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the maximal ideal m; of each R; which occurs in the construction of the (strict)
henselization of R, it is clear that m also genjerates the maximal ideal of the (strict)
henselization. In particular, we see that the (strict) henselization of a discrete
valuation ring is a discrete valuation ring, and that a uniformizing parameter of R
yields a uniformizing parameter of the (strlct) henselization. Furthermore, one can
show that properties of local rings such as bemg noetherian or regular are preserved
by the process of (strict) henselization. We state this for later reference:

Proposition 10. If R is a reduced (resp. normal, resp. regular, resp. noetherian) local
ring, the (strict) henselization is reduced (resp. normal, resp. regular, resp. noetherian)
again. In particular, if R is a discrete valuation ring with uniformizing parameter =,
then the (strict) henselization is a discrete valuatzon ring, and © gives rise to a
uniformizing element there.

Finally, we want to have a closer look at the ring extensions
R— Rt — R,

Due to the local structure of étale morphisms (Proposition 3), these canonical
homomorphisms are injective. Since R*" can also be interpreted as the strict hensel-
ization of R", it follows from the construction of R** that the extension R* —, R*"
isintegral, as can be seen by using the characterization of henselian rings mentioned
in Proposition 4(e). If R is normal, the rings R* and R*" are normal and, hence,
integral domains. Thus we can consider their fields of fractions
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which are separable algebraic over K. Moreover K" is a Galois extension of K*,
the Galois group of K*" over K" acts on R*, and the fixed subring of R* is R. Due

- to Lemma 7, the Galois group is canomcally isomorphic to the Galois group of k;

over k.

~ Proposition 11. Let R be normal with field of fractions K. Let K, be a separable

closure of K, and let G be the Galois group of K, over K. Let R, ,be the integral closure
of R in K, and let m; be a maximal ideal of R, lying over the maximal ideal m

of R. Let
D={oe G;a(mfs) = m,}

 be the decomposition group of my, and let

I={oeD;o(X)= fﬁor X € Ry/m}

be the inertia group of my. Then the following|assertions hold:

(a) The localization R’ of the fixed ring RD of R, under D at the maximal ideal
my N RP is the henselization of R.

(b) The localization R" of the fixed ring R’ of R, under I at the maximal ideal
mg 0 Rl is the strict henselization of R. :

(c) The extension R" ¢ R*" is Galois. Its|Galois group D/I is canonically iso-
morphic to the Galois group of the residue field extension k, over k.

2.4 Flatness 51

Proof. (a) Let P(T) € R'[T] be a monic polynomial whose reduction P(T) has a
simple zero  lying in the residue field of R". Now P(T') has a zero a lying in (R,),
which induces @ if we regard @ as an element of R /m,. Since & is simple, there is
only one zero « of this kind. Then it is easily seen that « is invariant under D. Hence
o lies in R". Thus we see R’ is henselian. Moreover it is known that R’ is a limit of
étale extensions R; of R which have the same residue fields as R; cf. Raynaud [5],
Chap. X. So R’ is a henselization of R.

(b) follows similarly as (a), one has only to replace the decomposition group by
the inertia group. Assertion (c) follows from (a) and (b) by formal arguments. [J

2.4 Flatness

Let R be a ring, and let M be an R-module. Then M is called flat over R (or a flat

R-module) if
Mody — Modyg , N+—N@zg M

constitutes an exact functor on the category of R-modules Modyg. If R is a field,
flatness poses no condition, and if R is a Dedekind domiain, the flatness of M means
that M has no torsion. Flatness is a local property; i.e., an R-module M is flat over
R if and only if, for each prime ideal p of R, the localization M, is flat over R,,. For
alocal ring R, a finitely generated R-module is flat if and only if it is free; cf. Bourbaki
[2], Chap. 1, §2, ex. 23. But, in general, flat modules do not need to be free or
projective (in the sense of being a direct factor of a free module); for example, the
field of fractions of a discrete valuation ring R is a flat R-module which cannot be
free. Nevertheless, it can be shown that an R-module M is flat if and only if M is a
direct limit of free R-modules of finite type; cf. Lazard [1], Thm. 1.2, or Bourbaki
[1], Chap. X, §1,n°6, Thm. 1. A flat R-module M is called faithfully flat if the tensor
product by M is a faithful functor; i.e., if N ®z M 5 0 for all R-modules N # 0.
Viewing R-algebras as R-modules, one has also the notion of flatness (resp. faithful
flatness) for R-algebras. For example, localizations S~ R are flat R-algebras and
polynomial rings R[Ty,..., T,] are faithfully flat R-algebras. Furthermore, we want
to mention that a local flat morphism R — A of local rings is automatically
faithfully flat.

Now, turning to schemes, a morphism f : X — S of schemes is called flat at a
point x of X if Og ;, — Oy, is flat, and f is called flaz if it is flat at all points of
X. Furthermore, a morphism f: X — § is said to be jaithfully flat if f is flat and
surjective. If X and § are affine, say X = Spec A and S = Spec R, then f is flat (resp.
faithfully flat) if and only if f* : R — A is flat (resp. faithfully flat). Obviously, open
immersions are flat, and it is easy to see that the class of flat (resp. faithfully flat)
morphisms is stable under composition, base change, and formation of products;
cf. [EGA1V,],2.1and 2.2. In the case where S is the spectrum of a discrete valuation
ring, f: X — Sis flat if and only if Oy has no R-torsion. So there are no irreducible
and no embedded components of X which are contained in the special fibre. Since
the notion of flatness is quite transparent over valuation rings, it is useful to know
that there is a valuative criterion for flatness which applies to the geometric case.
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Proposition 1 ((EGA IV,], 11.8.1). Let f: X —> S be locally of finite presentation.
Let x be a point of X, and set s = f(x). Assume that Og  is reduced and noetherian.
Then f is flat at x if and only if, for each scheme S' which is the spectrum of a discrete
valuation ring, and each morphism S’ — S sending the special point s" of S' to s, the
morphism f': X' — S’ obtained from f by the base change §' — S is flat at all points
x' € X' lying over x.

It is much more difficult to understand the notion of flatness in the case where
the base has nilpotent elements, for example, where the base is a non-trivial artinian
ring. In this case there exists no criterion to test flatness by geometric properties.

Furthermore, we want to mention a criterion which allows to test the flatness

of an S-morphism between flat S-schemes on fibres.

Proposition 2 ((EGA 1V,], 11.3.11). Let g: X — S and h: Y — S be locally of
finite presentation. Let f: X — Y be an S-morphism. The following conditions are
. equivalent:

(a) fis flat, and h is flat at the points of f(X).

(b) f. = f x5 k(s)is flat for all s€ S, and g is flat.

Now let us illustrate the meaning of flatness by some geometric properties of
flat morphisms of finite presentation. In the following, let f: X — Y always be
a morphism of finite presentation. There are two general facts concerning the
geometry of such morphisms. First, the image f(C) of a constructible subset C of X
is constructible in Y if Y is quasi-compact; a subset of a topological space is called
constructible if it is a union of a finite collection of locally closed subsets; cf.
[EGA IV, ], 1.8.4. Second, the function of relative dimension of f

X—N, xr—dim fT(f),

is upper semi-continuous; i.e., for each n € N the subset where the relative dimension
is =nis closed; cf. [EGA IV,], 13.1.3. If we assume that, in addition, f is flat, the
situation becomes much better.

Proposition 3 ((EGA IV, ], 2.4.6). Let f: X — Y be locally of finite presentation. If
f is flat, then f is open.

