he classified
the possible diagrams of the fibres for minimal fibrations by using the intersection
form.

On the other hand, starting with an elliptic curve over the field of fractions of
an arbitrary Dedekind ring R, equations of WeierstraB3 type can provide natural
R-models, even at bad places. It seems certain tha[t at least in characteristic different
from 2 and 3, the minimal WeierstraB model was known to arithmeticians at the
time Néron worked on his article [2]. However it was Néron’s idea to consider
minimal models which are regular and proper, but not necessarily planar. In [2],
after constructing Néron models for general abehan varieties, he turns to elliptic
curves, shows the existence of regular and proper minimal models, and works out
their different types. The classification of special ﬁbres which he obtains is the same
as Kodaira’s. In order to pass to the “Néron model” as considered in the case of
general abelian varieties, one has to restrict to the smooth locus of the corresponding
regular and proper minimal model. Furthermorez the identity component coincides
with the smooth part of the minimal WeierstraB model.

In his paper [2], Néron uses a terminology which is derived from that in Weil’s
Foundations of Algebraic Geometry [1]. The terminology has earned its merits
when working with varieties over fields. However, applying it to a relative situation,
even if the base is as simple as a discrete valuation ﬁng, one cannot avoid a number of
unpleasant technical problems For example, smc’:e there are two fibres, namely the
generic and the special fibre, it is necessary to worl§( with two universal domains, one
for each fibre. Both domains have to behave well with respect to specialization, and
so on. Clearly, Weil’s terminology was not adapted to handle problems of this kind.

Néron’s paper appeared at a time when Grothendieck had just started a revolu-
tion in algebraic geometry. With his theory of schemes, he had developed a new

machinery, specially designed for treating problems in relative algebraic geometry.
Néron knew of this fact, but he did not want to a‘tbandon the framework in which
he was used working. In the introduction to his artlcle [2], he says that the notion
of a scheme over a commutative ring will frequent[ly intervene in his text, in a more
or less explicit way. However—and now we quote—“faute d’étre suffisamment
accoutumé a ce langage, nous avons estimé plus prudent de renoncer a son emploi
systématique, et d’utiliser le plus souvent un langalge dériveé de celui des Foundations
de Weil ... ou de celui de Shimura ... laissanti les spécialistes se charger de la
traductlon

Certainly, a few specialists did the translatlon but mainly for themselves and
without publishing proofs. It was only about 20 years later, in 1984, at the occasion
of a conference on Arithmetic Algebraic Geometry, that M. Artin wrote a Proceed-
ings article [9] explaining the construction of Neron models from a scheme view-
point. So, at Néron’s time, the situation remained somewhat mysterious. On the
one hand, it was very hard to follow Néron’s arguﬂents concerning the construction
of his models. On the other, arithmeticians were able to use the notion of Néron
models with great success, for example, in the mvestlgatlon of Galois cohomology

of abelian varieties. Since Néron models are characterized by a simple universal
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property, it is possible to work with them without knowing about the actual
construction process.

After Néron’s work, substantial progress on the structure of Néron models was
achieved with the so-called semi-abelian reduction theorem. It states that, up to
finite extension of the ground field, Néron models of abelian varieties are semi-
abelian. A first proof of this result was carried out by Grothendieck during the fall
of 1964; he explained it in a series of letters to Serre, using regular models for curves
and [-adic monodromy. The proof was published later in [SGA 7,]. Independently,
Mumford was able to obtain the semi-abelian reduction theorem via his theory of
algebraic theta-functions, at least for the case where the residue characteristic is
different from 2; for. this proof see the Appendix II to Chai [1]. The behavior of
a Néron model with respect to base change can be difficult to follow; however, in
the semi-abelian case it is particularly simple because the identity component is
preserved.

In the late sixties, Raynaud [6] further developed the relative Picard functor
over discrete valuation rings R in such a way that, in quite general situations, the
Néron model of the Jacobian of a curve could be described in terms of the relative
Picard functor of a regular R-model of this curve. Using Abhyankar’s desingulariza-
tion of surfaces, one thereby obtains, at least in the case of Jacobians, a second
method of constructing Néron models which is largely independent of the original
construction given by Néron.

Today, using the relative Picard functor, the semi-abelian reduction theorem is
viewed as a consequence of the corresponding semi-stable reduction theorem on
curves; see, for example, Artin and Winters [1], or see Bosch and Liitkebohmert
[3] for an approach through rigid analytic uniformization theory. To a certain
extent, the semi-abelian reduction theorem has changed the view on the reduction
of abelian varieties. Namely, it is sometimes enough to work with semi-abelian
models and to consider the corresponding monodromy at torsion points. As an
example, we refer to Faltings’ proof [1] of the Mordell conjecture.

On the other hand, there are questions where, in contrast to the above, Néron
models are involved with all their beautiful structure, with their Lie algebra, and
with their group of connected components. An example is given by the precise form
of the Taniyama-Weil conjecture on modular elliptic curves over Q; cf. Mazur and
Swinnerton-Dyer {1].

For further applications of Néron models, we refer to the work of Ogg [1] and
Shafarevich [1] concerning moderately ramified torsors over function fields. This
was extended by Grothendieck to arbitrary torsors; cf. Raynaud [1].

It should also be noted that the Néron model is of interest when studying the
Shafarevich-Tate group III. Namely, let A be the Néron model over a Dedekind
scheme S of an abelian variety A, where K is the field of fractions of S. Then HI
is the group of “locally trivial” torsors under Ay, a group which is closely related
to the group H'(S,A). In this way the Néron model is involved in questions
concerning the group L. For example, concerning its conjectural finiteness in the
global arithmetic case.

Finally, to give another application involving torsors under .abelian varieties,
we mention that Tate studied in [1] the group H'(K, A), where Ay is an abelian
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variety over a local ficld K of characteristic 0 having a finite residue field. He used
the compact group A g(K) (where 4, is the dual abelian variety of A;) as well as its
Pontryagin dual. Later, when the theory of Néron models was available, there
appeared some variants of this work for algebraically closed residue field; cf. Bégueri
[1] and Milne [2]. Here the Néron model of Ag, in particular, its proalgebraic
structure plays an important role.

The aim of the present book is to provide an exposition of the theory of Néron
models and of related methods in algebraic geometry. Using the language and
techniques of Grothendieck, we describe Néron’s construction, discuss the basic
properties of Néron models, and explain the relationship between these models and
the relative Picard functor in the case of Jacobians. Finally, using generalized Néron
models which are just locally of finite type, we study Néron models of not necessarily
proper algebraic groups.

We now describe the contents in more detail. Chapter 1 is meant as a first
orientation on Néron models. The actual construction of Néron models in the local
case takes place in Chapters 3 to 6. Instead of just using Grothendieck’s [EGA] as
a general reference, we have chosen to explain in Chapter 2 some of the basic notions
we need. So; for the convenience of the reader, we give a self-contained exposition
of the notion of smoothness relating it closely to the Jacobi criterion. A discussion
of henselian rings, an overview on flatness, as well as a presentation of the basics
on relative rational maps follows. Also, at the beginning of Chapter 6, we have
included an introduction to descent theory.

In Chapter 3, we start the construction of Néron models with the smoothening
process. Working over a discrete valuation ring R with field of fractions K, this
process modifies any R-model X (of finite type and with a smooth generic fibre X)
by means of a sequence of blowing-ups with centers in special fibres to an R-model
X’ such that each integral point of X lifts to an integral point of the smooth locus
of X'. This leads to the construction of so-called weak Néron models. Since there
is a strong analogy between the smoothening process and the technique of Artin
approximation, we have included the latter, although it is not actually needed for
the construction of Néron models.

Next, in Chapter 4, we look at group schemes. We consider a smooth K-group
scheme of finite type X admitting a weak Néron model X and show that the group
law on X extends to an R-birational group law on X if we remove all non-minimal
components from the special fibre of X; the minimality is measured with respect to
a non-trivial left-invariant differential form of maximal degree on Xy. In Chapter
5, working over a strictly henselian base and following ideas of M. Artin, we
associate to the R-birational group law on X an R-group scheme. The latter is, by
a generalization of a theorem of Weil for rational maps from smooth schemes into
group schemes, already the Néron model of X. The generalization to an arbitrary
discrete valuation ring is done in Chapter 6 by means of descent. After we have
finished the construction of Néron models in Chapter 6, we discuss their properties
in Chapter 7.

The next topic to be dealt with is the relative Picard functor and, in particular,
its relationship to Néron models in the case of Jacobians of curves. Since there seems
to be no systematic exposition of the relative Picard functor Picys available which
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takes into account developments after Grothendieck’s lectures [FGA], we thought
it necessary to include a chapter on this topic. In Chapter 8 we explain the various
representability results for P1cx/s in terms of schemes or algebraic spaces, mainly due
to Grothendieck [FGA] and Artin [5]. From this point on, due to lack of space, it
was impossible to give detalled proofs for all the results we mention. It is our strategy
to list the important results to prove them whenever possible without too much
effort, or to sketch proofs otherwise. In any case, we attempt to give precise
references and to point out improvements which have appeared in the subsequent
literature.

The same can be said for the first half of Chapter 9 where we deal with relative
Jacobians of curves. Among other things, modulo some considerations contained
in Chapter 7, we show heré how to derive the semi-abelian reduction theorem for
Néron models from the semi-stable reduction theorem for curves. A proof of the
latter theorem has not been included in the book since a detailed discussion of
models for curves and of related methods would be a topic of its own, too large to
be dealt with in the present book. Instead, for a proof using Abhyankar’s desingu-
larization, we refer to Artin and Winters [1] or, for a proof using rigid geometry,
to Bosch and Liitkebohmert [1]. Finally, in Sections 5 to 7 of Chapter 9, we compare
the Néron model with the|relative Picard functor in the case of Jacobians. As an
application, we show how to compute the group of connected components of a
Néron model. |

The book ends with a chapter on Néron models of commutative, but not
necessarily proper algebralc groups. In the local case, we prove a criterion for a
smooth commutative K-group scheme Xy of finite type to admit a Néron model
which, over an excellent strictly henselian base, amounts to the condition that Xy
does not contain subgroups of type G, or G,,. We also indicate how to globalize
this result. In doing so, it is natural to admit Néron models which are locally of
finite type (Ift), but not necéssarily of finite type. This way we can construct Néron
models for tori as well as study the same problem for K-wound unipotent groups.
Since our investigations seem to have few applications at the moment and, since
some of the statements are still at a conjectural stage, we have chosen only to give
short indications of proofs

Bibliographical references are given by mentioning the author, with a number
in square brackets to indicate the particular work we are referring to. An exception
is made for Grothendieck, where we also use the familiar abbreviations [FGA],
[EGA], and [SGAY, as listed at the beginning of the bibliography. Cross references
to theorems, propositions, etc., like Theorem 1.3/1, usually contain the number of
the chapter, the section number, and the number of the particular result. For
references within the same section, the chapter and the section numbers will not be

repeated.




Chapter 1. What Is a Néron Model?

This chapter is meant to provide a first orientation to the basics of Néron models.
Among other things, it contains an explanation of the context in which Néron
models are considered, as well as a discussion of the main results on the construction
and existence, including some examples.

We start by looking at models over Dedekind schemes. In particular, the notion
of étale integral points is introduced, and models of finite type satisfying the
extension property for étale intégral points are considered. For a local base, the
existence of such models is characterized in terms of a boundedness condition. Then,
in Section 1.2, we define Néron models and prove #ome elementary properties which
follow immediately from the definition. We also| discuss the relationship between
global and local Néron models as well as a criterion for a smooth group scheme of
finite type to be a Néron model. Next, in Sectimfl 1.3, we state the main existence
theorem for Néron models in the local case and|explain the skeleton of its proof,
anticipating some key results which are obtained in later chapters.

In Section 1.4, we discuss the case of abelian vlarieties. More precisely, we study
the notion of good reduction and show how thez existence of local Néron models
leads to the existence of global Néron models. 1121 Section 1.5, in order to provide
some explicit examples, we consider elliptic curves. In particular, we compare the
Néron model with the minimal proper and regular model and with the minimal
WeierstraBl model. The chapter ends with a look aﬁt Neéron’s article [2] which serves
as a basis for the construction of Néron models, For this section, a certain fami-
lLiarity with the contents of later Chapters 3 to 6 is advisable.

1.1 Integral Points

When dealing with Néron models, one usually works over a base scheme S which
is a Dedekind scheme, i.e., a noetherian normal scheme of dimension < 1. The local
rings of S are either fields or discrete valuation rings. For example, S can be the
spectrum of a Dedekind domain. We will talk about the local case if S consists of
a local scheme and, thus, is the spectrum of a dis:crete valuation ring or even of a
field; the general case will be referred to as the global case. Any Dedekind scheme S
decomposes into a disjoint sum of finitely many irreducible components S; with a
generic point #; each. We set K := (P k(n,), so K is the ring of rational functions on
S. Furthermore, the affine scheme Spec K is referred to as the scheme of generic

points of S.If S is connected—and this is the case t%) keep in mind—there is a unique
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generic point 7 € S. Its residue field is K and we can identify # with the associated
geometric point Spec K —» S. It is only for technical reasons that we do not require
Dedekind schemes to be connected.

There are three examples of Dedekind schemes, which are of special interest. To
describe the first one, let K be a number field, i.e., a finite extension of @, and let R
be the ring of integers of K. Then set S = Spec R. Similarly, we can consider an
algebraic function field K of dimension 1 over a constant field k and define S to be
the normal proper k-curve associated to K. In both cases, S is a Dedekind scheme.
On the other hand, we can start with a normal noetherian local scheme of dimension
2 and remove the closed point from it. Also this way we obtain a Dedekind scheme.

Now let S be an arbitrary Dedekind scheme with ring of rational functions K
and consider an S-scheme X. We define its generic fibre (or, more precisely, its scheme
of generic fibres) by X := X ®s K, viewed as a scheme over K. Conversely, if we
start with a K-scheme Xy, any S-scheme Y extending Xy, ie., with generic fibre
Yy = Xy, will be called an S-model of Xy. There is an abundance of such models.
For example, any change of Y (such as blowing up or removing a closed subscheme)
which takes place in fibres disjoint from Xy, will produce a new S-model of the
same K-scheme Xy. On the other hand, X, can be viewed as an S-model of itself.
In the local case, the latter is even of finite type over S if Xy is of finite type over K.

The main problem we will be concerned with when studying the existence of
Néron models is to construct S-models X of Xy which satisfy certain natural
properties. One of them is the extension property concerning étale integral points,
or just étale points, as we will say; for the notion of étale see Section 2.2.

Definition 1. Let X be a scheme over a Dedekind scheme S. Then we say that X satisfies
the extension property for étale points at a closed point s € S if, for each étale local
0Oy, -algebra R’ with field of fractions K, the canonical map X(R') — X (K') is
surjective.

Each étale local O -algebra is a discrete valuation ring again. In fact, it can
be seen from Chapter 2, in particular, from 2.4/8 and 2.3/9, that the étale local
0Us,-algebras R’ correspond bijectively to the (faithfully flat) extensions of discrete
valuation rings s ; = R’ with the properties that a uniformizing element of 0 ; is
also uniformizing for R’, that the extension of fraction fields of 0 , = R’ is finite
and separable, and that the residue extension of (g ; < R’ is finite and separable.
So we conclude from the valuative criterion of separatedness [EGA II}, 7.2.3, that
the map X(R') — Xy(K’) is injective if X is separated over S. Furthermore, the
extension property for étale points as formulated in Definition 1 is similar to the
one occurring in the valuative criterion of properness [EGA II], 7.3.8; the only
difference is that we restrict ourselves to valuation rings R’ which are étale over 0 .

Instead of considering all étale local 05 -algebras R’ one can just as well apply
limit arguments and work with a strict henselization R** of s ;. The latter is the
inductive limit over all pairs (R’,«) where R’ is an étale local (s -algebra and where
o is an R-homomorphism from R’ into a fixed separable algebraic closure of the
residue field k(s); see Section 2.3. Then, if K*" is the field of fractions of R, it follows
that X satisfies the extension property for étale points at s € S if and only if the map
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X (R*") — X (K**) is surjective. Furthermore, let us mention that X satisfies the
extension property for étale points at s S if and only if X ®g 0 ,, viewed as a
scheme over 0 ,, does.

,(c,,w‘;,m:(gn, A simple method for constructing S-models of finite type is the method of chasing

denominators. It applies to the case where S is affine, say S = Spec R, and where X
is affine of finite type over K (resp. projective over K). The resulting models are
affine of finite type over R (resp. projective over R). To explain the affine case, let
X be the spectrum of a ring

AK = I<[t1a~--:tn]/IK 5

ie., of a quotient of a frez polynomial ring by an ideal Ix. Then Iy is generated by
finitely many polynomials f;,. .. ,f,, which we may assume to have coefficients in R.

So set
A= R[ty,...,t, /1,
where I is the ideal generated by f, ..., f,. Then X := Spec R’is an R-model of finite

type of Xg. Furthermore, since a module over a valuation ring is flat as soon as
there is no torsion, we see that X will be flat over R if we saturate I; i.e., if we set

I:=I¢nR[tq,...,t,]

Then, by its definition, X is just the schematic closure of X in the affine n-space
over R; for the notion of schematic closure see Section 2.5. Finally, the projective
case is completely analogous; here one works with the Proj of homogeneous

- coordinate rings.

If Xy is projective, any R-model X obtained by chasing denominators is projec-
tive and, thus, satisfies the extension property for étale points by the valuative
criterion of properness. If X is just of finite type, but not projective, the construction
of an S-model of finite type satisfying the extension property for étale points can
be quite complicated or even impossible as the example of the affine n-space Ak
shows. As a necessary condition in the local case, we will introduce the notion of

azgundedness.

AV

YeSral\

So assume that S consists of a discrete valuation ring R with field of fractions
K. Furthermore, consider a faithfully flat extension of discrete valuation rings
R = R’ and let K’ be the field of fractions of R'. Then R and R’ give rise to absolute
values on K and on K’; we denote them by | | assuming that both coincide on K.
For us the case where R’ is a strict henselization R** of R will be of interest. Now,
for any K-scheme Xy, for any point x € Xg(K'), and for any section g of O, being

D ek defined at x, we may view g(x) as an element of K’ so that its absolute value |g(x)|
e k!
MW") 7 X K(K ). Applying this procedure to the coordinate functions of the affine n-space

is well-defined. In particular, it makes sense to say that g is bounded on a subset of

, we arrive at the notion of a bounded subset of A%(K').

Definition 2. As before, let R = R’ be a faithfully flat extension of discrete valuation
rings with fields of fractions K and K'. Furthermore, let Xk be a K-scheme of finite

type and consider a subset E ¢ Xg(K').

el
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(a) If X is affine, E is called bounded in Xy if there exists a closed immersion
Xy = A% mapping E onto a bounded subset of A%(K").

(b) In the general case, E is called bounded in Xy, if there exists a covering of Xg
by finitely many affine open subschemes Uy, ..., U, = Xy as well as a decomposition
E = ) E, into subsets E; = U(K’) such that, for each i, the set E; is bounded in U, in

" the sense of (a).

It should be kept in mind that the definition of boundedness takes into account
the choice of valuation rings R = R’ and, thereby, the choice of particular valuations
on K and K’, although the latter is not expressed explicitly when we say that a
subset E = Xg(K') is bounded in Xk.

If Xk is affine, say if Xx = Spec Ak, condition (a) of the definition means that
there are elements g, ..., g, € AK generating Ay as a K-algebra which, as maps
Xx(K') — K, are bounded on E, The latter is equivalent to the fact thateach g € Ay
is bounded on E and it is easily seen that, in the affine case, conditions (a) and
(b) of the definition are equivalcnt Moreover, if there is one closed immersion
Xy = A} mapping E onto a bounded subset of Ag(K’), it follows that the latter
property is enjoyed by all closed immersions of type Xy —, AR.

We want to show that condltlon (b) of Definition 2 is independent of the
particular affine open covering {U;} of X.

Lemma 3. Let R = R’ be a faithfully flat extension of discrete valuation rings with
fields of fractions K and K'. Furthermore, let Xy be a K-scheme of finite type and
consider a subset E = Xy (K'). If there exists a finite affine open covering U = {U;}
of Xy such that condition (b) of Definition 2 is satisfied, then the latter condition is
satisfied independently of the particular covering . More precisely, given any finite
affine open covering B = ?VJ} of Xk, there is a partition E = | ) F; into subsets
F, c V{(K") such that F; is bounded in V; for each j.

Proof. Since conditions (a) and (b) of Definition 2 are equivalent in the affine case, we
may assume that B is a refinement of U. Now pick an element U; e U, say U; =
Spec A4, and let’it be covered by the elements V,..., ¥, € B. Then we may assume
that V, is of type Spec A, p = 1,...r, where f3,..., f, generate the unit ideal in A.
So there is an equation Za,f, = 1 with coefficients a, € A. Let E; be a bounded
subset of U;(K"). Then it follows from the equation representing the unit 1 that

= inf{max{[f,(x)| ; p = L,...,r} ; x € E;}
is positive. Therefore, setting
F,={xeE;|f,(x)] >¢},

we have E; = F; U... U F,, and each F, is bounded in V, = Spec A, . Proceeding in
the same way with all U; e U, we see that B satisfies condltlon (b) of Definition 2 if
U does. O

We want to give two immediate applications of the above lemma, the first
one saying that the image of a bounded set is bounded again and the second one
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that the notion of boundedness, in some sense, is compatible with extensions of the
field K.

Proposition 4. Let R = R’ be a faithfully flat extension of discrete valuation rings
with fields of fractions K and K’ and consider a K-morphism f: Xy — Yy between
K-schemes of finite type. Then, for any bounded subset E = X¢(K'), its image under
Xi(K') — Y(K') is bounded in Y.

Proposition 5. Let R = R’ be a faithfully flat extension of discrete valuation rings
with fields of fractions K and K'. Furthermore, let Xy be a K-scheme of finite type.
Then a subset E = Xg(K') is bounded in Xy if and only if the corresponding subset
E' c Xy.(K') is bounded in X..

Both assertions are obvious in the affine case; the reduction to this case is done
using Lemma 3. Next we want to show that properness always implies boundedness.

Proposition 6. Let R = R’ be a faithfully flat extension of discrete valuation rings
with fields of fractions K and K', and consider, a proper K-scheme Xy. Then any
subset E = X (K') is bounded in Xy.

Proof. Let us begin with the remark that the notion of boundedness as introduced
in Definition 2 works just as well without the discreteness assumption if we restrict
to faithfully flat extensions of valuation rings R < R’ corresponding to valuations
of height 1 on K and K'. The above mentionedl properties of boundedness remain
true. So, for the purposes of the present proposition, we may extend the valuation
of K’ to an algebraic closure of K’ and thereby asisume that K’ is algebraically closed.
Due to Chow’s lemma [EGA II], 5.6.1, there is a surjective K-morphism Yy —
Xk, where Yy is projective. Then, using Pl‘OpOS‘lthIl 4, we see that it is enough to
look at the case where Xy is projective or, more specifically, where X = Pk and
-where E = Pg(K'). To do this, fix a set of homogeneous coordinates on P and
consider the associated standard covering of Py, o Fori=0,...n,let U, ~ Ak be the
affine open part of P} where the i-th coordinate does not vamsh Writing points
x € Pg(K') in homogeneous coordinates in the form X = (Xgy...,X,) With xg,..., X,

e K’, we can set
Ei = {X = (xOs' . -’xn) € P.'['((K’) 5 |xil = max(|xo|,- ey lxn])} .

Then PR(K') = U E; with E; = U;(K’) being bounded in U;. So it follows that Px(K")
is bounded in P%. [

If X, is a closed subscheme of A%, and if X |is its schematic closure in A}, the
image of the canonical map
X(R) — Xx(K') = AK(K")
consists of those points in X (K') whose coordinates are bounded by 1. Inparticular,

multiplying coordinate functions on A% by sézitable constants, we can always

assume that the image of X(R') — X(K') contains a given subset E = Xy (K')

Fom
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provided E is bounded in X. So, for affine schemes, we see that the following
characterization of boundedness is valid:

Proposition 7. Let R = R’ be a faithfully flat extension of discrete valuation rings
with fields of fractions K and K'. Furthermore, let Xy be a K-scheme (resp. an affine
K-scheme) of finite type. Then a subset E < X (K') is bounded in Xy if and only if
there is an R-model (resp. an affine R-model) X of Xy of finite type such that the
image of the canonical map X (R') — X (K') contains E.

In particular, taking for R’ a strict henselization R*" of R and for K' the field K*
of fractions of R, there is an R-model (resp. an affine R-model) X of Xy of finite
type satisfying the extension property for étale points if and only if X x(K**) is bounded
in Xg.

Proof. If, in the general case, E = X(K') is bounded in Xy, one considers an affine
open covering {U; ¢} of Xx and a decomposition E = (J E; into subsets E; c

U, x(K') which are bounded in U; . Then one can find an affine R-model U; of each
U, x such that E; belongs to the image of U;(R') — U, x(K'). Gluing the U; along
the generic fibre, one ends up with an R-model X of Xy such that the image of
X(R') — Xg(K') contains E.

Remark 8. If X is a separated K-scheme, the R-model X we obtain in Proposition
7 will not, in general, be separated. It requires substantial extra work to modify X
in such a way that it becomes separated; see 3.5/6.

Using the approximation theorem of Greenberg [2], we want to add here a
non-trivial criterion for boundedness.

Proposition 9. Let R be an excellent henselian discrete valuation ring with field of
fractions K and let Xy be an open subscheme of a K-scheme Xy of finite type.
Furthermore, consider a subset E < Xi(K) which is bounded in Xy. Then, if
(Xx — Xx)(K) = &, the set E is bounded in X, too.

Proof. We may assume that Xy is affine. Let X = Spec A be an affine R-model of
X, such that each point of E extends to an R-valued point of X. Furthermore, let
Z be the schematic closure of Xy — Xy in X so that Xy = X — Z. Therefore Z(K)
and, thus, also Z(R) are empty. Now fix a uniformizing element = of R and set
R, = R/(z"). It follows then from Greenberg [2], Cor. 2, that Z(R,) is empty if n is
large enough. Therefore, if Z is defined in X by the elements f;,...,f, € A, we must
have

max{|fi(X)l,...,| ()} > ="

for all x € Xg(K).

Using the latter fact, it is easy to show that E < X (K)is bounded in X . Namely
set

= {x e E; | fi(x)| > |="[}.
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Then E is the union of the E; and X is the union of the affine open subschemes
Spec Ag[ f;]. Furthermore, since E; is bounded in X, it is obvious that E; is
bounded in Spec Ax[ f;~*]. Thus E is bounded in Xk. [l

Each separated K-scheme of finite type X, admits a compactification; i.e., there
is a proper K-scheme X containing Xy as a dense open subscheme; cf. Nagata [1],
[2]. If there exists a compactification with (X — X)(K) = &, we say that Xy
has no rational point at infinity. Using this terminology, we can conclude from
Propositions 6 and 9:

Corollary 10. Let R be an excellent discrete valuation ring with field of fractions K
and let Xy be a separated K-scheme of finite type with no rational point at infinity.
Then X(K) is bounded in Xy.

1.2 Néron Models

In the following, let S be a Dedekind scheme with ring of rational functions K.
Considering a smooth and separated K-scheme Xy of finite type, we are interested
in constructing S-models X of X which are smooth, separated, and of finite type
over S. Furthermore, we may ask if among all such models X one can select a
minimal one; i.e., an S-model X such that for any other S-model Y of this type there
is a unique morphism Y — X restricting to the identity on the generic fibre.
Requiring this mapping property for arbitrary smooth S-schemes Y, we arrive at
the notion of Néron models. ‘

Definition 1. Let Xy be a smooth and separated K-scheme of finite type. A Néron
model of Xy is an S-model X which is smooth, separated, and of finite type, and which
satisfies the following universal property, called Néron mapping property:

For each smooth S-scheme Y and each K-morphismuy : Yo —> Xy there is aunique
S-morphism u: Y — X extending uy.

The restriction to schemes of finite type is not really necessary. In Chapter 10

we will consider Néron models, so-called Néron Ift-models, which are locally of
finite type (by the smoothness condition), but not necessarily of finite type. However,
adding the finiteness condition simplifies things to a certain extent. In many impor-
tant cases, Néron models are automatically of finite type; see, for example, the case
of abelian varieties.

As a first step towards Néron models, we will have to consider a weaker form,
so-called weak Néron models of X,.. Thereby we understand smooth S-models X of
finite type which satisfy the extension property for étale points 1.1/1; see also 3.5/1
for the definition we will work with in later chapters.

We want to list some elementary properties of Néron models which follow
immediately from the definition. '

TR AR
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Proposition 2. Let X be a smooth and separated S-scheme which is a Néron model of
its generic fibre Xy. :

(a) X is uniquely determined by Xy, up to canonical isomorphism.

(b) X is a weak Néron model of its generic fibre; in particular, it satisfies the
extension property for étale points.

(c) The formation of Néron models commutes with étale base change; ie., if
S’ —> S is an étale morphism arid if K' is the ring of rational functions on S, then
X = X x5 8" is a Néron model over S’ of the K-scheme Xy = Xg xx K'.

Proof. Assertion (a) follows immediately from the Néron mapping property. The
same is true for assertion (b) (mfodulo a limit argument as provided by Lemma 5
below); one has to apply the Néron mapping property to schemes Y which are étale
over S. To verify assertion (c), wje only have to show the Néron mapping property
for X.. So consider a smooth S'-scheme Y’ and a K’-morphism Yy, — Xy.. Com-
posing the latter morphism with the projection Xy —> X, we obtain a K-mor-
phism Yy — Xy which uniqucj:ly extends to an S-morphism Y’ — X since X
is a Néron model of Xy; namely, Y’ is smooth over S since the composition of the
structural morphism Y’ — S, which is smooth, with the étale morphism §' — S
is smooth again. Now Y’ — X %yields an §’-morphism Y’ — Xj. and the latter is
a unique extension of the K'-morphism Yz — Xj.. O

Next, we mention that the nétion of Néron models is local on the base:

Proposition 3. Let S be a Dede@ind scheme and let (S;) be an open covering of S.
Furthermore, let X be an S-scheme. Then X is a Néron model of its generic fibre if

and only if, for each i, the same is true for the Si-scheme X xg S;.

In the above assertion, one can replace the open subschemes S; = S by the
localizations of S at closed points. However, then it is necessary to require the
scheme we start with to be of finite type.

Proposition 4. Let S be a Dedekind scheme and let X be an S-scheme of finite type.
Then the following assertions are equivalent:

(a) X is a Néron model of its generic fibre.

(b) For each closed point s € S, the O, -scheme X x5 Spec U ; is a Néron model
of its generic fibre.