Proposition 4 ((EGA IV,], 14.2.2). Let f : X — Y be locally of finite type and flat.
Assume that X is irreducible and that Y is locally noetherian. Then the relative

dimension of f is constant on X.

Dropping the finiteness condition in Proposition 3, its assertion has to be
weakened.

Proposition 5 ([EGA 1V,], 2.3.12). Let f:X — Y be faithfully flat and quasi-
compact. Then the topology of Y is the quotient topology of X with respect to f; i.e.,
a subset V < Y is open if and only if f *(V) is open in X.
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It is impossible to characterize the flatness of an S-scheme X of finite type by
geometric properties when the basc S is not reduced. But under reducedness
conditions on the base and on the fibres, flatness is equivalent to universal openness;
of. [EGA IV;], 15.2.3. Moreover, if the base S is reduced and noetherian, each
S-scheme X of finite type is generically flat.

Proposition 6 ([EGA 1V, ], 6.9.1). Let S be reduced and noetherian, and let X be an
S-scheme of finite type. Then there exists a dense open subscheme S’ of S such that

X xg 8 is flat over §'.

Anyway, the flat locus of an S-scheme which is locally of finite presentation
is open.

Proposition 7 ((EGA 1IV,], 11.3.1). Let X be an S-scheme which is locally of finite
presentation. Then the set of points x € X such that X is flat over S at x is open.

Non-trivial examples of flat morphisms of finite presentation are the smooth
ones; see below. Furthermore, there is a useful criterion which relates smoothness
over a general base to flatness and smoothness of the fibres. The latter are schemes
over fields; in this case one can apply the nice criterion 2.2/15 to test smoothness.

Proposition 8. Let f: X — S be locally of finite presentation. Let x be a point of X,
and set s = f(x). The following condltzons are equivalent:

(@) fis smooth at x.
(b) fis flat at x and the fibre X X Xg k(s) is smooth over k(s) at x.

InSection 2.2, we gave detaxled proofs for all statements concerning smoothness.
Proceeding similarly with Proposition 8, let us give its proof. For the implication
(a)=>(b), it is only necessary to explain that smooth morphisms are flat. Due
to 2.2/11, it suffices to treat the étale case. But in this case the assertion follows easily
by looking at the local structure of étale morphisms; cf. 2.3/3.

If one wants to verify this implication without using the local structure of étale
morphisms (which involves Zariski’s Main Theorem), one can proceed as follows.
If Z is a smooth S-scheme which is flat over S, and if X is a subscheme of Z given
by one equation, say g = 0, such that dy,s(g) does not vanish at a certain point
x € X, then X is flat over S at x.[It suffices to prove this statement, since, in the
general case, we can use an induction argument on the number of equations
describing X locally at x as a subscheme of AZ. In order to prove the assertion
above, we may assume that S is ndetherian Then consider the exact sequence

(DZx—')@Zx_’)(QXx_—'O

If S is the spectrum of a field, then @z . is an integral domain and g must be a regular
element, so the map on the left-hand side is injective in this case. Since smoothness
is stable under any base change, wé see that the map g ® k(s) is injective, where k(s)
is the residue field at the image s of x. Because Z is flat over S, we get

Tor@s s(@X x3 k(S))
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Hence X is flat over § at x, cf. Bourbaki [2] Chap. I11, § 5, n°2, Thm. 1.

For the implication (b) == (a), we may assume that X is a closed subscheme
of a linear space A% over an affine scheme S = Spec R which is defined by a finitely
generated ideal I = R[T3,..., T,]. Let r be the relative dimension of X at x. Since
X, is smooth over k(s) at x, there exist sections g,.;, ..., g, of I such that, locally

at x, the induced functions g,.1, --.» gn deﬁne X;asa subscheme of A" and such

that dg, (%), ..., dg,(x) are hnearly independent in QA.-,S ® k(x); cf. 2.2/7. Now let
Z be the S—scheme defined by g, 415> Gu- NOthC that Z is smooth at x and that Z
contains X as a closed subscheme. The ﬁbres of X, and Z, coincide locally at x. Now
let B be the algebra associated to Z, and let A be the algebra associated to X. Then
A is a quotient B/J of B by a finitely generated ideal J of B. Since A is flat over R
at x, the exact sequence

0—>J—>B§—+A—>0

remains exact at x after tensoring with k(s) %wer R. Since X, coincides with Z;locally
at x, we see that J ®g k(s) vanishes at x. Nakayama’s lemma yields J, = 0. So X
and Z coincide in a neighborhood of x and, hence, X is smooth over S at x. ]

Since étale morphisms are flat, hensellzatlon and strict henselization are
direct limits of flat ring extensions and, hence they are flat extensions of the given

ring.

Corollary 9. Let R be a local ring. The ring%extensions R —> R*— R*" where R" is
a henselization and R a strict henselization of R, are faithfully flat.

Apart from the nice geometric results for flat morphisms of finite presentation,
the 1mportance of flatness is expressed in the descent techniques for faithfully
flat and quasi-compact morphisms. We want to mention here only the de-
scent for properties of morphisms, the more involved program of the descent for
modules or schemes will be explained in Section 6.1. Consider the following

situation. Let

X\7Y ) _I7Y,
S — S

be a commutative diagram of morphisms, and assume that the ‘triangle on the
right-hand side is obtained from the one on the left by means of the base change
S’ —> §. Frequently one wants to show that f enjoys a certain property provided
it is known that f” has this property. So it is useful to know that quite a lot of
properties descend under a faithfully flat and quasi-compact base change §—S;
for example, topological and set-theoretlcal properties (cf. [EGA TV,], 2.6), finite-
ness properties (cf. [EGA IV, ], 2.7.1), and smoothness properties (cf. [EGA 1v,],
17.7.3). For precise statements, the reader is referred to the literature.
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2.5 S-Rational Maps

A rational map X ---» Y between schemes X and Y is generally defined as an
equivalence class of morphisms from dense open subschemes of X to Y; cf. [EGA
I], 7. Two such morphisms U-— Y and U’ — Y are called equivalent if they
coincide on a dense open part of U n U’. However, when working over a base
scheme S, this notion does not behave well with respect to a base change S’ — S.
So we want to introduce a relative version of rational maps over a base scheme S
which is compatible with base change. For our purposes, it is enough to consider
S-rational maps between smooth S-schemes. So we will restrict ourselves to this case;
for more general versions see [EGA IV, ], 20.

An open subscheme U of a smooth S-scheme X is called S-dense if, for each
se S, the fibre U; = U xg Speck(s) is Zariski-dense in the fibre X, = X X k(s).
Clearly, finite intersections of S-dense open subschemes of X are S-dense in X again.
Furthermore, if U is S-dense and open in X and if V is an open subscheme of X,
then U n V'is S-dense in V. Considering a second smooth S-scheme Y, an S-rational
map @ : X ---» Y is defined as an equivalence class of S-morphisms U — Y, where
U is some S-dense open subscheme of X. Two such S-morphisms U — Y and
U’ — Y are called equivalent if they coincide on an S-dense open part of U n U'.
Wewill say that ¢ : X ---» Yis defined at a point x € X if there is a morphism U — Y
representing ¢ with x € U. The set of all points x € X where ¢ is defined constitutes
an S-dense open subscheme of X. It is called the domain of definition of X ; we denote
it by dom(g); but note that, without any. further assumptions, there is no global
morphism dom(¢) — Y defining ¢. Furthermore, if ¢ : X ---» Y can be defined by
an S-morphism U — Y which induces an isomorphism from U onto an S-dense
open subscheme of ¥, then ¢ : X ---» Y is called S-birational. In this case we have
an S-birational map ¢~ : Y ---» X which serves as an inverse of ¢. It is clear that
the notions S-dense, S-rational, and S-birational are preserved by any base change
§' — S. In general, the same is not true for the domain of definition of S-rational
maps. For example, set S = Spec Z, and consider the Z-rational map ¢ : A} -+ A}
given by the rational function (T + 1)/(T — 1). Then the base change Spec Z/2Z —
Spec Z transforms ¢ into a morphism A},7 — A,7.

Let f: X — Y be a quasi-compact and quasi-separated morphism between
arbitrary schemes X and Y. Then the direct image f, 0y of the structure sheaf of
X is a quasi-coherent Oy-module, cf. [EGA I, 9.2.1, and the kernel .# of the canon-
ical morphism Oy — f, Oy is a quasi-coherent sheaf of ideals in ¢y. The schematic
image of f is defined to be the subscheme of Y associated to .#; it is the small-
est closed subscheme of Y that f factors through. If ¥ is a subscheme of Y
such that the inclusion j: ¥V <, Y is quasi-compact, the schematic image of j
is also referred to as the schematic closure of V in Y. Furthermore, if the sche-
matic closure of V in Y coincides with Y, we will say V is schematically dense
in Y.

Lemma 1. Let Y be a smooth S-scheme, and let V be an open quasi-compact subscheme
of Y.
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(a) If Y is of finite presentation, the set of points s€ S such that V, is not dense
in Y, is locally constructible in S (i.e. constructible if S is quasi-compact; of. [EGA

Ol 9.1.12).
(b) If V is S-dense in Y, it is schematically dense in Y.

Proof. (a) We may assume that the base S is noetherian. Let A be the closed reduced

subscheme Y — ¥, and denote by p: A —» S the structural morphism. Then con- -

sider the set
F = {ye A;dim,p~'(p(y)) = dim,(Y/S)} -

It is clear that ¥, is not dense in Y if and only if s € p(F). Due to [EGA 1V, ], 13.1.3,
the set F is closed in Y and, due to [EGA 1V,], 1.8.5, the image p(F) is locally
constructible in S.

(b) follows from [EGA IV,], 11.10.10. But, for the convenience of the reader,
we will treat the case where the base is locally noetherian. It is enough to show that
the restriction map Oy(Y’) — Oy(V 1 Y’) is injective for each open subscheme Y’
in a basis of the topology of Y; note that ¥ n Y’ is S-dense in Y’ for each open
subscheme Y’ of Y. So we may assume that S is an affine scheme Spec R, and that
Y is an affine scheme Spec A. It suffices to show that 4 — Oy(V) is injective.

Since A is flat over R, cf. 2.4/8, the associated prime ideals of A4 are just the
associated prime ideals p; of p;4 where py, ..., p, are the associated prime ideals
of R; cf. [EGA 1V, ], 3.3.1. Since A is smooth over R, the prime ideals p;; are the
minimal prime ideals over p;4. So V meets each component V(p;) and, hence, the
restriction map A — Oy(V) is injective. O

~ For later reference we state that the schematic image is compatible with flat base
change. ‘

Proposition 2. Let f: X — Y be an S-morphism which is quasi-compact and quasi-
separated. Let g:S' — S be a flat morphism, and denote by f': X' — Y the
S'-morphism obtained from f by base change. Let Z (resp. Z') be the schematic image
of f (resp. of f'). Then, Z xg S' is canonically isomorphic to Z'.

The assertion follows immediately from the fact that the pull-back of y-modules
with respect to the projection Y’ — Y gives rise to an exact functor from the
category of @y-modules to the category of Uy-modules; cf. [EGA1V,],2.3.2.

Next we want to define the graph of an S-rational map ¢ : X ---» Y, where X and
Y are smooth S-schemes of finite type. Let U be an S-dense open subscheme of X
such that ¢ is given by an S-morphism U — Y. We need to know that we may

assume U to be quasi-compact.

Lemma 3. Let U be an S-dense open subscheme of a smooth and quasi-compact
S-scheme X. Then U contains an S-dense open subscheme which is quasi-compact.

Proof. Let {U;};.; be an affine open covering of U and, for each i € I, consider the
second projection t;: X xg U;— Uj. Itadmitsa section &;: U;— X x5 U, namely
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the tautological one. Denote by V; the union of all connected components of fibres
of 7, which meet the image of ;) Then, T, being smooth, V;is open in X xg U; by
[EGA 1V;], 15.6.5. Let Sat(Uij be the image of ¥; under the first projection
X x5 U;— X. Since U, is smooth and, hence, flat over S, the image Sat(U;) is open
in X and contains Uj; it may be viewed as a saturation of U; with respect to the
structural morphism X — S. Now {Sat(U;)};.; is an open covering of X because
U is S-dense in X, and this covering contains a finite subcover {Sat(U, ),...,Sat(U; )}
because X is quasi-compact. Thus U’':= U, u---u U, is S-dense and quasi-
compact in U. O

So we have seen that ¢ : X - Y can be represented by an S-morphism U — Y
where U is S-dense open and quasi-compact in X. Let I'; be the graph of this
morphism; it is a locally closed subscheme of U x5 Y (closed if Y is separated over
S). Since U is quasi-compact over}S, one can define the graph T of ¢ as the schematic
closure of U @ Iy in X xg Y. Iniorder to see that the definition is independent of
the choice of U, it suffices to mention the fact that any quasi-compact S-dense open
subscheme V < U is schematically dense in U due to Lemma 1; hence ¥ and U have
the same schematic closure I" in X Xs Y.

Now let Q be the largest open subscheme of X such that the projection
p: X x5 Y — X onto the first factor induces an isomorphism

Iap(Q)=%0.

Then Q = dom(g). Furthermore, if Y is separated over S, each graph Iy, as above is
closed in U xg Y so that I' n (U xg Y) = I,. Therefore we have an isomorphism
Inp™U)->U,

which shows U < Q. This shows Hom(w) < Q and thus dom(¢p) = Q. In particular,
there is a unique S-morphism dom(p)—> Y corresponding to the S-rational
map ¢:X --—-»Y; but note that, in general, dom(p) is not necessarily quasi-
compact.

Example 4. Let & = (¢;);.; and 7 = (1;); ; be systems of variables, and let k be a field
with char(k) # 2. Let R denote the k-algebra k[£,41/(¢én) where (£n) is the ideal
generated by all products &;#;, i€ and j e J. Set § = Spec R. Then we can view
X = Speck[¢] and Y = Speck[7] as closed subschemes of S, intersecting each
other at a single point, namely, at the origin of X and Y. Furthermore, the union of
X and Y is S. Now fix indices iy € I and j, € J, and consider the S-rational map
@ : AL -+ A} given by the rational function

T? —1

(T -

where T is a coordinate of Aj. L
definition dom(¢). Then D n A}
of the zero set of (T — ¢&;, + 1) an
origin of X. A similar assertion

are disjoint. Thus, if the system &

o + D(T—1;,— 1)

et D be the complement in A} of the domain of
s the union of two closed subsets of AL; namely,
d of the closed point (¢, T— 1) which lies over the
s true for D n A}. Since char(k) # 2, both parts
contains infinitely many variables, the domain of
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definition dom(g) cannot be quasi-compac
single closed point cannot be described by £

Proposition 5. Let X, X', Y be smooth S-sche
separated over S. Let ¢:X-—»Y be an
S-morphism f : X' — X. Then f ~*(dom(¢))}i
@ o f is an S-rational map from X' to Y whic
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t, since a subset of A} consisting of a
initely many equations.

emes of finite type, and assume that Y is
S-rational map, and consider a flat
is an S-dense open subscheme of X', and
h satisfies

dom(e o f) = f7'(dom()) .
In particular, if f is faithfully flat and if ¢ o f is defined everywhere on X', the map

@ is defined everywhere on X.