If we want to verify the implication (a)==>(b), we cannot just apply an
argument of base change as provided by Proposition 2 (c). The reason is that
Spec Us , is a limit of open subschemes of S but not, in general, an étale extension
of S. So we will have to combine limit arguments with arguments of base change.
Let us mention the necessary facts on limits.

Lemma 5 ([EGA 1V, ], 8.8.2). Let S be a base scheme and let s be a point of S.
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: |

(a) Let X and Y be S-schemes which are of ﬁﬁite presentation. Then the canonical

map

lim Homg (X xs §', ¥ xs §') — Homg, (X ®s 0s,,, Y ® 0,

is bijective, the direct limit being taken over all olf)en neighborhoods S’ of sin S.

(b) Let X be an Os ~scheme of finite preisentation. Then there are an open
neighborhood S’ of s in S and an S'-scheme X' of finite presentation such that
X' ®s Oy, is isomorphic to X . :
Proof of Proposition 4. To verify the implication (a) =>(b), pick a point se §
and write X, = X ®s 05 ;. Let K be the field| of fractions of 0 ;. It is only to
show that X, satisfies the Néron mapping property. So consider a K-morphism
ug : Yy, x — X5, x Where Y, is a smooth 0 -scheme; we may assume that Y is of

. . . |
finite type and, thus, of finite presentation over 0y ;. Then we can extend Y, to a

scheme Y’ over a connected open nelghborhood S’ = § of s and, taking S’ small
enough, we may even suppose that Y'is smoot%l just as Y is; cf. the definition of
smoothnessin 2.2/3. Using the fact that X’ :== X Xy §'is a Néron model of its generic
fibre, it follows that uy extends uniquely to aﬂ‘ S’-morphism u’: Y’ — X'. Then
U @y Os,5: Y — X, is a unique O, s—morphlsm extending uy. So X, is a Néron
model of its generic fibre.

The opposite implication (b) =>(a) is obtamed similarly. Let K be the ring
of rational functions on S and consider a K—morphlsm ug: Yy —> X where Y
is a smooth S-scheme. Again we may assume {hat Y is of finite type and, thus,
of finite presentation over S. Then condition (b) implies that, over a meighbor-
hood S(s) of each closed point s € S, the morﬂ)hlsm ug extends uniquely to an
S(s)-morphism u(s): Y x5 S(s) — X x5 S(s). Gluing all u(s) yields a unique
S-morphism u : Y — X extending uy. Since the smoothness and the separatedness
of the 0 .-scheme X ®j 05 ; imply the smoothness and separatedness of X over a

neighborhood of s, we see that X is a Néron model of Xg. O

In the situation of condition (a) of Proposmon 4 we will say that X is a global
Néron model of the generic fibre X whereas in' the situation of condition (b) the
schemes X xg Spec (g , will be called the local Neron models of X. Thus we see
that if Xy admits a global Néron model, all its local Néron models exist. The
converse of this assertion is not true as we will see in 10. 1/11.

A further consequence of the Néron mappln'

models respect group schemes. |

Proposition 6. Let X be a smooth and separated Sﬁ-scheme which is a Néron model of
its generic fibre Xy. Assume that Xy is a K-group scheme. Then the group scheme
structure of Xy extends uniquely to an S-group scheme structure on X.

Remark 7. When dealing with group schemes, ;the separatedness occurring as a
condition in Definition 1 is superfluous. Indeed, a group scheme is separated over
its base as soon as the unit section is a closed immersion; cf. 7.1/2. So group schemes

over fields are automatically separated. Furthcn;norc, let X be a smooth S-group

lg property is the fact that Néron
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scheme of finite type which satisfies the Néron mapping property. In order to show
that X is separated over S, we may apply Proposition 4 and thereby assume that S
is local. Then, due to the Néron mapping property, the unit section Spec K — Xy
of the generic fibre X extends uniquely to a section § — X, namely to the unit
section of X. It follows that the latter is a closed immersion, as.can be seen from
7.1/1 and its proof. Thus X is separated as claimed.

Although Néron models have been defined within the setting of schemes, their
importance seems to be restricted to group schemes or, more generally, to torsors
under group schemes as we will see in Chapter 6. For example, Pk admits P} as a
smooth and separated S-model which, due to the properness, satisfies the extension
property for étale points. But P§ is not a Néron model of its generic fibre since not
all K-automorphisms.of P} extend to S-automorphisms of P§; cf. 3.5/5. The situa-
tion is much better in the group scheme case as can be seen from an extension
theorem of Weil for rational maps into group schemes; cf. 4.4/1:

Letu: Y -+ X be arational map between S-schemes where Y is smooth and where
X is a smooth and separated S-group scheme. Then, if u is defined in codimension < 1,
it is defined everywhere.

Using this result, one can show without difficulties that abelian schemes over S,
i.e.,, proper and smooth S-group schemes with connected fibres, provide examples

of Néron models.

Proposition 8. Let X be an abelian scheme over S. Then X is a Néron model of its
generic fibre Xy.

Proof. Let Y be a smooth S-scheme and let uy : Yy — Xx be a K-morphism. We
claim that uy extends to a rational map u: Y -—-» X with a domain of definition
V — Y which is S-dense; ie., which is dense in each fibre of Y over S. Namely,
consider a closed point s € S and a generic point { of the fibre over s in Y. Then the
local ring Oy is a discrete valuation ring; cf. 2.3/9. So the valuative criterion of
properness implies that u, extends to a morphism Spec ¢y  — X or, using Lemma
5, to a rational map Y ---» X which is defined in a neighborhood of {. Therefore u
is defined in codimension < 1 and, thus, by Weil’s extension theorem, it is defined
everywhere. The uniqueness of the extension follows from the separatedness of

X. ' 0

We have seen that Néron models satisfy the extension property for étale points.
On the other hand, using a similar argument as the one given in the above proof,
one can show that a smooth and separated group scheme satisfying the extension
property for étale points is already a Néron model; see also 7.1/1.

Criterion 9. Let X be a smooth and separated S-group scheme of finite type. Then X
is a Néron model of its generic fibre if and only if X satisfies the extension property
for étale points.

Describing the necessary steps of the proof, we mention first of all that, due to
Proposition 4, the criterion has only to be verified in the local case. So assume that
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S is a local scheme. Then one has to use the fact that X, as a weak Néron model of
its generic fibre, satisfies the so-called weak Néron mapping property; cf. 3.5/3. The
latter means that each K-morphism uy : ¥y — Xy extends to an S-rational map
u:Y -+ X;ie., to a rational map which is defined on an S-dense open subscheme
of Y. So, just as in the case of abelian schemes, the if-part of the assertion is reduced
to Weil’s extension theorem for morphisms into group schemes. O

1.3 The Local Case: Main Existence Theorem

As we have seen in 1.2/4, the existence of a Néron model over a global Dedekind
scheme S implies the existence of the local Néron models at closed points of S. In
fact, if global Néron models are to be constructed, the first step is to obtain all local
ones. Then one can try to glue them in order to build a global model; see Section
1.4 for the case of abelian varieties. The purpose of the present section is to present
the existence theorem for Néron models in the local case.

Theorem 1. Let R be a discrete valuation ring with field of fractions K, with a strict
henselization R, and with field of fractions K** of R™". Let X be a smooth K-group
scheme of finite type. Then Xy admits a Néron model X over R if and only if X, (K*)
is bounded in Xy.

In particular, since properness implies boundedness, abelian varieties admit
Néron models in the local case:

Corollary 2. Let Ay be an abelian variety over the field of fractions K of a discrete
valuation ring R. Then Ay admits a Néron model over R.

The only-if-part of Theorem 1 is a trivial consequence of 1.1/7 since Néron
models are of finite type. The proof of the if-part, however, is more complicated and
will be carried out in Chapters 3 to 6, each one of them dealing with a certain aspect
of the construction of local Néron models. At this place we have to content ourselves
with a simplified description of the necessary steps.

We start the construction by choosing a separated R-model X of X of finite -

type which satisfies the extension property for étale points. If Xy is projective, we
can take for X the schematic closure of X in a projective n-space over R. Similarly,
if X is affine, we may use the boundedness condition and take for X the schematic
closure of X in a suitable affine n-space over R. In the general case we use 1.1/7.
Since the model X obtained from 1.1/7 might not be separated and since we want
to avoid the result 3.5/7 saying that a separated R-model can be found, we will
generalize the situation slightly in Chapters 3 and 4 by working with a finite family
(X,) of separated R-models of Xy such that the canonical map

[T X(R*#) — X(K™)
is surjective.
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For simplicity, let us consider a separated R-model X of finite type of Xx
satisfying the extension propeity for étale points. Then we apply the so-called
smoothening process to X®), which will be explained in Chapter 3. Thereby we
obtain a proper R-morphism X —s X consisting of a sequence of blowing-ups
with centers in special fibres. It has the property that each R*-valued point of X*)
lifts to an R*-valued point of X which factors through the smooth locus X3
of X®; cf. 3.1/3. Thus X® := X @), is a smooth R-model of finite type of X which
satisfies the extension property for étale points. In other words, X is a weak Néron
model of X. It satisfies the so-called weak Néron mapping property which means
that, for each smooth R-scheme Y and each K-morphism ug : Yx — X 3) there is
an R-rational extension u : Y ---» X®; i.e,, a rational extension which is defined on
an R-dense open part of Y; cf. 3.5/3. Hence X' 3 satisfies certain aspects of a Néron
model. However, weak Néron models are not unique and it might be that the group
structure of X does not extcnjd to a group scheme structure on X®. Thus, one
cannot expect that X is already a Néron model of X.

In general, it is necessary to modify X®. This can be done by using the group
structure on Xg; cf. Section 4.3. To simplify the notation, write X instead of X©.
Furthermore, let 7 be a uniformizing element of R, and let k = R/R be the residue
field of R. Fixing a non-trivial%left-invariant differential form w on Xy of degree
d = dim Xy, we define its m-order over each component Y, of the special fibre X,
of X. Namely, let n be the generjic point of Y. Then 0, is a discrete valuation ring
with uniformizing element 7. Si;nce the sheaf of relative differential forms Qg is a
line bundle, there is an integer n such that z~"w extends to a generator of Q% r at
1, and we can set ordy, o := n. Then the w-minimal components of X, ie, those
components for which the n-order of w is minimal, are uniquely determined by Xy
up to R-birational isomorphism. They occur in each weak Néron model of Xy

and have to be interpreted as
precisely, any isomorphism uy :
R-rational map X ---» X which

the components which have largest volume. More
X — Xy, which leaves w invariant, extends to an
maps the w-minimal components of X, birationally

onto each other; cf. 4.3/2. So if X’ is the open subscheme obtained from X by
removing all non-minimal components of the special fibre X, the isomorphism ug
gives rise to an R-birational map X’ ---» X which even is an open immersion on its
domain of definition; see 4.3/1 (ii). Applying this argument to general translations
on Xy, one can realize that the group multiplication mg : X x Xg —> Xy extends
to an R-birationalmapm: X’ x X' ---» X".In fact, m defines a so-called R-birational
group law on X'; cf. 4.3/5. The R-scheme X is, as we will see in the end (cf. 4.4/4),
already an R-dense open subscheme of the Néron model we are going to construct,
although X’ will not, in general, satisfy the extension property for étale points
any more.

Now a Néron model of X can be derived from X' by consideringits “saturation”
under the birational group law. There is a standard procedure, first invented by
Weil for the case where the base consists of a field and then generalized by A. Néron
and M. Artin, which associates group schemes to R-birational group laws. We will
explain it in Chapter 5 for the cj:asc where the base ring R is strictly henselian; the
generalization to an arbitrary discrete valuation ring is done in Chapter 6 by means
of descent. Thereby we will seé, cf. 5.1/5, that X’ can be enlarged to an R-group
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scheme X" which is an R-model of X, of finite type and which has the property
that the group multiplication on X" restricts to the R-birational group law m on
X'. Then one uses a translation argument to show that X" satisfies the extension
property for étale points so that X" is a Néron model of Xy by Criterion 1.2/9.

1.4 The Global Case: Abelian Varieties

In the preceding section we have discussed the existence of Néron models in the
local case. If a global Néron model is to be constructed, one has to find a way to
glue the local Néron models. The problem is that the resulting global model might
not be of finite type again, a property which is necessary for Néron models. However,
as we want to show in the present section, when dealing with abelian varieties the
gluing works well and we do obtain global Néron models this way. To start with,
let us state Proposition 1.2/4, which describes the relationship between local and
global Néron models, in a form which is more useful for applications.

Proposition 1. Let S be a Dedekind scheme with|ring of rational functions K and let
Xy be a smooth and separated K-scheme of finite type. Then the following assertions
are equivalent:
(a) There exists a global Néron model X of X over S.
(b) There exists a dense open subscheme S’ = S such that Xy admits a Néron
model over S’ as well as local Néron models atg the finitely many closed points of
S-S ’ f

Proof. The implication (a) =>(b) is trivial, dué to 1.2/3 and 1.2/4. To obtain the
opposite, we may assume that S is connected. ELet S5 ---5 S, be the closed points
which form the complement of §’ in S and let X ' be a Néron model of Xy over S".
Furthermore, let X, be a local Néron model of X over the ring s ,,. Then, using
1.2/5, X, extends to a smooth and separated scheme of finite type X; over a suitable

open neighborhood S; of s;. Since X; and X’ coincide at the generic point of S, both

must coincide over a non-empty open part of !S’. Removing finitely many closed
points from S;, we may assume that S; N (S — §') = {s;} and that X; coincides with
X" over §' N S;. But then we can glue each X, with X over S’ N S, to obtain a smooth
and separated S-model X of finite type satisfying X xs8' = X' and X ®; s, =
X, Thus X is a global Néron model of Xy by !1.2/4. O

|
Now consider a connected Dedekind scheme S with field of rational functions
K and an abelian variety A over K. One says th?at Ay has good reduction at a closed
point s € S if Ag extends to a smooth and propel:' scheme A4, over 05 ;. We want to
show that A, is automatically an abelian scheme in this case and, thus, a Néron

model of Ag.

|
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Proposition 2. Let S be a connected Dedekind scheme with field of fractions K and
let Ag be an abelian variety over K. Assume that Ay extends to an S-scheme A which
is smooth and proper. Then A is an abelian scheme under a group structure which
extends the given group structure on Ag. In particular, 4 is a Néron model of Ag.

Proof. Using 1.2/4 we may assume that we are in the local case where S consists of
a discrete valuation ring. Since A is proper, the valuative criterion of properness
shows that A is already a weak Néron model of Ag. Furthermore, the special fibre
A, of A is connected by [EGA III, ], 5.5.1. Therefore A, has to be viewed as an
w-minimal component, with @ being a generating differential form of degree dim A4
on Ag; use the weak Néron mapping property 3.5/3 and the result 4.3/1. On the
other hand, we know from 1.3/2 that 4y admits a Néron model X. Thus, by the
Néron mapping property, there is a canonical S-morphism 4 — X which is an
open immersion by 4.3/1 (ii) or 4.4/1. Because A is proper, its image is closed in X.
However, X is connected due to the fact that X is flat over S, with the generic fibre
Xy = Ag being connected. So 4 — X is an isomorphism and A4 is a Néron model
of Ag. Thus, applying the Néron mapping property, the group structure of Ay
extends to a group scheme structure on 4 and A is seen to be an abelian scheme. [

In order to apply Proposition 1 in the case of abelian varieties A, we have to
show that Ag has good reduction at almost all closed points of S and even more:
that Ay extends to an abelian scheme A’ over a dense open subscheme S’ of S.
Looking at a simple example, assume that the characteristic of K is different from
2 and consider the case where Ay is an elliptic curve in P2 given by an equation in
Weierstral3 form

2z = x* + Bxz% + 923
with a non-zero discriminant A = 483 + 27y2 Then the elements B, y, A, and A™*

belong to almost all local rings O ; at closed points s € S. So there exists a non-
empty open subscheme S’ < § such that §, y, and A extend to sections in 0g(S’) and

~ such that A and 2 are invertible in ¢(S’). Consequently, 4, extends to a smooth

projective family A’ of elliptic curves in PZ. Then A’ is an abelian scheme extending
Ay as we have shown in Proposition 2. Alternatively, we can apply limit arguments
of type 1.2/5 and see directly that, after a possible shrinking of §’, the scheme A’
gives rise to an abelian scheme over S'. In principle, the same reasoning applies to
any abelian variety Ay over K.

Theorem 3. Let S be a connected Dedekind scheme with field of fractions K and let
Ag be an abelian variety over K. Then Ay admits a global Néron model A over S.
Furthermore, let S’ be the subset of S consisting of the generic point and of all closed
points in S where Ag has good reduction. Then S’ is a dense open subscheme of S and
A xg §' is an abelian scheme over S'.

Proof. We have to show that A, extends to a smooth and proper scheme over a
neighborbood of the generic point of S as well as over a neighborhood of each closed
point of S where Ay has good reduction. Then all such schemes are abelian schemes
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by Proposition 2 and, using the Néron mapping property, they can be glued to give
an abelian scheme over §'. Furthermore, due to the existence of local Néron models
1.3/2, we conclude from Proposition 1 that A, admits a global Néron model A.

In order to show that A, extends to a smooth proper scheme over a non-empty
open part of S, choose a closed embedding Ay —> P% into some projective n-space
and consider the schematic closure A of Ay in P%4. Then A is smooth over the generic
point of S and, thus, smooth over an open neighborhood S” of this point. So
A" = 4 x4 8" is a smooth projective S"-model of Ag. Alternatively, we can use 1.2/5
to extend A to a scheme A” of finite type over an open neighborhood S” of the
generic point in S. If §” is small enough, A” will be smooth and, by [EGA IV4],
8.10.5, also proper. The same argument applies if we consider a closed point s € S
where Ay has good reduction. Namely, then 4 extends to a smooth and proper
scheme A, over 05, and we can extend the latter over an open neighborhood
of s. . O

It follows from the valuative criterion of properness that any K-rational map
uy : Y > Ay from a smooth K-scheme Yy into an abelian variety Ay is defined in
codimension 1 and, thus, is defined everywhere by Weil’s extension theorem 4.4/1.
Thereby it is seen that, in the case of abelian varieties, the Néron mapping property
can be strengthened.

Proposition 4. Let S be a connected Dedekind scheme with field of fractions K and
let Ag be an abelian variety over K with Néron model A over S. Then, for each smooth
S-scheme Y, and for each K-rational map uy : Yy -—> Ay, there is a unique S-morphism
u:Y — A extending uy.

For further generalizations of this result see 8.4/6 and 10.3/1.

1.5 Elliptic Curves

In order to illustrate the construction of Néron models, we want to look at Néron
models of elliptic curves. In this particular case, the procedure of construction can

be made quite explicit. The reader who is interested in a more profound discussion

of models of elliptic curves is referred to Kodaira [1], Néron [2], and Tate [2]. In
our terminology, an elliptic curve will always be understood to have a rational point.

We will work over a base scheme S consisting of a strictly henselian discrete
valuation ring R with field of fractions K and with an algebraically closed residue
field k. First we want to clarify the interdependence between Néron models and
regular and proper minimal models of elliptic curves over K. So consider an elliptic
curve Eg over K. Then Ey admits a Néron model, as we have stated in 1.3/2. 1t also
admits a proper minimal model. By the latter we mean a proper flat R-model E
which is a regular scheme and which is minimal among all models E of this type
in the sense that each R-morphism E — E’ which is an isomorphism on generic
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fibres is an isomorphism itself. So there are no irreducible components of the special
fibre of E which can be contracted without loosing the regularity of E. Regular and
proper minimal models of curves are unique; see Abhyankar [1] and Lipman [1]

for the existence of regular and ;j)roper models and Lichtenbaum [1], Shafarevich
[1], or Néron [2] for the existence of regular and proper minimal models.

Proposition 1. Assume that R is a strictly henselian discrete valuation ring. Let E be
a regular and proper minimal model over R of the elliptic curve Ex. Then the smooth
locus of E is a Néron model of Eg.

Proof. Write E’ for the smooth locus of E. It follows from 3.1/2 that each R-valued
point of E factors through E'. So, by the valuative criterion of properness, we see
that E' satisfies the extension property for étale points and, thus, is a weak Néron
model of Eg. Furthermore, it follo]ws from 2.3/5 that all k-valued points of the special
fibre E, lift to R-valued points of E.

Fix an invariant differential form w of degree 1 on Ex. We claim that all
components of the special fibre E;c are w-minimal. To see this, consider two com-
ponents X, and X, of Ej and two k-valued points y, € X; and z, € X,. Lift them
to R-valued points y, z of E’ and restrict them to K-valued points yg, zx € Ex. Then
the translation by zgxyg! is a K-isomorphism of E, mapping yg to zg. Due to the
uniqueness of regular and proper minimal models, this isomorphism extends to
an R-isomorphism of E and, thus, of E’, mapping y onto z. So there are
R-isomorphisms of E’ which operate transitively on the components of the special
fibre E, and which leave w invariant. Consequently, all components of E; must be
w-minimal; cf. 4.3/1. :

Now, as explained in Section 1.2 or, in more detail, in Section 4.3 and Chapter
5, the group structure on Ey extends to an R-birational group law on E’ and, then,
to a group scheme structure on a bigger R-scheme E” containing E’ as an R-dense
open subscheme; cf. 5.1/5. However, using the fact that all translations by
K-valued points on Eg extend to isomorphisms on E’, and to the translations by the
corresponding R-valued points on E”, it follows that E’ and E” coincide. So E’ is a
Néron model of Eg. O

If E is a proper and flat R-model of an elliptic curve E over K, then E is smooth
over R at all points of the generic fibre. Furthermore, E is smooth at a point x of
the special fibre E, if and only if| this fibre is smooth over k at x, or equivalently
since k is algebraically closed, if and only if E, is regular at x. So, in order to
pass to the smooth locus of E, one removes all irreducible components with
multiplicities > 1 from E, as well as from the remaining part of E, all singular points;
the latter form a finite set. For algebraically closed residue field k, special fibres of

regular and proper minimal mode
[2], see also Kodaira [1]; there is
to compute the type of the special
in Tate [2].

If one is interested in a Néron
in its regular and proper minimal

Is of elliptic curves have been classified by Néron
only a finite list of possible types. An algorithm
fibre from a given equation for Ey has been given

model E of an elliptic curve Eg and not so much
model, one can construct E directly without too
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much effort starting out from an equation describing Ey in P%, at least when the
residue characteristic of K is different from 2 and 3. To do this, one classifies
WeierstralB equations into a finite list of tylpes, according to certain conditions
involving the values of their coefficients, discriminants, and j-invariants. Then one
can construct the Néron model E by direct computation in each of these cases. To
demonstrate this, assume that R is a strictly hensehan discrete valuation ring with
residue characteristic char k different from 2 and 3 and consider an elliptic curve Eg

over K, defined in PZ by an equation in WelelrstraB form

(%) Vz=x*+ ﬂxzz% +yz3.

Then discriminant A and j-invariant j are givci:n by

A=4p° +27%,  j=25-33-46%A.
Viewing Ey as a group scheme, we assume that the point (0, 1,0) defines the unit
section of Eg. Let = be a uniformizing element of R, and let v: K — Z be the

additive valuation given by R which satisfies v(z) = 1. We need some elementary
properties of the equation ().

Lemma 2. For n € Z, the change of homogeneous coordinates in P2
(x,3,2) = (272", 17", 2)
induces on the equation of Ey the change

B’_"’n4"ﬁa y'__)ntsn,y’ A— 1287 |

Lemma 3. (a) If v(j) > 0, then v(A) = min(v(82), v(y?)). In particular, v(A) = 0 (2) or
v(A)=0(3).

) If v(j) <O, then v(A) > v(B®)=v(y?). In particular, v(f)=0(2) and
v(y) =0 (3).

Making a change of coordinates as described in Lemma 2, we can assume that
the coefficients § and y of () belong to R and, furthermore, that min(v(83), v(y?)) is
minimal. Thereby we arrive at a so-called minimal Weierstral equation of Eg; ie.,
at a WeierstraB equation with coefficients in R such that v(A) is minimal. We list
the possible cases which remain. |

|

Lemma 4. Let the equation () be a minimal I/;VeierstraB equation for Ey. Then, if
v(j) = 0, we have v(A) € {0,2,3,4,6,8,9,10}. Furthermore if v(j) <0, either v(B) =
v(y) =0, 0r v(f) =2 and v(y) = 3. i
5 _

Using Néron’s symbols as introduced in his iable [2], p. 124/125, the possibilities
for a minimal Weierstra equation for Ey as mentloncd in the above lemma split

into the following subcases; see also the table 111 Tate [2], p. 46.
@ ()20, vA)=0
(bn) ¥()=-m<0, v(/;z) =) =
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(cl) v(H=0, v(A)=

(c2) v(j)=0, v{A)=3

€3 v(j)=0, v(A)=4

(c4) (=0, v(A)=

5n) v(j)=-m<0, v(f)=2, vy =3
(c6) v(j)=0, v(A)=38

) v(j)=0, v(A)=

c8 v(jH=0, v(A)=10

Now, to construct a Néron model of Eg, one proceeds as follows. One chooses
a minimal Weierstrall equation for Ex and uses it for the definition of an R-model
E of Eg in PZ. Let E° be the smooth part of E. Then one verifies by direct
computation, or by using general properties of planar cubics, that E° is a smooth
R-group scheme extending Ey. In fact, we will see that it is the so-called identity
component of the Néron model of Ey. There are three possibilities which we
characterize by the first letters of Néron’s symbols:

(a) v(A) = 0. Then E is smooth, so E® = E is an abelian scheme extending Ej.
It follows that Ey is an elliptic curve with good reduction and that E is its Néron
model.

(b) ¥(A) > 0 and min(v(B),v(y)) = 0. Then E is not smooth; the special fibre of
E° is the multiplicative group G,, ;.

(c) v(A) > 0 and min(v(B),v(y)) > 0. Also in this case, E is not smooth; the
special fibre of E° is the additive group G, .

s . . . dx
Consider the invariant differential @ = — on Eg. Then w has n-order 0 over
y

E°. We claim that, for the construction of the Néron model of Ey, it is enough to
extend E° into a weak Néron model E of Ey with the property that the special fibre
of E consists of w-minimal components, all of them being isomorphic to Ep.

Lemma 5. Let EY, ..., E" be smooth and separated R-models of Ey. Assume that, for
all p, the special fibre Ef, as a k-scheme, is jsomorphic to EJ, that w has n-order 0
over Ef, and that the canonical map | [;—, EP(R) —> Ex(K) is bijective. Then, gluing
the E* along the generic fibre Ey, we obtain a Néron model E of Eg. Furthermore,
EP® is the identity component of E.

Proof. It is clear that E is a smooth R-model of finite type of Ey which satisfies the
extension property for étale points 1.1/1. So E is a weak Néron model of Eg.
Furthermore, E is separated since, for p # z, the intersection of E? x E* with
the diagonal in E xg E is just Eg. By the assumption on the n-order of o, all
components of the special fibre E, are w-minimal. So, denoting by N the Néron
model of Eg, we have an open immersion E —, N by 4.3/1 or 4.4/4. Then E° must
coincide with the identity component N° of the Néron model N. Thereby we see
that the special fibre N, consists of 7 + 1 copies of Ef which, in case (c) is the affine
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1-space A}, and in case (b) is A} minus the origin. Since the same is true for E, we
conclude from the special type of E that E — N is bijective. So E is a Néron model
of Eg. O

In each of Néron’s cases, a Néron model E of Ex can be constructed via the
above lemma. To show how to proceed, we will look at the cases (c1) and (c2) which
are quite simple, as well as at case (b,,) which is more complicated. First note that
e, := (0,1,0) € E(k) is a non-singular point of the special fibre of E; in fact, it is the
unit section of EL. So the singularities of E, belong to the affine part E, of E which
is described in A% by the equation

(%) y2=x>+px+7y.

There is precisely one singularity p; in E, , in the cases (b) or (c); it corresponds to
a multiple zero of the right-hand side of (#). So, in order to apply Lemma 5, we
have to concentrate on R-models E' of Ej such that the image of Ef(R) — Ex(K)
consists of K-valued points which, in E, specialize into the singular point p,.

Case(c1). Then v(f) = land v(y) = 1 by Lemma 3; hence p, = (0,0), using affine
coordinates of E, ;. Since

{(x.y) € E(K);v(x) > 0,v(y) > 0} = & ,

it follows from Lemma 5 that E® = E — {p,} is the Néron model of E,. Also it is
easily checked that the minimal WeierstraBl model is regular and, thus, coincides
with the regular and proper minimal model. O

Case (c2). We have v(B) = 1 and v(y) > 2 by Lemma 3. Again, p, = (0,0) is the
singular point of E, ;.. Thus all points (x, y) € E_(K) which do not extend to R-valued
points of E° must satisfy v(x) > 1 and v(y) = 1. Use £ := n'xand § := n~ly as new
coordinates and let E! be the R-model of Ex obtained by gluing

Spec R[%, §1/(9* — n#® — a7 p% — n™%)

along its generic fibre to Ey. Then all points (x, y) € E_(K), which satisfy v(x) > 1
and v(y) > 1, extend to' R-valued points of E*. In addition, E! is smooth and

separated and has special fibre E! ~ A} ~ EJ as required. Furthermore, since £ and .

9 do not vanish at the generic point of Ej, we see that w =dx/y = dx/y is of n-order
0 over EL. Thus Lemma 5 can be applied. The Néron model of Eg is obtained by
gluing E° and E' along the generic fibre E; its special fibre consists of two

components. O

We mention here that the process of replacing a variable x by X = nlx is a
special case of a dilatation, a technique to be applied systematically when we work
out the smoothening process in Chapter 3. In fact, the method we have used above
for the construction of E is a very explicit form of the smoothening process. It has
to be applied in a similar way for treating the remaining cases.

i

e R

1.5 Elliptic Curves 25
Case (b,,). This case is of special interest if R is complete; then Ex is a so-

called Tate elliptic curve. We have v(j) = —m <0, v(B) = v(y) = 0, and, hence,

v(A) = m > 0. Furthermore, Ef ~'6,, ;. Let us write .

Pj(x)=x3+ﬁx+y

for the right-hand side of (%) anjd P(x) for the polynomial obtained from P(x) by
reducing coefficients from R to k. Then P(x) has a single root @€ k and a double
root b e k. So p, = (b,0) is the singular point of E_ ; and all points (x,y) € E (XK)

which do not extend to R-valued points of E° must reduce to p;.

The root a lifts to a root a € R of P(x) since R is strictly henselian. Set Q(x) ==
P(x)/(x — a). Then Q(x) has coefficients in R and Q(x) = (x — b)? is the polynomial
obtained from it by reducing cojetﬁcients from R to k. Extending the valuation v
from K to the algebraic closure K™%, the root b lifts to two roots by, b, € K

of Q(x), where v(a — b)) =0 for
is A, coincides with the discrimi
we have

i =1, 2. Thus, the discriminant of P(x), which
nant of Q(x), up to a unit in R. Since v(A) =m,

v(b; — b)) =m/2 .