Proof. Since f is flat and locally of finite preqentation, cf. [EGA1V,], 1.4.3, the map
f is open. Using this fact, one shows f~*(dom(p)) is S-dense in X". So ¢ o f is an
S-rational map and dom(g o f) contains f~ 1(dom(<p)) Denote by I' ¢ X x5 Y the
graph of ¢ and by I'" = X’ xg Y the graph of ¢ o f. Then we see from Proposition

2 that
X xxyI'=T1".

Let p:T— X and p':T"— X' be the

U’ := dom(¢ o f), and consider its image U :

of X. Since U’ — U is faithfully flat, the pr

rojections onto the first factors. Set
= f(U’) which is an open subscheme
ojection p is an isomorphism over U if

and only if p’ is an isomorphism over U’. Therefore U = dom(gp), and the assertion
is clear. (]

Finally we want to show that the domain of definition of S-rational maps is
compatible with flat base change.

Proposition 6. Let ¢: X ---> Y be an S-rational map between smooth S-schemes of
finite type where Y is separated over S. Let §'— S be a flat morphism, and denote
by ¢': X' ---» Y' the S'-rational map obtained from f by base change. Then

dom(¢’) = domkqo) Xg S .

Proof. It is clear that dom(¢p) x5 S’ = dom(¢'). To show the opposite inclusion,
denote the graph of g by I' = X x5 Y and the graphof o' by I'" < X' x5 Y. Smce
the schematic closure commutes with flat base change, we have

[ xS =1I".

Let p: T — X and p’: T" — X’ be the projections onto the first factors. Further-
more, consider a point x’ € dom(¢’), and let x be its image in X. Then we get a

commutative diagram
Spec Oy, ., — Spec Oy, .

2.5 S-Rational Maps s

where the map in the first row is faithfully flat. Therefore, the fact that p’ is an
isomorphism over Spec Uy - implies that p is an isomorphism over Spec Oy .. Since
Y is of finite type over S, we see that I" is of finite type over X. Hence, there exists
an affine open neighborhood W of x such that p induces a closed immersion
p Y(W)—> W. Let Z be the schematic image in W of this map and let U be a
quasi-compact S-dense open subscheme of X where ¢ is defined. Then the open
subscheme U N W of W is contained in Z. Since U n W is S-dense in W, the scheme
Z coincides with W. Thus p~*(W)— W is an isomorphism, and x is contained
in dom(). O
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Chapter 3. The Smoothening Process

The smoothening process, in the form needed in the construction of Néron models,
is presented in Sections 3.1 to 3.4. After we have explained the main assertion, we
discuss the technique of blowing-up which is basic for obtaining smoothenings. The
actual proof of the existence of smoothenings is carried out in Sections 3.3 and 3.4.
As an application, we construct weak Néron models under appropriate conditions.

Our version of the smoothening process differs from the one of Néron insofar
as we have added a constructibility assertion, thereby avoiding the use of pro-
varieties; for more details see Section 1.6. A generic form of Néron’s smoothening
process has also been explained by M. Artin in [4].

The chapter ends with a generalization of the smoothening along a section where
the base is a polynomial ring over an excellent discrete valuation ring. This kind of
smoothening technique is very close to that developed by M. Artin [4] for the proof
of his approximation theorem; see also Artin and Rotthaus [1].

3.1 Statement of the Theorem

In the following let R be a discrete valuation ring with field of fractions K, with
residue field k, and with uniformizing element 7. We denote by R" a henselization
of R and by R* a strict henselization of R. Then R" and R are discrete valuation
rings with uniformizing element = and the residue field of R** equals the separable
closure k, of k. For any R-scheme X, let Xg = X ®x K be its generic fibre and
X, = X ® kits special fibre.

Definition 1. Let X be an R-scheme of finite type whose generic fibre Xy is smooth
over K. A smoothening of X is an R-morphism f: X' — X which satisfies the
following conditions:

(i) f is proper and is an isomorphism on generic fibres.

(ii) For each étale R-algebra R, each R’-valued point of X lifts uniquely to an
R'-valued point of X' which factors through the smooth locus Ximeom 0f X'. More

i v (X lywordin precisely, the canonical map X! oom(R'Y — X(R') is bijective.
T offeainXy )

Each étale R-algebra R’ is semi-local. So in order to test condition (ii), one may
restrict oneself to local extensions R’ of R which are étale. In particular, such rings
are discrete valuation rings; they are flat over R. Due to the valuative criterion of
properness [EGA II], 7.3, condition (i) implies that the map X'(R") — X (RY)
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deduced from f is bijective for any flat R-algebra R’ which is a discrete valuation

ring. Hence, if condition (i) is satisfied, condition (ii) says that, for each local étale

extension R’ of R, the R’-valued ﬁoints of X’ factor through the smooth locus of X".

As seen in Section 2.3, the strict henselization R of R is the direct limit of all local

stale extensions of R. So condition (ii) is fulfilled if and only if the canonical map
1R — X (R is bijective.

In general, a smoothening X' — X isnot a desingularization of X (i.e., a proper
morphism X" — X from a regular scheme X” to X which is an isomorphism over
the regular locus of X), because the points in the complement of the smooth locus
of X’ do not need to be regulqr. However, a desingularization of X is always
a smoothening, as we will see by using the following fact from commutative
algebra. ‘

Proposition 2. Let 1: R — A and s : A —> R be morphisms of regular local rings such
that £ o 1 = idg (i.e., & defines a section of the morphism Spec A —> Spec R associated
to 1). Then the image of each regular system of parameters of R under 1 is part of a
regular system of parameters of A. If Jis the kernel of ¢, then S is generated by a part
of a regular system of parameters. If ty, ..., t,isa minimal system of generators of
S, the completion of A with respect to 3 is canonically isomorphic to R[[ty, ..., t,11-

Proof. Let m be the maximal idej,al of R, and let s;, ..., §,, be a minimal system of
generators of m. Let m’ be the maximal ideal of 4. As ¢ o 1 = idp, the residue fields
R/m and A/m’ are canonically isomorphic, and m/m? may be viewed as a sub-
space of m'/m’2% Hence 1(sy), ..., i(s,,) is a part of a regular system of parame-
ters of A. So there exist elements t,, ..., t, in m’ such that i(s;), ..., U(Sp)s Lys ven by
is a regular system of parameters in A. After replacing t; by t; —1(e(t;)), we
may assume that £, ..., &, are in the kernel 3 of & An easy calculation shows
S = (ty,...,t,) as required. The iassertion concerning the J-adic completion of 4
follows immediately from the definition of a regular system of parameters. Od

In order to show that a desingularization X" — X is a smoothening of X one
has only to verify that, for any étale R-algebra R, each a € X" (R’) factors through
the smooth locus of X”. One knojws that X” ® R'is a desingularization of X ®g R
(see 2.3/9) and, furthermore, that the image of a: Spec R’ — X" factors through the
smooth locus of X" if the corresponding fact is true for (a,id) : Spec R — X"®z R
([EGA 1V,], 17.7.4). So we may assume R = R'. Then it follows from Proposition

2 that X" is smooth over R alonig a; cf. [EGA 1V,], 17.5.3.