Furthermore, since R is strictly henselian, the extension of v from K to K(b;, b,)is
unique, just as for complete fields. So v(b;) = v(b,). Using an inductive argument

on m, interpreted as the value o
R-models E, ..., E™* which,
Lemma 5.

f the discriminant of Q(x), we want to construct
together with E°, will satisfy the conditions of

To do this, choose an arbitrary lifting b € R of b and use x — b as a new variable
instead of x; denote it by x again. The effect is that the singular point p; = (b,0) is
transformed into the origin (0, 0) this way. We will denote transformed polynomials

and roots by P(x), Q(x), a, b;, etc.
P(x) = (x — a)Q

where now
v(@) =0

For m = 1 we obtain v(b; — b,)

, again, so that

®), Q) =(x—b)(x—by)

v(b)) =v(by) = 1/2.
= 1/2 and, hence, v(b;) = 1/2. Then each x € Rz

satisfies v(P(x)) = 1 and we see that P(x) cannot have a square root in R. So there
are no points (x, y) € E,(K) satisfying v(x) > 1 and v(y) = 1, and we can conclude
from Lemma 5 that, in this case, E° is already the Néron model of Eg. Furthermore,

the minimal Weierstra3 model is

Ifm>1,weusen ‘xand ™!

regular in this case.
y as new variables, writing x and y for them again.

Then, looking for points (x, y) € E,(K) satisfying v(x) > 1 and v(y) = 1, we have to

look for integral solutions of the

y

equation

P=(a—m) 00,

where we have written Q(x) instead of n~2Q(nx) again. This Way the discriminant
of O(x) has been divided by = so that its value is now m — 2. Assume m = 2. Then

Spec R[x, yI/(y* — (a — nx)* Q(x))
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is smooth over R. Gluing it along its generic ﬁibre to E, we obtain an R-model E!
as required in Lemma 5. Namely, the special ﬁbre of Elis

Speck[x,y)(»* — ()

with Q(x) having two distinct roots in k. So it is °! minus two closed points and,
thus, isomorphic to EJ. That the ditferentialico has m-order 0 over Ef, is easily
checked. So, for m = 2, the Néron model is obtained by gluing E® and E ! along the
generic fibre Eg; its special fibre consists of two components.

If m > 2, the polynomial Q(x) has a root of multiplicity 2 and the scheme

Spec R[x, y1/(y* — (a — nx)- @(x))

is not smooth over R; its special fibre consists of two affine lines intersecting each
other. Removing the intersection point, we can construct two R-models E ! and E?
of E with special fibre isomorphic te E? each, If m = 3, one is reduced to the case
considered above where the discriminant of Q(ix) has value 1. Thereby it is seen that
E°, E*, E? satisfy the conditions of Lemma 5. If m > 3, the value of the discriminant
of Q(x) is > 1 and can be reduced by 2 again :as shown above. One continues this
way until the value of the discriminant of Q(x) is 1 or 0. Thereby one constructs
R-models EY, ..., E"™ of Ex which, together with E® satisfy the conditions of
Lemma 5. So the special fibre of the Néron model E of Ex consists of m components.
With a little bit of extra work one can show that the group E,/E? is cyclic of order
m. Also, by means of the arguments we have éiven, one can determine the regular
and proper minimal model of Eg. Its special ﬁl:?ore consists of a chain of m projective
lines forming a loop (if m > 1) or of a rational curve with a double point (if m = 1).
In particular, we can thereby see that the regular and proper minimal model of E
will not be planar if m > 3, because a plan.iar cubic cannot have more than 3

components. | O

It is useful to look at Tate elliptic curves also from the rigid analytic viewpoint.
So let R be a complete discrete valuation rm‘g We do not need that R is strictly
henselian or that the residue field k is perfect. %An elliptic curve Ex over K is called
a Tate curve if, in the sense of rigid analytic geometry, it can be represented
as a quotient G,,,',ig/qz_ where G, ,;; is the analytification of the multiplicative

group G,, x and where g € K* satisfies m == v(q) > 0. The quotient G,,,,,ig/qZ can be

thought of as being constructed by gluing m annuli of type {x € G uig Tl < x| <1}

in a cyclical way. Using this covering, we can extend G, /q* into a formal scheme
X whose special fibre X, is a projective line with a double pointif m = 1 and a chain
of m projective lines forming a loop if m > 1.

Choosing an effective Cartier divisor D on X whose support is contained in the
smooth locus of X and which is very ample on all components of X; and on the
generic fibre X,;,, one constructs a projective embedding of X and, thus, an R-model
E' of Ex whose formal completion is X. Then it turns out that the smooth locus E
of E' is a Néron model of Ex. The special fibre E, coincides with the smooth locus
of X, and, thus, is an extension of G, , by Z/mZ. See Bosch and Liitkebohmert [3]
for a generalization of the construction to abelian varieties.
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1.6 Néron’s Original Article

H

We want to give here some analysis of Néron’s article “Modéles minimaux des
yariétés abéliennes sur les corps locaux et globaux”[2] which appeared in 1964 and
which serves as a basis for the construction of Néron models as done in this book;
see also the lecture [1] given by Néron in 1961 at the Séminaire Bourbaki. Consider
an abelian variety Ay over a local field K and think of it as being embedded into a
projective space P¥. Let X be the schematic closure of Ay in P} where R is the
discrete valuation ring of integers of K. Then X is an R-model of Ag on which
integral points might not be read as nicely as possible. Moreover, it will be likely
that the group structure of Ax does not extend to the smooth part of X. To obtain
R-models of Ax which do not have these disadvantages, Néron had to apply a series
of substantial modifications to X and, in doing so, he had to overcome a lot of
technical difficulties. ,

His article is divided into three chapters. The first one develops a language of
varieties over discrete valuation rings, taking Weil’s “Foundations” [1] as point of
departure. The main results are “Théoréme 3” on p. 57, which corresponds to our
smoothening process (see 3.1/3), and, as a corollary, “Théoréme 6” on p. 61, which
yields the existence of weak Néron models (see 3.5/2). In the second chapter, one
finds the construction of Néron models for abelian varieties or, more generally, for
torsors under abelian varieties; Néron uses the terminology “modeéle faiblement
minimal”. The existence of Néron models is asserted in “Théoréme 2” on p. 79 for
the local case and in “Théoréme 4” on p. 87 for the global case. Finally, the third
chapter, which is fairly independent of the others, contains the construction of
regular proper minimal models for elliptic curves.

Néron’s article has to be viewed as a contribution to relative algebraic geometry
over a discrete valuation ring; the applications he gives in the global case are
easily deduced from the local case. Concerning the construction of Néron models,
Chapters 1 and 2 of his article are quite difficult to read. To a substantial ex-
tent, this is due to the fact that they are very technical and also to the fact that
the terminology Néron applies is not commonly used; it has been abandoned
since.

To give some impression of his terminology, let us explain the basic setting
considered by Néron. We start with a discrete valuation ring R with maximal ideal
p. Denote by K the field of fractions as well as by k the residue field of R. The latter
is assumed to be perfect. Néron, familiar with the notion of generic points in the
sense of Weil’s “Foundations” [1], works with universal domains on two levels.
First he chooses a universal domain f for the residue field k and then a universal
domain K for the field of fractions K. The latter is done in such a way that R is a
universal domain of the field of fractions of a ring R which serves as an “integral”
universal domain. To define R in the equal characteristic case, he considers a lifting
of k to the completion of R as well as a uniformizing element T of R and takes for
R the formal power series ring {[[T]]. In the unequal characteristic case, he sets
R = R Qg W) where R is the completion of R and where W indicates rings of
Witt vectors. The interference of Witt vectors is the main reason why the residue
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field k is assumed to be perfect. Then he works with relative schemes over R,
so-called p-varieties. To be precise, a p-variety corresponds to a flat R-scheme of
finite type; its points have values in the universal domains K or f or, when consider-
ing integral points, in the subring R of K. Such a p-variety is called p-simple if it is
regular; it is called simple modulo p at a point of the special fibre if it is smooth
over R at this point. For both notions, Néron discusses the Jacobi criterion.

In the following, we want to examine Néron’s approach to the smoothening
process as presented in his Chapter 1, without pursuing his terminology any further;
we will use the language of schemes, as generally applied in this book. Let X be a
flat R-scheme of finite type with a smooth generic fibre Xy and consider R'-valued
points of X where R’ is a discrete valuation ring over R having same uniformizing
element as R. (So R’ is of ramification index 1 over R, since the residue field k of R is
perfect) For such points x € X(R’), Néron defines the integer I(x,X) which
measures the defect of smoothness of X along x; see his section n°17 starting on
p. 35 or our section 3.3. He shows that I(x, X) is bounded as a function of x. Then
he works out the smoothening process by relying on two techniques: the first one
is a generic smoothening and the second is the theory of pro-varieties.

The generic smoothening can be formulated as follows:

Let u: Spec R' — X be an R'-valued point of X where R’ is as above. Reducing
modulo the maximal ideal p of R, one obtains a morphism @: Speck’ — X,. Let Y
be the closure of its image and let f : X — X be the blowing-up of Y on X. Then, if
ii: Spec R’ — X is the lifting .of u to X, one has

1@, X) < max(I(u, X),1) .

In particular, after a finite repetition, one ends up with a factorization of u through
the smooth locus of a blowing-up of X.

The statement may be viewed as an individual smoothening for R'-valued points
x of X. In order to obtain some form of smoothening which works simultaneously
for several x and R’, Néron relies on the technique of pro-varieties; this is one of
the most delicate points in his construction. To give a sketch of his approach,
consider an affine open part of X and thereby suppose that X is embedded into an
affine space AY. Using the coefficients of formal series in f[[T]] in the equal
characteristic case and ‘Witt coordinates in the unequal characteristic case, Néron
introduces on the set of R/p"-valued points of A¥ a structure of k-variety "AY. Since
X has a smooth generic fibre, the image of X (R) in "A¥ gives rise to a constructible
subset "X and one obtains a projective system of morphisms

epntly  my ...

defining a k-pro-variety.

The possibility of parametrizing solutions of X modulo p" by a k-variety or,
more specifically, of points of X with values in the completion R of R by a
k-pro-variety, had been systematically studied by M. Greenberg [1] within the
context of schemes and representable functors; see also Serre [3]. The technique is
referred to as the Greenberg functor. However, since Néron did not use the language
of functors, he gave proofs of his own for the facts he needed.

S S i
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Let us return to the 51tuat10n of a generic smoothening as above where we
consider a blowing-up f: X — X with center Y, Then there is an induced morphlsm
#f 8% "X for each n and, takmg limits over n, a bijection X(R) ~ X(R). To
obtain a simultaneous smoothenmg, Néron has to consider partial inverses of the
maps "f. More premsely, for each n, there is a constructible subset "Y of "X given by
the points in X(R) which reduce to points of ¥ and he shows that there is a
constructible map "*'Y — "¥ such that the diagram

n3+1Y nX‘

b

Y o, "X

commutes. (In the case of Witt coordinates, a map of type "*'Y — "X involves
radicial morphisms of extracting p-th roots. Later, to overcome this kind of diffi-
culties, Serre [2] worked with qﬁasi-algebraic varieties.)

Now set | = max I(x, X) where the maximum is taken over all R'-valued points
of X and let Z be an irreducible component of 'X. Combining blowing-ups and
shiftings as above, Néron shows the following assertion: there exists a non-empty
open part U of Z such that there is a simultaneous smoothening of X with respect
to all points of X(R') whose image in ‘X is already contained in U. Using this
assertion, he can finish the smoothening process by a constructibility argument; cf.
his “Théoréme 3” on p. 57.

The proof we will give for the existence of the smoothening process is basically
the same as Néron’s, except for the fact that we can avoid using pro-varieties
and the Greenberg functor. We do this by establishing a more precise form of the
genenc smoothening; cf. 3.3/5. Namely, as we will see, considering the blowing-up
f:X — X, there exists a non-empty open subscheme V < ¥, described in terms of
differential calculus, such that, for each R’-valued point v of X whose special fibre

factors through V, and for the hft‘mg # of v to X, we have

(B, X) < max(l(v, X),1) .

Then it is possible to end the smoothening process directly by a constructibility
argument without looking at solutlons of X . modulo higher powers of p.

At the end of Néron’s Chapter 1, there is the discussion of what we call weak
Néron models and the measuring of the size of their components. The latter is done
with respect to a non-zero dlﬁerentlal form w of maximal degree of Xy. The
smoothening process implies that up to birational equivalence, there are only
finitely many components of “max1ma1 volume” with respect to w. The arguments
are the same as we will present them later at the corresponding places in our
Chapters 3 and 4.

Let us dicuss now Néron’s Chapter 2. It starts with the definition of torsors, or
principally homogeneous spaces in his terminology. The definition is given in terms
of ternary laws of composition in such a way that the underlying group of the torsor
ishidden. Presumably thisis done i in order not to separate the construction of Néron
models into the group case and the case of a torsor under a group scheme. So
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consider a torsor X under an abelian variety A over K and a projective R-model
X' of Xg. Néron applies the smoothening process to X', restricts to the smooth
locus, and removes from the special fibre all irreducible components which do not
have maximal volume. The volume is measured with respect to a non-zero invariant
differential form of maximal degree on Xj; »\f'rite X" for the resulting R-model of
Xg. Then he shows that the structure of torsc§>r on Xy extends to a birational law
of torsor on X”.

The next step is to show that finitely many “translates” of X” (defined over
certain unramified extensions of R) cover all points of X’ with values in unramified
extensions R’ of R. The same problem occurs in our presentation at the end of the
construction of Néron models, where we want to prove their universal mapping
property; cf. 4.4/4.

To construct the Néron model X of X, it%is, of course, necessary to really glue
translates of X”; the latter is not a standard procedure since the translates are only
defined over certain unramified extensions of R. Starting with an ample invertible
sheaf on X", Néron shows that it extends tEo an ample invertible sheaf on the
translates of X” and, finally, on the Néron m[odel X. So this part contains in one
step the construction of X in terms of gluing translates under the birational law on
X" as well as the descent and the quasi-prci)jectivity of the resulting model. It
presents a tremendous accumulation of difficulties. In addition, explanations which
are given are not very detailed and in most czases quite complicated to follow. In
order to simplify things, it is possible to separate the construction into two steps.
First one constructs the Néron model over azil étale extension R’ of R, where one
has enough integral points to perform translations and where it is enough to
consider the group scheme case. Then, as a seé:ond step, one goes back from R’ to
R by means of descent, using ample invertible sheaves and thereby proving the

quasi-projectivity of the model. This is how M Artin proceeds in [9]; the same
strategy will be applied in the present book. |

Finally, the universal mapping property of Néron models is established (in a
rudimentary form) quite early in Néron’s article, see n°4, pp. 71-73, even before
Néron models are constructed. It is based 01§1 Weil’s arguments [2], concerning
rational maps from smooth varieties into algebraic groups.

It remains to say a few words about Néron’s Chapter 3 where he constructs

i

proper and regular minimal R-models for ellipitic curves with a rational point over
K. Except for a few examples, already mentioned in Section 1.5, the subject will not
be touched in this book. Néron studies minimal WeierstraB equations and classifies
them according to the values of their coefficients, discriminants, and j-invariants.
Then he obtains the regular and proper minimal model as a successive joint of new
components. His construction leads to the same diagrams as the ones obtained by
Kodaira [1]. But Néron’s approach of discussing minimal Weierstra equations
case by case is quite different, it does not use the existence of regular models nor
does it use the intersection form. An improved version of his method was later
published by Tate [2] in algorithmical form,; it is known as the Tate algorithm.