Theorem 3 (Smoothening Process). Let X be an R-scheme of finite type whose generic
fibre Xy is smooth over K. Then X admits a smoothening f: X —X.

Moreover, one can construct f as a finite sequence of blowing-ups with centers in
the special fibres. In particular, if X is quasi-projective over R, the same is true for X'

Removing from X' the non-gmooth locus, we see:

Corollary 4. Let X be as beforei Then there is an R-morphism f: X" — X from a
smooth R-scheme X" of finite tyi)e to X such that
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(i) f is an isomorphism on generic fibre$, and
(i) the canonical map X"(R™) — X(R*) is bijective.

Such schemes X" are not unique, and they do not need to be proper over R,
even if X is proper over R.

The smoothening process provides a ﬁrst step towards the construction of Néron
models. For example, if X is an abehaq variety with a projective embedding
Xy = P%, one can apply the smoothening process to the schematic closure X of Xy
in P. Restricting the resulting R-scheme to its smooth locus, we obtain a smooth
R-model of Xy which, although it might not be proper over R, nevertheless satisfies
the valuative criterion of properness for the special class of valuation rings which

are étale over R.

3.2 Dilatation ‘

We have claimed that a smoothening of X can be constructed by blowing up
subschemes of the special fibre. First, let us explain what happens to the sections
X (R) when such a blowing-up is applied to X Consider the following example. Set

:= Spec R[T], where T =(T;,..., T,) is|a set of variables, and let ¥, be the

reduced subscheme of X which consists of the origin of the special fibre X, of X.
Then Y, is defined by the ideal 3 = R[T] Wthh is generated by 7, Ty, ..., T,. Using
an absolute value on K belonging to the va‘luatlon ring R, the R-valued points of
X correspond bijectively to the rational points xx € A% with | T;(x)| < 1,i = 1,.
n. Furthermore, the R-valued points of X v}vhich specialize into Y, correspond to
the rational points xg € A% with | T;(xx)| < |7]. Now let X’ — X be the blowing-up
of ¥, in X. Let .#' be the sheaf of ideals ojf Oy generated by 3, and denote by
X, the set of points of X’ at which .#’ is generated by n. Then X’ = SpecR[T'],
where T' = (T{,...,T;)) is a second set of V:ariables, and the morphism X, — X
corresponds to the morphism induced by sen;ding T;tonT fori=1,...,n Itisseen
that X (R) is mapped bijectively onto the set of those R-valued pomts of X which
specialize into Y;; hence X.(R) correspondswto the rational points xx € A% which
satisfy | T;(xg)| < |=|. Furthermore, two pomts X, y € X,(R) have the same specializa-
tion over k if and only if | Ti(xg) — T(yK)l < |n?| for all i. We will call X’ the
dilatation of Y, in X.

In order to construct dilatations of more general type, consider an arbitrary
R-scheme X of finite type and a closed subscheme Y, of the special fibre X,. Let .#
be the associated sheaf of ideals in Oy; in partlcular n € £. The blowing-up X’ of .#
on X is defined as the homogeneous spectrum Proj(¥) of the graded @y-algebra
& = Ppzo ™ (cf. [EGA II], 3.1 and 8.1.3). Locally, it is defined as follows.
If X = Spec A, the sheaf of ideals .# is associated to an ideal I of A4. Since
A is noetherian, J is generated by finitely many elements g, = =, g5, ..., g, of
A. Then X' is the closed subscheme of P \which is given by the homogeneous

ideal

=ker(A[Ty,..., T,] — @ I,

nz0
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where we consider the graded homomorphism sending the variable T; to g; €
Let U; be the affine open subscheme of P4 where T; does not vanish. Then X'n U

is affine, and the A-algebra of its global sections is given by 3: A[gﬁ] - A[q.]/l
!

gO gn fCTav
Al 2, ~torsion ik Pl = <o Z | Bl dl
,:gi gi]/(g ) Ha™ G l% .%f -

where, suggestively, we have written ""("“g;’w vl aurydb
£( )Cw@}@\ QL Q(ﬁa, /gn)

A[@,.. g"] ALy Tigs T TGy — 61 Ty 97270
gi gi
That we have to divide by the g-torsion corresponds to the fact that the sheaf of
ideals .#' = 7 - 0. is invertible on X'. Furthermore, one shows that X" is R-flat (ie.,
has no z-torsion) if the same is true for X.

Returning to the case of a global R-scheme X, we set

X, := {x € X’; 4 is generated by n} ,

which is an open subscheme of X'. Over an affine open part Spec 4 of X, it consists
of the affine A-scheme Spec A, where

91 gn .
A=A} —,...,= -t .
) [n - ] / (n-torsion)

So X is always flat over R, even if X is not. Let u: X’ — X be the canonical
morphism, and denote by an index k restrictions to special fibres. The palr (Xs,u)
has the following uxiversal property:

If Zis a flat R-scheme, and if v: Z — X isan R-morphism such that its restriction
vy to special fibres factors through Y,, then v factors uniquely through u.

Indeed, since the problem is local on X and Z, we may assume that both schemes
are affine, say X = Spec 4 and Z = Spec B. Using notations as before, the fact
that v, factors through Y, implies that the ideal 3- B is contained in =B. Hence
there exist elements ; € B with v*g, = rh;; the elements h; are unique, because B
has no m-torsion. Thus, the A-morphism A[T,,...,T,] — X sending T, to h;
yields a morphism w*: A(,)— B and hence a morphism w:Z — X, such that
v=1uow.

We summarize what we have shown.

Proposition 1. Let X be an R-scheme of finite type, let Y, be a closed subscheme of
its special fibre X, and let .# be the sheaf of ideals of Oy defining Y,. Let X' — X

- be the blowing-up of Y on X, and let u: X, —> X denote its restriction to the open

subscheme of X' where .# - Oy. is generated by n. Then

(2) X7 is a flat R-scheme, and u, : (X,), —> X, factors through Y.

(b) For any flat R-scheme Z and for any R-morphism v:Z —s X such that
v Z,— X, factors through Y, there exists a unique R-morphism v’ : Z —s X_. such
thatv =uo v’
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Due to property (b), the couple (X7, ) is unique (up to canonical isomorphism)
in the class of all couples (Z, v) satisfying property (a). We call X' the dilatation of
Y, on X. It is clear that one can construct dilatations also for locally closed
subschemes of X,. We want to mention some elementary properties of dilatations.

Proposition 2. (a) All dilatations factor through the largest flat R-subscheme of X,
which is given by the ideal of n-torsion in Ox.

(b) Dilatations commute with flat base change R — R’ where R’ is a discrete
valuation ring such that = is also a uniformizing element of R

(¢) Let X beaclosed subscheme of an R-scheme Z, and let Y, be a closed subscheme
of X,.. Then the dilatation X7 of Y, on X can be realized as a closed subscheme of the
dilatation Z,, of Y, on Z.

(d) Dilatations commute with products: Let X i be R-schemes, and let Y be
subschemes of X\ for i = 1, 2. Then the dilatation of Y, X, Y2 on X! xg X? is the
product (XY, x g (X?), of the dilatations of Y on X ! In particular, if X is an R-group
scheme, and if Yy is a subgroup scheme of X,, the dilatation X;, of Y,on X is an R-group
scheme and the canonical map X\, — X is a group homomorphism.

Finally we investigate how dilatations behave with respect to smoothness.