Chapter 2. Some Background Material from
‘Algebraic Geometry

In this chapter we give a review of some basic tools which are needed in later
chapters for the construction of Néron models. Assuming that the reader is familiar
with Grothendieck’s definition of schemes and morphisms, we treat the concept of
smooth and étale morphisms, of henselian rings, and of S-rational maps; moreover,
we have included some facts on differential calculus and on flatness. Concerning
the smoothness, we give a self-contained exposition of this notion, relating it closely
to the Jacobi criterion. For the other topics we simply state results, sometimes
without giving proofs. Most of the material presented in this chapter is contained
in Grothendieck’s treatments [EGA IV, ] and [SGA 1].

2.1 Differential Forms

In this section we define the sheaf of relative differential forms of one scheme over
another. We introduce it by a purely algebraic method using derivations. So let us
first review the basic facts on derivations; detailed explanations and proofs can be
found in [EGA 0], 20.5.

In the following let R be a ring, and let A be an R-algebra. An R-derivation of
A into an A-module M is an R-linear map d: A —s M such that

d(fg) = fd(g) + gd(f) forall f,ged.

In particular, d(r- 1) = 0 for all r € R. The set Derg(4, M) of all R-derivations of A
into an A-module M is canonically an A-module. One defines the module of relative
differential forms (of degree 1) of A over R as an A-module Q}/r» together with an
R-derivation d g : A — Qj} , which is universal in the following sense: For each
A-module M, the canonical map

HomA('Q}ilR’ M) = Derg(A4, M), Q> po dA/R s

is bijective. The map d, is called the exterior differential. Such a couple Q4r-dyr)
is uniquely determined up to canonical isomorphism. The existence can easily be
verified in the following way. If A is a free R-algebra R[T;],., of polynomials in the
variables T, i € 1, then let Q' be the free 4-module generated by the symbols a1,
i€, and define d: 4 — Q! by the formula

d(P):= ¥ o

_d'I:’
iel 6’1—;
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where P/8T; is the usual partial derivative of P with respect to T;. It is easy to see
_ that (Q1, d) is the A-module of relative differential forms of 4 over R. In general, an
R-algebra B is a residue ring B = A/a of a free R-algebra of polynomials A. Then
the B-module of relative differential forms of B over R is given by the B-module

Qhr/(0Q) g + Adyra) 5

and the exterior differential is canonically induced by d/g-

We give an alternate method for proving the existence of modules of differentials.
Letm: A ®z A— Abethe map induced by the multiplication on A4, set ] = ker(m)
and consider the map

d:A—II?, fr—1®f—-f®l mod I .

The (A ® A)-module I/I? is actually an ((A ®g A)/I)-module. Using the canonical
isomorphism

(A®g A1 =4
one can view I/I? as an A-module, and one verifies that (7, /I2,d) is the A-module

of relative differential forms of 4 over R.
The universal property of Q} x implies certain functorial properties. For exam-
ple, each morphism ¢ : 4 — B of R-algebras induces a unique A-linear map

Z fidar(g:) — Z fP(fi)dB/R((P(gi)) >

1 1
Qur— Qpir s
and hence a B-linear map
QzlllR ®4B— Qzlz/R .
Moreover, since each A-derivation of B is also an R-derivation, one obtains a map

Z fidgr(9:) — Z fidpa(gs) -

Q}J/R - Q}i/A s

Thus we have a canonical sequence

Qi/x ®4B— Q}?/R - Qé/A —0
which can be shown to be exact. If Bis a residue algebra of A4, say B = A/a, the
R-derivation d 4 induces a canonical B-linear map

5:(1/0.2——'9}4/1( ®4B, ar—dyr(@®1

where @ denotes the residue class of a€ a modulo a2 As a second important fact
on the behavior of differentials, one shows that the sequence

CL/a2 LN Q}HR ®;B— Q};/R —0
is exact.

Next we want to globalize the notion of modules of differentials in terms of
sheaves over schemes. One can either show that the formation of modules of
differentials is compatible with localization or, what is more elegant, use the alter-
nate description we have given above. Proceeding the latter way, consider a base
scheme S and an S-scheme X. The diagonal morphism

A X — X xg X

o

B

S A I S g

T e e e
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yields an isomorphism of X onto its image A(X) which is a locally closed subscheme
of X x5 X;ie, A(X) is a closed subscheme of an open subscheme W of X x5 X.
Let .# be the sheaf of ideals defining A(X) as a closed subscheme of W. Then we
define the sheaf of relative differential forms (of degree 1) of X over S as the sheaf

Qlys = AX(S/5?)

on X. Note that .#/.#2 has a natural structure of an O x,-module; hence A*(F/.F 2)
is canonically an Oy-module. It is clear that Q}s is a quasi-coherent Ox-module,
which is of finite type if X is locally of finite type over S. The canonical map

idX/s:(Ox‘_"Q}(/s .

induced by the map sending a section f of Uy to the section p* f — p¥f of # (where
pi: X xs X — X is the projection onto the i-th factor), is called the exterior
differential.

Since Qs is quasi-coherent (Q/s, dx/s) can be described in local terms: for each
open affine subset ¥ = SpecR of S and for each open affine subset U = Spec A of
X lying over V, the sheaf Qj;s|y is the quasi-coherent Ox|y-module associated to the
A-module Qj g, and the map dysly is associated to the canonical map dypg:
A— Qjx-

The sheaf of relative differential forms has similar functorial properties as the
module of relative differential forms. Given an S-morphism f: X — ¥, one can pull
back differential forms on Y to X. So one obtains a canonical Ox-morphism

f *-Qbs - Q)lz/s .
Each section w of Qys gives rise to a section ' of f*Q},s and hence to a section "
of Q} s, namely to the image of o' under the above map. It is convenient to use the
notion f*w for both @’ and @"; however to avoid confusion, we will always specify
the module, either f*Qys or Qi/s, when we talk about the section f*w.

The canonical sequences between modules of differentials, as given above, can
immediately be globalized to the case of differentials over schemes; cf. [EGA IV, ],
16.4:

Proposition 1. Let f: X — Y be an S-morphism. Then the canonical sequence of
Ox-modules

1 1 1
[HQys — Qys— Qxy— 0

is exact.

Proposition 2. Let j: Y = X be an immersion of S-schemes. Let ¢ be the sheaf of
ideals defining Y as a subscheme of X. Then the canonical sequence of Oy-modules

F192 5 Qs — Qps— 0

is exact.

Furthermore, we cite that
commutes with base change an

the formation of sheaves of relative differentials
d products:
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Proposition 3. Let X and S' be S-schemes. Let X' = X x S' be the S'-scheme obtained

by base change, and let p: X' — X be the projection. Then the canonical map
P*Qi'/s - Q}lr'/s'

is an isomorphism. |

Proposition 4. Let X, and X, be S-schemes. If pl 1 X; x5 X, — X, arethe projections
Jori=1,2, the canonical map
17’1"9}:l s D p3 Q,{’2/s - Q}r, X5 X2/S

is an isomorphism.

2.2 Smoothness

In this section we want to explain the basic concept of unramified, étale, and smooth
morphisms from the viewpoint of differential fcalculus. Our approach differs from
the one given in [EGA IV, ], 17, in so far as we have chosen the Jacobi criterion as
point of departure. In the following, let S be a/base scheme.

Definition 1. A morphism of schemes f: X — S is called unramified at a point x € X
if there exist an open neighborhood U of x and [an S-immersion

j:U = A}
of U into some linear space A% over S such that rlfhe Jfollowing conditions are satisfied:
(a) locally at j(x) (i.e., in an open neighborhood of j(x)), the sheaf of ideals 5
defining j(U) as a subscheme of A% is generatediby finitely many sections,
(b) the differential forms of type dg with sections g of F generate Qjys at j(x).
The morphism f : X — § is called unramified y? it is unramified at all points of X.

Condition (a) says that unramified morphisims are locally of finite presentation.

Obviously, an immersion which is locally of ﬁn%te presentation is unramified. It can

easily be shown that the class of unramified morphisms is stable under base change,

under composition, and under the formation of products. We give some equivalent
characterizations of unramified morphisms:

Proposition 2. Let f: X — S be locally of finite presentation, let x be a point of X,
and set s = f(x). Then the following conditions are equivalent:

(@) f is unramified at x.

(b) -Q)I{/s,x =0 ;

() The diagonal morphism A: X — X xg X is a local isomorphism at x.

(d) The k(s)-scheme X, = X x5 Spec k(s) is unramified over k(s) at x.

(€) The maximal ideal m, of Oy  is generatéd by the maximal ideal m, of Os, s,

and k(x) is a ( finite) separable extension of k(s). |

E
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Proof. The equivalence of conditions (a) and (b) follows from the exact sequence
2.1/2. The equivalence of (b) and (c) is seen by using the identity
Qzlt/s = A*(f/fz) s

where .# is the sheaf of ideals defining the diagonal in X xg X, and by applying
Nakayama’s lemma. Furthermore, since unramified morphisms are preserved by
any base change, condition (a) implies condition (d). Conversely, if (d) is satisfied,
we know already

1
Qx sy =0 -

Let m, be the maximal ideal of (s ,. Then, since the formation of sheaves of

differentials is compatible with base change, we have

1 — 1 1
Qx s = s, /M Qs »

and Nakayama’s lemma yields Q} s , = 0. So condition (b) is satisfied, and we see
that conditions (a) to (d) are equivalent.

In order to show that the equivalence extends to condition (), we may assume
that § is the spectrum of a field k. Then the implication (c) =>(b) is an elemen-
tary algebraic fact, because Qy 5 . = Qi .y, in this case. Conversely, let us show that
condition (c) implies condition (¢). We may assume that X is affine, say X = Spec 4,
and that the diagonal morphism A: X — X x, X is an open immersion. Let k be
the algebraic closure of k. It suffices to prove that 4 ®, k is a finite direct sum of
fields isomorphic to k; then A will be a finite direct sum of separable field extensions
of k. To do this we may assume that k is algebraically closed. For a closed
pointz of X, leth, : X — X be the constant morphism mapping X to z, and consider
the morphism i

(dy;h): X — X x, X .
Since A is an open immersion,
(idx, h,) ™ (AX)) = {z}

is open in X. Hence each closed point of X is open, and X consists of a finite number
of isolated points. In particular, A is a finite-dimensional vector space over k.
Shrinking X if necessary, we may assume that X consists of only one point. Then
the same is true for X x, X. Since A is an open immersion, the corresponding
morphism A*: 4 ®, A —> A is an isomorphism and, by comparing vector space
dimensions, we see 4 = k. O

If follows from condition (e) above that the relative dimension of an unramified
morphism is zero. More generally, one can show that the relative dimension
dim, f = dim_ f~*(f(x)) at a point x of an S-subvariety X < A% with structural
morphism f: X — § is r if, locally at x, the subvariety is defined by sections g,.,,
---> gn Of Opy and if the differentials dg, (), ..., dg,(x) are linearly independent in
Qs ® k(x). Namely, this follows from the result above and the fact that the relative
dimension decreases at most by 1 if one goes over from an S-scheme to a subscheme
defined by a single equation.
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Definition 3. A morphism f: X — S is called smooth at a point x of X (of relative
dimension 1) if there exist an open neighborhood U of x and an S-immersion

of U into some linear space A over S such that the following conditions are satisfied:
(a) locally at y == j(x), the sheaf of ideals defining j(U) as a subscheme of A is
generated by (n — r) sections g1 --+» gns and
(b) the differentials dg,.(¥), ---» dg,(y) are linearly independent in Qhms ® k(y)-
A morphism is called smooth if it is smooth at all points. Furthermore, a morphism is
said to be étale (at a point) if it is smooth (at the point) of relative dimension 0.

Note that, as we have explained above, the integer r is indeed the relative
dimension of f at x and that, due to its definition, the smooth locus of a morphism
which is locally of finite presentation is open. It is an elementary task to verify that
the class of smooth (resp. étale) morphisms is stable under base change, under
composition, and under the formation of products. It is clear that open immersions
are étale. Furthermore, étale morphisms are unramified, but the converse is not true
as is seen by the following lemma.

Lemma 4. An immersion f : X — S is étale if and only if f is an open immersion.
Proof. The if-part is obvious. For the only-if-part, it suffices to consider the special

case where f is a closed immersion. Furthermore we may assume that, as an
S-scheme, X has been realized as a closed subscheme of an affine open subscheme

V < AZ in such a way that X is defined by n sections g;, ..., g, of Oag 00 ¥,
where the differentials dg,, ..., dg, generate Qhysly. Since f: X — S is a closed
immersion, we may assume that the coordinate functions Ty, ..., T, of Ag vanish

on X. Then we have relations
I = Z a;9;
1

with a;; € Opp(V) fori,j=1,...,n. Taking the differentials of these equations shows
that the matrix (a;) is invertible in a neighborhood of X. Due to Cramer’s rule, the
sheaves of ideals generated by (T, ..., T,) and (g1, - ., g,) coincide in this neighbor-

hood. This implies that f is an open immersion. O

More generally, one can show that étale morphisms are flat and, hence, open
(cf. 2.4); in fact, a morphism is étale if and only if it is flat and unramified, see 2.4/8.
In particular, if S is the spectrum of a field k, the notions étale and unramified
coincide. Iri this case, each étale S-scheme X consists of isolated reduced points
such that the residue field k(x) of each point x € X is a finite separable extension
of k.

Proposition 5. Let f: X — Y bea smooth morphism of schemes. Then:
(a) Qky is locally free. Its rank at x € X is equal to the relative dimension of f

at x.
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(b) If f is a smooth morphism of smooth S-schemes, the canonical sequence of
Oy-modules
0 —’f*Q}r/s - le(/s b Q}l(/Y —0

is exact and locally split. (Actually, the assumption on X and Y to be smooth over S
is unnecessary; cf. [EGA IV,], 17.2.3))

Proof. Since Qh; is free of rank n, assertion (a) follows immediately from the
definition of smoothness if one uses 2.1/2. In the situation (b) we know from 2.1/1
that the canonical sequence

1 2 0l 1
f*Qr/s — QX/s — QX/Y —0

is exact. Due to (a), the three Ox-modules are locally free of finite rank. Hence, for
all x € X, the Oy ,-module (f *Q;,s)x is isomorphic to the direct sum of ker o, and
im a,, both of which are free. Counting the ranks, one sees kero = 0. |

It is an easy consequence of (a) that, for a smooth morphism f: X — S, the
map x — dim, f is locally constant. Next we want to characterize smoothness by
the infinitesimal lifting property for morphisms.

Proposition 6. Let f:X — S be locally of finite presentation. The following
conditions are equivalent: |

(a) f is unramified (resp. smodth, resp. étale).

(b) For all S-schemes Y which are affine and for all closed subschemes Y, of Y
defined by sheaves of ideals ¥ of Oy with ¢ 2 = 0, the canonical map

Homg(Y, X) — Homg(Yp, X)
is injective (resp. surjective, resp. bijective).
Proof. First we want to treat the characterization of unramified morphisms. In this
situation, conditions (a) and (b) are local on X and S, so we may assume that X and

S are affine, say X = SpecB and S = SpecR. Let C be an R-algebra, let J be an
ideal of C with J 2 — 0, and consider a commutative diagram

R——C——>C/.
One easily shows that the map
e,

{ € Homg(B,C) ;vo Y = #} — Derg(B,J), ¥r—¥—¢,

between the set of liftings of @ and the B-module of R-derivations is bijective. Notice

A+ 12 that Jisa C/J-module and, hence, a B-module via @.