Proposition 3. Let X be a smooth R-scheme, and let Y, be a smooth k-subscheme of
X,. Then the dilatation X of Y, on X is smooth over R.

Proof. Let u: X, — X be the dilatation of ¥, on X, let x' be a point of the special
fibre of X", and set x = u(x’). Let n be the dimension of X, at x, and let r be the
dimension of Y, at x. Let .# be the sheaf of ideals of O defining Y;, and let # = #/n0x
denote the sheaf of ideals of Oy, defining Y, in X,. Due to the Jacobi Criterion 2.2/7
there exist fi, ..., f, € Ox,,x a0d Gri15 .-, Gn € #, such that f, ..., f, Gre15 -5 Gn
form a system of local coordinates of X at x (cf. 2.2/12), and such that g1, .-, Ga
generate .%,. On an affine neighborhood U of x in X there exist liftings f; € Ox(U)
of f; and g;e #(U) of g;. Then fy, ..., for Grits -+-» go form a system of local
coordinates of X over R at x, and 7, g,41, .-, g, generate . at x. From the local
construction of X, we see that dfy, ..., df,, dg;41, - - - » 49, generate Qg at x', where
gj € Oy, satisfies g; = ng;. Hence Q}/r is generated by n elements at x’. Since the
relative dimension of X7, over R is at least n at x' (cf. [EGA IV,], 13.1.3), it follows
from 2.4/8 and 2.2/15 that X, is smooth over R at x". £

3.3 Néron’s Measure for the Defect of Smoothness

Tﬁroughout this section, let X be an R-scheme of finite type whose generic fibre
X is smooth over K. Let a be an Reh-valued point of X, and let ay (resp. a;) denote
its generic (resp. special) fibre. Consider the pull-back a*Qy g of the Oy-module of
relative differential forms from X to Spec R*. By abuse of notation, we will identify
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it with its module of global sections. Thereby a*Q) g becomes an Rsi-module of
finite type. Since R*" is a discrete valuation ring, this module splits into a direct sum
of a free part and of a torsion part, The rank of the free part is just the rank of Q}x
at ag which is the dimension of Xy at ax (since X is smooth at ag). Looking at the
torsion part, we define

d(a) := length of the torsion part of a*Q}x

as Néron’s measure for the defect !of smoothness at a. First we want to show that,
indeed, 8(a) provides a measure of how far X is from being smooth at a.

Lemma 1. Let a be an R¥-valued point of X. Then a factors through the smooth locus
of X if and only if 6(a) = 0. '

Proof. If a is contained in the smooth locus of X, then Qg is locally free at @, and,
hence, a*Q} g is free. Thus we haye 6(a) = 0. Conversely, if 8(a) = 0, then a*Qj
can be generated by d elements, where d is the dimension of Xy at ay. In particular, -
Q% and, hence, Qk, i can be generated by d elements at a,. Since the relative
dimension at a, is at least d (cf. [EGA IV,], 13.1.3), it follows from 2.2/15 that X,
is smooth over k at g, of relative dimension d. Then X is smooth over R at . This
follows from 2.4/8, if it is known that X is R-flat at a;. Avoiding the interference of
flatness, one can proceed as follows. Choose a representation of a neighborhood
Uc X of a, as a closed subscheme of some Ak. Due to the Jacobi Criterion
2.2/7(c), there exist local sections g 1, ---» g, 0N neighborhood of a, € A} which
vanish on U, and which have the property that Uy is defined by (%, gg+1,---,9s) at
a, and that dggis, ..., dg, gener:ate a direct factor of Q}WR at a,. Then, in a
neighborhood of a, the subscheme Z of A% given by gas1s-++5Jn is smooth of relative
dimension d; furthermore locally at a, the scheme Z contains U as a closed sub-
scheme. Thus, by reasons of dimension and of smoothness, the generic fibres Uy
and Z, coincide at ag and, hence, U and Z coincide at . O

The Jacobi Criterion provides a useful method to calculate 6(a). Namely, let U = X
be a neighborhood of a which can be realized as a closed subscheme of an R-scheme
Z where Z is smooth over R and}has constant relative dimension n. Assume that
there exist zy, ..., z, on Z such that dz,, ..., dz, constitute a basis of Qzx, and let

g1, ---» gm be functions on Z which generate the sheaf of ideals of @, defining U in
Z. Representing the relative differentials dg, with respect to the basis dzy, ..., dz,,
say

n 0
dg, = v; ai" dz, ,

we define the Jacobi matrix of gy, /..., g BY

J= (ggﬁ) )
Oz, Juztereom
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If d is the relative dimension of X at ay, we call A the set of all (n — d)-minors A of J.
In this situation, Néron’s measure for the defect of smoothness at a can be calculated

from the minors A € A. To give a precise tatement, let v(r) denote the m-order of

elements r € R.

Lemma 2. 6(a) = min{v(a*A); A € A}.

Proof. Due to the Jacobi Criterion 2.2/7, there exists a minor A € A with a*A # 0;
any minor A’ of J with more than n — d rows will satisfy a*A" = 0. Furthermore, it
follows from 2.1/2 that a*Qj}p is rcpreser?table as a quotient F/M, where F :=
a*Q}p is a free R¥-module of rank n, and where M is the submodule which is
generated by a*dyg,, ..., a*dg,,. Since the raqk of Mis (n — d), one can find a basis e,
., e, of F such that M is generated by eliements Fi41€4415 -« -5 Tn€, Where r; € R
and r; # 0; this follows from the theory of clementary divisors. Thus the length of

the torsion part of F/M, which is é(a) by de:ﬁnition, is given by the formula
5(0) = Vlrass) + - + V() -

Now consider the ideal in R™* which is generated by all elements a*A, A € A;itequals
the ideal generated by all values which are‘assumed on M by alternating (n — d)-
forms on F. Obviously, this ideal is generated by the product r,, ...r,, and there

exists a minor A € A with (a*A) = (r,y, ... r,,%). Thus the assertion is clear. O

The method we have just used can easﬁly show that d(a) is bounded when a
varies over the set of R*-valued points of X].

Proposition 3. There exists an integer ¢ such that 5(a) < c for all a € X(R*").

Proof. Since an R-scheme of finite type is quasi-compact by definition, we may
assume that X is an affine R-scheme Spec 4. Choose a representation

A= R[zl,...,sz/(gl,...,gm)

of A as a quotient of a free polynomial ring R[z,,...,2,]. For integers d, let (X),
be the union of all irreducible components of dimension d of X,. Then (Xy),
is non-empty for at most finitely many d a‘nd, since X is smooth, Xy is the dis-
joint sum of the (Xg);. Let X; be the schematic closure of (Xg), in X; ie.,
let X, be the subscheme of X which is defined by the kernel of the homo-
morphism 4 — Ox((Xk),). Let A, be its ring of global sections. Considering the

Jacobi matrix
= ag”
a Zy n=Ll,..., m ’
v=i n

.....

let A be the set of all (n — d)-minors A of J. Then, due to the Jacobi Criterion 2.2/7,
we see for each x € (Xg), that there exists a minor A € A satisfying A(x) # 0. Hence
the family (A), . o generates the unit ideal in Lﬁld ®g K. After chasing denominators,
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one can find elements f;, ..., f; € 4;, minors Ay, ..., A, € A, as well as an integer
¢ = 0 such that

t
‘—21 f;’Aile =7n°.