If X is unramified over S, we know Qg =0 from Proposition 2 so that
Derg(B,J) = 0 in this case. Thus, the implication (a) =>(b) is clear. In order to




b
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verify the implication (b) = (a), set C:= (B ®z B)/I?, where I is the kernel of
the map

m:BQB—B, Y x®y+—Y xy.

Furthermore, set J = I/I% The considerations above show Derg(B,J) = 0. Since
J = Qg x, the implication (b) = (a) follows.

Next we turn to the characterization of smooth morphisms. Starting with the
implication (a) =>(b), let us first consider |a special case which corresponds to
the local situation of a smooth morphism. So let S be affine, say S = Spec R, and
let X = Spec B be a closed subscheme of an ;afﬁne open subscheme V = Spec 4 of
Aj. Let I be the ideal of 4 defining X. Assume that there are g4, ..., g, € A such
that dg,, ..., dg, form a basis of Q} r and such that, for some r, the ideal I = 4 of

|

X is generated by g,.5, ..., ¢,. Then, since Iﬁ/I 2 is generated over B = A/I by the

residue classes of these elements, the canonical sequence

(*) 0— I/I2— QL ® B— QL —0

is easily seen to be split exact.

Now let Y = Spec C be an affine S-scheme, and fix a closed subscheme ¥, = Y
defined by an ideal J of C with J? = 0. To \f/erify condition (b), we have to show
that each R-morphism @ : B— C/J lifts to an R-morphism ¢ : B— C. Due to the
universal property of a polynomial ring, we can lift ¢ to an R-morphism i : 4 —> C

such that the diagram

A— > B=Afl
A
R——C——CJlJ

is commutative. Since (I) = J, the map  gives rise to a B-linear map

VR —J . ’
Since the sequence (x) is split exact, the B-linear map ' extends to a B-linear map
Y" as follows:

0  I/12 Qi ®, B b r 0
v v

J

Hence, y” induces an R-derivation 6:4 -
(¥ — 8): A—> Cis an R-morphism inducing

It remains to reduce the general case
f: X — § to the special case treated above.
condition (b) is a local condition on X. So, a

— J satisfying ¥|; = 6|;. Then
a lifting ¢ : B— C of @.

of an arbitrary smooth morphism
This can be done by showing that
s before, let Y = Spec C be an affine

S-scheme, and let Y; be a closed subscheme of Y defined by a sheaf of ideals ¢ of
Oy with #?=0. Let ¢:¥,— X be an S-morphism. Due to the special case
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discussed above, there exists an open covering {Y,}, of Y such that @ vy, lifts to
a morphism ¢} : ¥, — X. The obstruction for (¢}) to define a morphism from Y to
X is a cocycle with values in #osmq, (F*Qks, #); see also [SGA 1], Exp. III, 5.1.
Since this sheaf is a quasi-coherent 0,2-module, its first cohomology group vanishes
on the affine scheme Y;. So there exist liftings ¢,: ¥, — X of @ y.~y, such that (¢,)

. gives rise to a morphism ¢:Y — X lifting ¢. This establishes the implication

(a) =>(b) for smooth morphisms.

In order to show the converse, we may assume that X is a closed subscheme of
a linear space A§ which is defined by a finitely generated sheaf of ideals .# = Opp.
Then it suffices to show that the canonical sequence

0— 7/52 '—"Qixg/s ® @x—’g}qs —0
is locally split exact. We will prove this in a more general situation where Afis
replaced by a smooth S-scheme Z. In order to do this, we may assume that S and
Z are affine, say S = Spec R and Z = Spec 4, and that X = Spec B is defined by a
finitely generated ideal I < 4; in particular, we have B = A/I. Due to condition
(b), the map
@ =id: A/l — A/l = (A/TP/I/I?)
lifts to an R-morphism ¢ : 4/I — A/I. Then the exact sequence of R-modules
0— I/I> 5 A4/1* -5 4/ — 0
splits; namely, ¢ is a section of v, and id;> — ¢ o v defines an R-linear map
T AP — I/I?

which is a section of the inclusion 1. Since t(a)- z(b) = 0 for all a, b & A/I?, we have

t(ab) = ab — ¢ o v(ab) + (a — ¢ o v(a))(b — @ o v(b)) = ar(b) + bt(a) .

Hence t is an R-derivation giving rise to an A-homomorphism Qir— I/1%
Consequently, the sequence

0—I/I* — Q) ®, B—Q}r—0
is split exact.
Finally, the characterization of étale morphisms follows from what has been
shown for smooth and unramified morphisms, since a morphism is étale if and only
if it is smooth and unramified. ' |

In the definition of smoothness it is required that a smooth S-scheme X can
locally be realized as a subscheme of a suitable linear space A§ such that the
associated sheaf of ideals satisfies certain conditions. Now we will see that these
conditions are fulfilled for each immersion of X into a smooth S-scheme.

Proposition 7. (Jacobi Criterion). Let X and Z be S-schemes, and let j: X —_, Z be a
closed immersion which is locally of finite presentation. Let .# be the sheaf of ideals
of Oy which defines X as a subscheme of Z. Let x be a point of X, and set z = j(x).
Assume that, as an S-scheme, Z is smooth at z of relative dimension n. Then the
Jollowing conditions are equivalent:
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(a) As an S-scheme, X is smooth at x of relative dimension r.
(b) The canonical sequence of Oy-modules

0—> F/5% — j*QLs — Qys—0

is split exact at x, and r = rank(Qs ® k(x))- ‘

(© If dzy, ..., dz,is a basis of (Qs)., and if g1, ---» gn are local sections of Oy
generating %, there exists a re-indexing of the zy, ..., 2, and of the gy, ---, dn such
that g,41, ---» g generate S at z and such that dz,, ..., dz,, dg,+1, - - -, 49, generate
(@Qs).-

(d) There exist local sections griis ---» n of Oy generating £, such that the
differentials dg,+1(2), - - +» dg,(z) are linearly independent in Qs ® k(2)-

Proof. The implication (a)==(b) follows from the preceding proposition.
Namely, if condition (a) is satisfied, X has the lifting property, and, as shown in the
last part of the proof of Proposition 6, the canonical exact sequence of (b) is split
exact. Furthermore, (Q}/s), is free of rank r by Proposition 5.

The implication (b)==>(c) follows from Nakayama’s lemma, whereas
(c)=>(d) is clear. Finally, the implication (d)=>(a) is easily checked by
using a local representation of Z at z as required for Z — S to be smooth at z.

O

Condition (d) can also be stated in terms of matrices. Namely, considering a
representation

of the differential forms dg,.1, - - -, 49, with respect to a basis dzy, ..., 42, of (Qs)z»
condition (d) says that .%, is generated by the (n — r) elements g;and that there exists
an (n — r)-minor of the matrix (8g;/02;) which does not vanish at z. So we see that
Proposition 7 corresponds to the Jacobi Criterion in differential geometry. We want
to derive a second version of it (see [EGA 1V, ], 17.11.1 for a further generalization).

Proposition 8. Let f: X —Y be an S-morphism. Let x be a point of X, and set
y = f(x). Assume that X is smooth over S at x and that Y is smooth over S at y. Then
the following conditions are equivalent:

(a) fis smooth at x. :

(b) The canonical homomorphism (f*Q}s) — Qxs)x is left-invertible (i.e., is an
isomorphism onto a direct factor).

(c) The canonical homomorphism (f *Qfs) ® k(x) — Qs ® k(x) is injective.

Proof. The implication (a) = (b) is a direct consequence of Proposition 5; the
implication (b)=>(c) is trivial. Concerning the implication (c) =>(a), we
will first treat the case where Y = Aj§. Then the morphism f is given by global
sections [y, ..., f; of Ox, and condition (c) means that df;(x), ..., df.(x) are linearly
independent. Furthermore, we may assume that X is a subscheme of A§ of relative
dimension r and that the sheaf of ideals defining X is generated by sections Bpiss
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..., hy, such that dh,,(x), ..., dh,,(x) are linearly independent. Let us consider the
graph embedding

X o, X x5 Yo, AF x5 Ag, x — (x, f(x)) .

We can lift the sections f; to sections f; defined in a neighborhood of x in AZ. Then,

Jocally at (x, f(x)), we have realized X as the subscheme of AZ*s = AF which is given

by
hr+19"-ahn3 Tl_flﬂ"'a"-[;_.f.‘v:

where Ty, ..., T, denote the coo;dinate functions of A§ = Y. This yields a local

representation of X as a subscheme of Ay as required. ‘

In order to handle the general case, let Y be smooth at y of relative dimension
sover S. Let g4, ..., g, be local sections at y of Oy such that dg, ..., dg, induce a
basis of (Qfs),- After shrinking X and'Y, we may assume that g4, ..., g are global
sections. Due to condition (c), there exist local sections Ry, .- -5 h, at x of O such

that

f*dgly--- f*dgs, dhs+1,...,dhr

is a basis of Qy/s,~ Where r is the relative dimension at x of X over S. Again, we
may assume that R4, ..., b, are global sections of Oy. Setting

g= (gla""gs): Y— A; s
h=(hy,... ) X — ATF,
we obtain the commutative diagram

X B,y xg AT —2 Y

(gofih) \lgxid

As

By the special case above, the maps (gof,h) and g x id are étale at x and y,
respectively. Hence, due to Lemma 9 below, the morphism (f; h) is étale at x. Then,
f = po(f,h)is a composition of smooth morphisms and, hence, smooth atx. [

"Lemma 9. Let X — S be unramjified (resp. smooth, resp. étale), and let Y — S be

unramified. Then each S-morphism X — Y is unramified (resp. smooth, resp. étale).

Proof. The assertion follows from Proposition 6. Namely, one verifies immediately
that X —» Y satisfies the lifting property (b) of this proposition. ]

Let us state the assertion of Proposition 8 for the special case of étale morphisms.

Corollary 10. Let f: X — Y be an S-morphism. Let x be a point of X, and set
y = f(x). Assume that X is smooth over S at x and that Y is smooth over S at y. Then
the following conditions are equivalent:

(a) fis étale at x. |

(b) The canonical homomorphism (f*Q}s). — (QX/s)x is bijective.
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Thinking of the classical inverse functién theorem, the corollary suggests an
analogy between the notions of étale morphisms in algebraic geometry and in
differential geometry. But note that, in algebfaic geometry, if one wants to view étale
morphisms as local isomorphisms, the Zansk1 topology has to be replaced by the
so-called étale topology (cf. 2.3/8). In dlﬂ'erentlal geometry, the implicit function
theorem shows that, locally, smooth morphlsms are fibrations by open subsets of
linear spaces. Up to localization by étale morphisms, the same is true in algebraic

geometry:

Proposition 11. Let f: X — S be a morphism, and let x be a point of X. Then the

Jfollowing conditions are equivalent:
(a) fis smooth at x of relative dimension n.
(b) There exists an open neighborhood U of x and a commutative diagram

U_g_,Ag
Sy 14

S

where g is étale and p is the canonical projection.

Proof. That condition (b) implies condition |(a) is clear, since the composition of
smooth morphfsms is smooth. To show the converse, choose local sections g, ...,
gn of Oy such that dg,, ..., dg, generate Q},s at x. Due to Corollary 10, the latter is
equivalent to the fact that g,, . .., g, define an etale map from an open neighborhood

U of x to AL O

Remark 12. If X is a smooth S-scheme and if g, ..., g, are local sections of Oy at
a point x € X, then, by Nakayama’s lemma, rthe dlﬂ'erentla]s dg,, ..., dg, generate
Q)s at x if and only if the differentials dgl(x) , dg,(x) form a basis of the
k(x)-vector space Qj;s, . ® k(x). Furthermore‘ as we have mentioned in the preced-
ing proof, this condition is equivalent to the fact that g,, ..., g, define an étale
morphism from an open neighborhood U of x to Ag. If gl, ...s g, satisfy these
equivalent conditions, they will be called a system of local coordmates at x (over S).
This terminology is justified since, up to an etale morphism, g,,...,g,indeed behave
like a set of coordinates of the affine n-space As

As a consequence of Proposition 11, we optam the following useful fact.

Corollary 13. If X is a smooth scheme over a jffield k, the set of closed points x of X
such that k(x) is a separable extension of k is dense in X.

Proof. For each point x, of X, there exists an open neighborhood U of x, and a
factorization
UL At Spec k

where g is étale. Then, if x is a point of U, thes extension k(x) of k(g(x)) is finite and
separable. Hence it is enough to show g(U) contams a closed point y such that k(y)
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is a separable extension of k. The set of closed points y such that k(y) is separable
over kis dense in Ay. Namely, this is clear if k is perfect. If k is not perfect, it contains
infinitely many elements so that the set of k-valued points is dense in AP. Thus it
suffices to show that g(U) contains a non-empty open subset. However, the latter
is clear by reasons of dimension, since g(U) is constructible (cf. [EGA IV, ], 1.8.4).
(Actually, g(U) is open, because an étale map is flat and hence open.) O

Next we apply Proposition 7 in order to construct étale sections of smooth
morphisms.

Proposition 14. Let f: X — S be a smooth morphism. Let s be a point of S, and let
x be a closed point of the fibre X, = X xg Speck(s) such that k(x) is a separable
extension of k(s). Then there exist an étale morphism g:S' — S and a point s' € S’
above s such that the morphism f': X xg S'—> S obtained from f by the base change
§'— § admits a section h:S —s X xgz§', where h(s’) lies above x, and where

k(s") = k(x).

Proof. Let n be the relative dimension of X over S at x. Let ¢ Oy, be the sheaf
of ideals associated to the closed point x of X;. Since Spec k(x) — Spec k(s) is étale,
the ideal #, is generated by n elements g, ..., g, such that their differentials dg,,

., dg, generate Qs ® k(x), as seen by the Jacob1 criterion (Proposition 7). Now
welift gy, ..., g, to sections gy, ..., g, of Oy defined on an open neighborhood of x
in X. Then let S’ be the subscheme of X defined by g,, ..., g,. Again by Proposition
7, the scheme S is étale over S at x. After shrinking S’ we may assume that S’ —s §
is etale. Then the tautological section h’: S —» X" is a section as required. ]

Using Proposition 7, the smoothness of a scheme X over a field k can be
characterized by algebraic properties of the local rings of X. A k-scheme X which
is locally of finite type is called regular if, for each closed point x of X, the local ring
Oy, xis regular. (One knows then that Oy, is regular also for non- closed points x € X;
cf. [EGA 01y, 17.3.2).

Proposition 15. Let X be locally of finite type over a field k. Let x be a point of X.
Then the following conditions are equivalent:

(a) X is smooth over k at x.

(b) (Qkn)x is generated by dim, X elements (and hence free).

(c) There exist an open neighborhood U of x and a perfect field extension k' of
k such that U ®, k' is regular.

(d) There exists an open neighborhood U of x such that U @y k' is regular for all
field extensions k' of k.

Proof. We start with the implication (a) = (d). Due to Proposition 11, there
exists an étale morphism g: U — A}, defined on an open neighborhood U < X of
x. Then Proposition 2 shows for each y € U that the maximal ideal m,, is generated
by m,,. So m, is generated by n = dim U elements because A} is regular hence U
is regular. Smce the situation remains essentially the same after extending the field
k to k', the assertion follows.
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The implication (d)==>(c) is trivial. So let us consider the implication
(c) =>(b). We may assume k = k' and X = U. Moreover, it suffices to show for
each closed point y € X that (Q},,), is generated by dim 0y , elements. For such a
point y, the field k(y) is separable over k. Hence Qi = 0, and the exact sequence
of 2.1/2 yields an exact sequence

‘my/mf — (Qxp)y ® k(y) — 0.