Hence, by Lemma 2, we have é(a) < ¢ for all a € X(R**) whose generic fibre a;
belongs to (X),- Since only finitely many of the schemes (X,), are non-empty, we
see that & is bounded on X (R™). n

It follows that the function & assumes its maximum on X (R**). The maximum
of & can be viewed as a global measure of how far X is from being smooth at the
points of X (R*"). Since we want to construct a smoothening of X by blowing up
subschemes of X, we have to define suitable centers Y in the special fibre such that
the defect of smoothness, i.e., the maximum of §, decreases. Smooth R%"-schemes
have many sections (cf. 2.3/5). So it is natural to look at subschemes Y; < X, such
that there exist enough R**-valued points of X whose special fibres factor through
Y,. More precisely, if k; denotes the residue field of R™, we will consider the following
property (N) for couples (X, ¥;) consisting of an R-scheme X of finite type and of a
closed subscheme Y, = X,:

(N) The family of those k-valued points of Y}” which lift to R**-valued points of
X, is schematically dense in Y,.

For the notion of schematic density (more precisely, of schematic dominance)
see [EGA 1V,], 11.10.2. In our situation the condition just means that the sheaf
of Oy-ideals defining ¥, equals the intersection of all kernels of morphisms
a*: Ox — a, Usp.. i, Where a varies over the set of R*-valued points of X whose
special fibres factor through ¥,.

Since the strict henselization R™ is the limit over all local étale extensions R’ of
R, condition (N) is equivalent to the following condition: the set of closed points of
Y, which lift to R'-valued points of X for some local étale extension R’ of R
is schematically dense in Y. For example, if X is smooth over R, and if ¥,
is a geometrically reduced closed subscheme of X, then it follows from 2.2/16,
2.2/13, and 2.2/14 that (X, Y;) has the property (N).

Lemma 4. If the couple (X, Y,) satisfies property (N), then Y, is geometrically reduced,
and the smooth locus of the k-scheme Y, is open and dense in Y,.

Proof. Property (N) yields that the k,-valued points of Y, are schematically dense in
Y,. Since k, is a geometrically reduced k-algebra, ¥, is also geometrically reduced
(cf. [EGA 1V,], 11.10.7). So the assertion follows from 2,2/16. |

Next we want to establish the key tool which is needed for the proof of Theorem
3.1/3. It provides us with a means of lowering the defect of smoothness of X so that
eventually X becomes smooth at the points we are interested in.
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Proposition 5. Let Y, be a closed subscheme of X, such that the couple (X, ) satisfies
property (N). Let Uy be an open subscheme of Y, such that Uy is smooth over k and
such that the pull-back Q% gly, of Qkr to Uy is locally free. Let X, — X be the
dilatation of Y, in X and, for each a € X(R**) with a, € Y,, denote by a’ € X.(R™) the
unique lifting of a. Then if a € X(R*) specializes into a point of Uy, we have

8(a’) < max{0,8(a) — 1} .

In particular, 5(a’) < 6(a) for all R**-palued points a of X which specialize into points
of U, and which are not contained in the smooth locus of X.

First we want to look at an example which explains how the proposition works
in a special situation. Let X be the closed subscheme of A% = Spec R[ T, T,] which
is defined by the equation T, T, = n”. Then X is affine, and its R-algebra of global

sections is
A=R[T, LT, T, —7%).

Let Y, be the closed subscheme of X, which is defined by (n, T}, T,); it consists of a
single k-valued point. Using the R-morphism

A—R, Ti—m, T,—m,

this point lifts to an R-valued point of X. Hence (X, Y;) satisfies property (N).
Furthermore, an easy calculation shows 6(a) = 1. The dilatation X of Y, in X isan
affine A-scheme with coordinate ring

A = A[T, BT, — 2T}, T, — nT3) = R[TL, GITT: — 1) -

In particular, X7, is smooth over R, and the lifting a’ € X' (R*") of a, which corres-
ponds to the R-morphism

A'— R, Ti—1, —1,
fulfills 6(a’) = 0.

Proof of Proposition 5. Since the problem is local on X, it is enough to work in a
neighborhood of a point u € U,. So we may assume that X is affine, say X = Spec 4,
that U, coincides with Y, and that the latter is irreducible. Let r be the dimension
of Y;. Then the sheaves Qy, ; and Q4 ly, are locally free and the first is obtained
from the second one by dividing through the submodule which is generated by all
differentials dg of functions g € A vanishing on ¥, (cf. 2.1/2). Shrinking X if necessary,
we can assume that both sheaves are free and that there exist elements y3, ..., Vs
%, ..., Z, € A having the following properties:

The differentials d7,, .. ., 4y, give rise to a basis of Q} - the functions 7y, ..., 2,
vanish on Y, and dy, ..., d,, dZy, ..., dz, give rise to a basis of Qy/gly, -

It follows then from Nakayama’s lemma that Qj r is generated by dy;, ..., dy,,
dz,,...,dz, at all points of ¥,. However, in general we will not have a basis, because

Q/r does not need to be locally free. Therefore we want to construct a closed
embedding X = Z into a smooth R-scheme Z such that the above generators of
O}z lift to a basis of Qf . This is possible after shrinking X.
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Namely, represent A as a quotient of a free polynomial ring R[T3,..., Trsnemd
with respect to an ideal H and require that 7; is a lifting of y; fori=1, ..., r and
that T,4;is a lifting of z; for j = 1,...,n. Since Qkrly, is free of rank r + n, we know
that Oz ® k(u) is of dimensi01:1 r + n over k() where u is the point in Y, around
which we want to work. Hence there exist Ay, ..., h,, € H such that the Jacobi matrix

' Oh;
<6—7}(u))i=1 ..... m

Jj=1,..., r+n+m

at u is of rank m. Writing Z for t}he closed subscheme of A%"*™ which is defined by
hy, ..., hy, we have closed immersions

%Y}C—rXC—»Z,

where Z is smooth at u of relative dimension r + n. Let C be the R-algebra of global
sections of @, and represent the algebras of global sections on Y, and X as quotients
of C; say A = C/I with I =1d(X) and B = C/J with J = Id(Y;). So we know
I = J. Furthermore, let y;€ C bc the image of T; for i=1, ..., r, and z;€ C the
image of T forj = 1,..., n. Then y, is a lifting of j; € A, and the same is true for
z; and Z;. Replacing Z by an aﬁihe open neighborhood of u, we may assume that Z
is smooth over R of relative dimension  + nand thatdy,, ..., dy,, dzy, ..., dz,form
a basis of Q}/R. Also we may assume that ¥, as a subscheme of Z, is defined by =,
Zyy -e.s Zy; L., that J = (m,zy, ..,Z,). Namely, these functions define a smooth
k-subscheme Y; of Z of dimension r. Since ¥, is contained in Y, and since Y, is
smooth of dimension r, we have Y, = Y locally at u.