Since m,/m? is generated by dim Oy, elements (due to assumption (c)), the assertion
follows with the help of Nakayama’s lemma.

Finally, we turn to the implication (b) == (a). We may assume that X is a
closed subscheme of an open subscheme ¥ of A}, via the immersion j: X < Aj.
Let ¢ be the sheaf of ideals of ¢ defining X, and let r = dim, X. Looking at the
exact sequence of 2.1/2 :

(#1.55)— Q@A) — (Qip)s — 0,
we see that there exist local sections g,1, - .-, g, of ¢ at x such that dg,.s, ..., dg,
generate a free direct factor of (QAp)x of rank (n — r). We may assume that g,41,
..., g, are defined on V and give rise to a smooth subscheme X’ < V of dimension
r So X is a closed subscheme of X’ and has the same dimension at x as X". Let y
be a closed point of X, which is a specialization of x. Then, by what we have already
seen, Oy , is an integral domain. Since dim 0y, = r, the surjective map O, —
0y, has to be injective by reasons of dimension. This shows that X and X’ coincide
in a neighborhood of x. Od

The property (d) of the preceding proposition gives rise to the following defini-

tion. A scheme X which is locally of finite type over a field k is called geometrically
reduced (resp. geometrically normal, resp. geometrically regular) if X ®, k' is reduced
(resp. normal, resp. regular) for all field extensions k' of k.

Proposition 16. Let X be locally of finite type over a field k. If X is geometrically
reduced, the smooth locus of X is open and dense in X.

Proof. 1t is clear that the smooth locus is open. For the proof of the density, consider
a generic point x of X. For any field extension k' of k, the algebra k(x) ®, k' is
reduced. Then it is an elementary algebraic fact that Qj ) is generated by nelements
where n is the degree of transcendency of k(x) over k; cf. Bourbaki [1], Chap. V, § 16,
n°7, Thm. 5. Since n equals the dimension of X at x, Proposition 15 shows x is
contained in the smooth locus of X. Thus, the smooth locus contains all generic

points of X. I

2.3 Henselian Rings

In the following we want to have a closer look at the local structure of étale
morphisms, in particular, we want to construct the (strict) henselization of a local

2.3 Henselian Rings 45
ring; references for this section are [EGA 1V, ], 18, and Raynaud [5]. Let R be a
Jocal ring with maximal ideal m and residue field k. Let S be the affine (local) scheme
of R, and let s be the closed point of S. From a geometric point of view, henselian
and strictly henselian rings can be introduced via schemes which satisfy certain
aspects of the inverse function theorem.

Definition 1. The local scheme S is called henselian if each étale map X — S is a
local isomorphism at all points x of X over s with trivial residue field extension
k(x) = k(s). If, in addition, the residue field k(s) is separably closed, S is called strictly
henselian.

Notice that if S is strictly henselian, any étale morphism X — S is a local
isomorphism at all points of X over s. Usually one introduces the notion of henselian
rings in terms of properties of the local ring R; namely, one requires Hensel’s lemma
to be true for R. As we will explain later (cf. Proposition 4), it suffices to require a
seemingly weaker condition.

Definition 1’. The local ring R is called henselian if, for each monic polynomial
P e R[T], all k-rational simple-zeros of the residue class P e k[T1] lift to R-rational
zeros of P. If, in addition, the residue field k is separably closed, R is called strictly
henselian. |

It is easily seen that the ring R is (strictly) henselian if the scheme S is (strictly)
henselian. The converse is also true, but the proof is not so easy; it is mainly a
consequence of Zariski’s Main Theorem. For the statement of this theorem let us
recall the definition of quasi-ﬁbite morphisms. Let f:X — Y be a morphism
which is locally of finite type. Then f is said to be quasi-finite at a point x of X if x
isisolated in the fibre X, = X xy Spec k(y) over the image point y := f(x); the latter
is equivalent to the fact that the ring Oy, ./m,0x . is a finite-dimensional vector
space over the field k(y) = @Y,y(my, of. [EGA 1I], 6.2.1. For example, unramified
morphisms are quasi-finite at all points. The set of points x € X such that f is
quasi-finite at x is open in X, cf. [EGA 1V,], 13.1.4. The morphism f is called
quasi-finiteif f is quasi-finite at ajl points x € X and if f is of finite type. For example,
a composition of a quasi-compact open immersion X — Z and a finite morphism
Z —> Y is quasi-finite. Zariski’s Main Theorem says that essentially every quasi-
finite morphism is obtained in this way.

Theorem 2 (Zariski’s Main Theorem). Let f : X —> Y be quasi-finite and separated.
Furthermore, assume that Y is quasi-compact and quasi-separated. Then there exists
a factorization

xc ',z

Y
Y

of f, where g is an open immersion and where h is finite.
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For a proof see [EGAIV,],18.12.13;a mci)re direct argument (for the local case)
can be found in Peskine [1]. For our applications we will need a weaker version

which is close to Zariski’s original form of thb theorem, cf. [EGA IV,], 8.12.10. .

Theorem 2'. Let : X — Y be quasi-finite anjd separated. Assume that X is reduced,
that Y is normal, and that there exist dense op{en subschemes U < X and V < Y such
that f|y: U — V is an isomorphism. Then f is an open immersion.

Theorem 2 can be used to investigate the|local structure of étale morphisms. In
terms of the corresponding extension of algebras, an étale extension is sort of a
lifting of a finite separable field extension whi:ch, due to the theorem of the primitive
element, is always generated by a single element.

Proposition 3. Let f: X — Y bea morphism of schemes, let x be a point of X, and
set y = f(x). Assume that f is étale at x. Then :there exist an affine open neighborhood
U = Spec B of x, an affine open neighborhood V = Spec A of ywith fU)c Vanda
Y-immersion U = AL such that U becomes an open subscheme of a closed subscheme
Z = AL, where Z is defined by a monic polyno%nial P € A[T] and where the derivative
P' of P has no zeros on the image of U. Moreover, B is isomorphic to (ALT1/(P))o

for some Q € A[T].

A detailed proofis given in Raynaud [5],;'Chap. V. The idea of the proof is easy

to explain. Namely, we may assume that X e;md Y are affine, and, due to Theorem
2, that X is an open subscheme of a schem’e X' = Spec B’ which is finite over Y.
Since k(x) is finite and separable over k(y), there exists a non-zero element b € k(x)

such that b generates k(x) over k(). Let b € B' be a lifting of b which vanishes at all

points of the fibre of X' — Y over y, exceptjat x. Now b gives rise to 2 morphism
X’ — A\}. Since X' is finite over Y, one can|verify that this morphism induces an
open immersion of a neighborhood of x into a subscheme Z of A} of the required

type. O

It follows immediately from Proposition 3 that the notions of henselian local
rings and henselian local schemes are equivalent. This equivalence can be extended
by further conditions, cf. [EGA IV,], 18.5, or Raynaud [5], Chap. I.

Proposition 4. Let R be a local ring, and set S = Spec R. Then the following conditions

are equivalent:
(a) R is henselian.
(b) S is henselian.
(c) For each finite R-algebra A, the canonical map

Idempotent (4) — Iderjnpotent (A ®g k)

between the sets of idempotent elements is bijjective.

(d) Each finite R-algebra A decomposes into a product of local rings.

(e) For each quasi-finite morphism X —» S, and for each point x above the closed
point of S, there exists an open neighborhood EU of x such that U — S is finite.
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We will only sketch the proof, following the ideas of Grothendieck. The impli-
cations (a)=>(b) and (d)=>(e) (which are the hard onmes) are clear by
Proposition 3 and Theorem 2. In order to show that (b) implies (c), one has to
observe that it suffices to establish (c) in the case where A is a free R-module. Then
one can write down formally what the idempotent elements of A must look like,
and-one notices that they are represented by an étale R-scheme. So it remains to
show that such an étale R-scheme admits an R-section. The proof of the remaining
implications is more or less trivial. ]

The main reason for us to introduce strictly henselian rings is the fact that
smooth schemes over strictly henselian. rings admit many sections. Due to the
geometric characterization of henselian rings, this property follows directly from
2.2/13 and 2.2/14.

Proposition 5. Let R be a local henselian ring with residue field k. Let X be a smooth
R-scheme. Then the canonical map X(R) — X (k) from the set of R-valued points of
X to the set of k-valued points of X is surjective. In particular, if R is strictly henselian,
the set of k-valued points of X, = X ®g k which lift to R-valued points of X is dense
in X,.

Examples of henselian rings are local rings occurring in analytic geometry such
as rings of germs of holomorphic functions. Furthermore, local rings which are
separated and complete with respect to the maximal-adic topology are henselian.
In the latter case the condition mentioned in Definition 1’ is established by Hensel’s
lemma; cf. Bourbaki [2], Chap. III, §4, n°3, Thm. 1. Alternatively, using the
infinitesimal lifting property 2.2/6 for étale morphisms one can verify directly that
such rings fulfill Definition 1. Since a noetherian local ring R is always a subring of
its maximal-adic completion R, these local rings R are a priori subrings of henselian
rings. The “smallest” henselian ring containing R is called the henselization of R.

Definition 6. A henselization of a local ring R is a henselian local ring R" together
with a local morphism i: R — R" such that the following universal property is
satisfied: For any local morphismu: R — A from R to a henselian local ring A, there
exists a unique local morphism u": R" —s A such that u* o i = u.

If the henselization exists, it is unique up to canonical isomorphism. Moreover,
the residue field of R® must be k. In view of Definition 1, the henselization of R must
be the “union” of all local rings 0y .. of étale R-schemes at points x above the closed
point s of S = Spec R, whose residue fields coincide with k. That such a “union”
exists in terms of inductive limits, becomes clear by the following result:

Lemma 7. Let S’ be an étale R-scheme and let s’ be a point of S’ above the closed
point s of S = Spec R. Let R’ be the local ring . ; of S at 5" and let k' be the residue
field of R'. Furthermore, let A be a local R-algebra with residue field k,. Then all
R-algebra morphisms from R’ to A are local. So there is a canonical map

‘Homg(R, 4) — Hom, (K, k) .
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This map is always injective; it is bijective if A is henselian.

Proof. Since the maximal ideal of R’ is generated by the maximal ideal of R, all
R-morphisms R’ — 4 are local. The injectivity of the map follows from the fact
that the diagonal morphism §' — §’ x5 8’ is an open immersion. The surjectivity
is due to the characterization of henselian local rings given in Definition 1. |

For the construction of the henselization of R, one considers the family (R;);c »
of all isomorphism classes of R-algebras which occur as local rings of étale
R-schemes at points over the closed point of Spec R and which have the same residue
field as R. Due to Proposition 3, the family I" is a set and, due to Lemma 7, there
is a natural partial order on I". Namely, one defines i < j for i, j € I" if there exists
an R-morphism u;: R; — R;. So (R;);c» is an inductive system, which is seen to
be directed and one easily proves that

R":= lim R;

ielk

is a henselization of R (for details see Raynaud [5], Chap. VIII).

If one wants to introduce the smallest strictly henselian ring containing R, one
has to be a little bit more careful. Namely, in view of Lemma 7, there may be different
R-morphisms between two (local) étale R-algebras unless we require that the residue
extension is trivial. One has to eliminate this ambiguity, and then one can proceed
as in the case of the henselization.

Definition 6'. A strict henselization of a local ring R is a strictly henselian local ring
R®* whose residue field coincides with the separable algebraic closure kg of k, together
with a local morphism i: R — R such that the following universal property is
satisfied: For any local morphism u: R — A from R to a strictly henselian ring A,
and for any k-morphism o.: k,— k, from k, to the residue field k, of A, there exists
a unique local morphism u®™ : R*" — A such that u** o i = u and such that u™ induces
o on the residue fields.

If R*" exists, it is unique up to canonical isomorphism. For the construction of
R let (R,);.; be the family of all isomorphism classes of R-algebras which occur
as local rings of étale R-schemes at points over the closed point of Spec R. Let I
be the set of all couples (R;, ;) where R; is a member of I and where «;;: R, — ki
varies over all R-morphisms into a fixed separable closure k; of k. Due to Lemma
7, there exists a natural order on I*". So ((R;, o)), j e 1+» 1S a directed inductive system,
and one easily verifies that

R = lim (R;ay)
(i, jyelsh

is the strict henselization of R; cf. Raynaud [5], Chap. VIIL

As an application of this construction, we want to mention some results on étale
localizations of quasi-finite morphisms. Let us call Y’ — Y an étale neighborhood
of a point y in Y if Y’ — Y is étale and if y is contained in the image of Y.
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Proposition 8. Let f: X — > Y be locally of finite type. Let x be a point of X, and set

(a) If f is quasi-finite at x, then there exists an étale neighborhood Y' — Y of y
such that the morphism f’ : X' — Y', obtained from f by the base change Y' — Y,
induces a finite morphism f'|y. : U' — Y’, where U’ is an open neighborhood of the
fibre of X' — X above x. If, in addition, f is separated, U’ is a connected component
of X'.

(b) If f is unramified at x (resp. étale at x), there exists an étale neighborhood
Y’ —> Y of y such that, locally at each point of X' above x, the morphism f” (as in
(@)) is an immersion (resp. an opén immersion).

Proof. Let R be a strict hensehzatlon of the local ring @y , of Y at y, and set
S = Spec R. Then R is the limit of all local nngs 0Oy.,,» which occur as local rings of
étale neighborhoods Y’ of y € Y at points y’ above y. Using limit arguments (cf.
[EGA 1V,], 8.10.5), it suffices tO\pI‘OVC the assertions in the case where Y = S. Then
(a) follows from Proposition 4, and (b) is a consequence of the fact that each finite,
local, and unramified R-algebra A is a quotient of R. Namely, the assumptions yield
R/m = A/mA, where m is the maximal ideal of R, and so Nakayama’s lemma
applies. Finally, the case of étale morphisms is deduced from the case of unramified

ones by means of 2.2/4. O

The preceding proposition justifies the interpretation of unramified, resp. étale,
resp. smooth morphisms given in 2.2. Namely, Proposition 8 tells us that, up to

morphisms are open immersion
base change, as it is done within 1

base change by étale morphisms,

unramified morphisms are immersions and étale
s. So, if we look at S-schemes X only up to étale
he context of the étale topology or, more generally,

in the theory of algebraic spaces, we may view unramified morphisms as immersions
and étale morphisms as open immersions. Furthermore, Proposition 2.2/11 says
that smooth morphisms may be viewed as fibrations by open subsets of linear spaces
AL |

The local structure of étale r‘norphisms X — Y (cf. Proposition 3) can be used
to study how algebraic propertles are transmitted from Y to X. By a minor
calculation (cf. Raynaud [5], Chap VII), one shows that all étale schemes over a
reduced (resp. normal) base are reduced (resp. normal) again. Using the elementary
fact that polynomial rings mhent such properties from the base, it follows from
2.2/11 that smooth schemes over a reduced (resp. normal) base are reduced (resp.
normal) again. Finally, since polynomial rings over regular rings are regular,
smooth schemes over regular schemes are regular again; use 2.2/11 and 2.2/2(e).
Summarizing, we can say:

Proposition 9. Let X — Y be a smooth morphism. If Y is reduced (resp. normal, resp.
regular), then X is reduced (resp. normal, resp. regular).

Obviously, a directed inductive limit R of reduced (resp. normal) rings R; is
reduced (resp. normal). So we have the permanence of reducedness and normality
for the (strict) henselization. Moreover, since the maximal ideal m of R generates