Now we come to the key point of the proof. We claim I = J 2, This relation will
enable us to give the desired estimatc for the function &, when X is replaced by the
dilatation X. So consider an element f € I. Since I = J, we can write

‘ f=gn+ Zi 9iZ;
where g, g; € C. The differential df vanishes on X and hence on Y,. Therefore we have

gidzi|rk = deYk =0.

s

1

Then gily, =0, i€, g1, -5 Gu€J, since zy, ..., z, have been chosen in such a
way that their differentials form part of a basis of QX rly, In particular, we can write
fas
(*) f=gn+h
with
h=g,z; +... + guzn€J?

since zy, ..., z, € J. For any a € X(R*) with @, € Y, we know h'(a) =0 (mod 7)
for all h' € J. Therefore h(a) = 0 (mod 7%). On the other hand, we have f(a) =0
for all a e X(R°*"). Thus the equation (+) implies g(a) = 0 (mod =) for all ae X (R
such that a, € ¥;. Since the couple (X, Y;) satisfies property (N), this yields gly, = 0
and, hence, g € J. So I = J? as claimed.
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Next consider the dilatation X, of ¥, in X. It can be realized as a closed

subscheme of the dilatation Z;, of ¥, in Z. Giving a more precise description of these
dilatations, we have Z, = Spec C’ where

and Z; is smooth over R, since Z is smooth over R (cf. 3.2/3). Writing z; = ﬁ the

differentials dy, ..., dy,, dz1, ..., dz, form a basis of Q. - r- Then X; = SpecA with
A’ = C'/I, and the 1dea1 I'c C’ is the smallest one such that I’ contains the i 1mage
of I and such that C'/I' has no n-torsion; i.e., I' consists of those elements ¢’ € C'
such that n¥c’ € IC for some v € N. Since I = J2, any element f € I can be written
as

® f=ny
with f” € C'; hence f’ € I'. The differential of f has a representation

r n
df = Z bidyi + Z deZj
=1 IS
in Q} x, where b;, ¢; € C. It implies the representation
df = Z bidyi + Z andZJ{
i=1 Iz
in Q}. z. Furthermore, we have a representation
df' = Y bjdy,+ Y cjdz}
' i=1 j=1
in Q. g, where b/, ¢} € C'. Then the relation (1) implies

(TT) b = 7'[2b-/ ¢ = nc{

since the dy;, dz; form a basis of Q}.x. Now choose a point a € X(R*") with
a, € U, = Y, and let a’ € X_(R**) be the lifting of a. Let d be the dimension of X at
ag. In order to relate §(a’) to 6(a), we want to apply Lemma 2. So let f;, ..., f; be
generators of I. There exists an (r + n — d)-minor A of the Jacobi matrix

ah oy
ayl az : 1...,1.

such that 6(a) = v(A(ak)). Then, using the equation (f), we can define elements
fieI'by f] := n~?f,. Let A’ be the minor of the Jacobi matrix

e off
8y, ﬁz /}:1 Jeeesd

1,L..,r3j=1,..., n

which corresponds to A. Then the relations (1) show that A’ is obtained from A by
multiplying each column of A with a factor ™ or 2. Thus

V(A'(ag)) = v(A(ag)) — (n + r —d)
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and, hence,
da)Lo@—-m+r—4d).

Ifn + r — d > 0, the assertion of the proposition is clear. If n + r = d, the smooth

* R-scheme Z has relative dimension d, and this is just the dimension of Xy at ax. So

Zy and X coincide on an open neighborhood of a. Since X is a closed subscheme
of Z, and since Zy is schematically dense in Z, we see that X coincides with Z locally
at a. So a factors through the smooth locus of X, and é(a) = 0 in this case. O

‘We mention here that, as we have seen, the proof actually yields a better estimate
for the defect of smoothness than the one stated in Proposition 5. For example, if
Xy is equidimensional of dimension d, if Yy is equidimensional of dimension r, and
if Q% zly, is locally free of rank r + n, then

@)= d@—m+r—4d).

3.4 Proof of the Theorem

In order to prove Theorem 3.1/3, let us fix the notation we will use. As in the
preceding section, X is an R-scheme of finite type whose generic fibre Xy is smooth
over K. Let E be a subset of X(R*). A closed subscheme ¥, of X, is called
E-permissible if the following conditions are satisfied:

(i) The set of ks-valued points of Y, which lift to R*"-valued points in E is schemati-
cally dense in Yy; in particular, the couple (X, Y,) has the property (N).

(i) Let U, be the largest open subscheme of Y, which is smooth over k and where
Q% rly, is locally free. Then there is no kg-valued point in Y, — U, which lifts to a point
in E.
Note that the subscheme U, < ¥, of (ii) is always Zariski-dense in ¥; due to Lemma
3.3/4. Using the notion of E-permissible subschemes, we can formulate Proposition
3.3/5 in a more precise form.

Lemma 1. Let Y, be an E-permissible subscheme of X, and let X' — X be the
blowing-up of Y, on X. For a point a € E, denote by a’ € X'(R*") its (unique) lifting.
(a) If a does not specialize into a point of Y, then §(a) = 6(a’).
(b) If a specializes into a point of Y;, then 6(a’) < max{0,5(a) — 1}.

Proof. If a, ¢ Y,, there exists an open neighborhood of a over which the blowing-up
is an isomorphism; hence d(a) = é(a’). If a, € ¥, Proposition 3.2/1 shows that the
point a’ is necessarily contained in the dilatation X, of ¥, in X. Since X, is an open
subscheme of X’ and since Y; is E-permissible in X, Proposition 3.3/5 yields the
desired estimate for d(a’). [

If Y, is E-permissible in X, the blowing-up X " X of Y, on X is said to be
E-permissible. For any blowing-up X’ — X of a subscheme of the special fibre X,
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one has a canonical bijection X'(R™) -~ X(R*"). So we may identify E = X(R*")
with the corresponding subset of X’(R*"). Hence we get the notion of E-permissible
blowing-ups for X’ again. This allows us to formulate a more precise version of
Theorem 3.1/3.

Theorem 2. Let X be an R-scheme of finite type with a smooth generic fibre Xy, and
let E be a subset of X(R*). Then there exists a proper morphism X' — X which
consists of a finite sequence of E-permissible blowing-ups with centers contained in
the non-smooth parts of the corresponding schemes, such that each Re"-palued point
a € E factors through the smooth locus of X'. In particular, if X is quasi-projective
over R, sois X'.

Proof. For a subset E = X(R*"), we introduce the defect of smoothness of X along
E by

8(X,E) := max{é(a);a € E} .

Due to Proposition 3.3/3, we know (X, E) is finite. So we can proceed by induction
on 8(X, E). If 5(X, E) = 0, then each a € E factors through the smooth locus of X
(cf. Lemma 3.3/1), and the assertion is trivial. So let 6(X, E) > 0. Since we consider
only blowing-ups with centers in the non-smooth locus, we can remove from E all
points which factor through the smooth locus of X, and thereby we may assume
é(a) > OforallaeE.

For the induction step, we have to arrange things in such a way that Lemma
1 can be applied. We do this by introducing a canonical partition of the set
E = X(R*"). First let us fix some notations. For a subset F = X (R*"), we denote by
F, the subset of X (k,) which is induced from F by specialization. Identifying points
in F, with their associated closed points in X, let F, be the Zariski closure of Fy in
X,, provided with the canonical reduced structure. Then (X , F,) satisfies property
(N).

In order to obtain the desired partition of E, set F* := E and Y! := F. Let Uy
be the largest open subscheme of ¥;' which is smooth over k and where Qi’/R[y,i is
locally free, and define

E':={aeF'aq.eUl}.
Proceeding in the same way with F? ;= F' — E', and so on, we obtain

(i) a decreasing sequence F! o F? > ... in X(R™),
(i) subsets E', E2, ... = X(R®) such that E decomposes into a disjoint union

E=E'U.. . OFEUF,
(iii) dense open subschemes U} = ¥ := F} such that Ej < U} and, moreover,
Yi*! < ¥ — Uj; in particular, dim Y/ < dim % if ¥ # .
So we see that necessarily ¥*! = ¢ for some t € N big enough and, consequent-
ly, that F**! = (. Hence we have the partition
E=E'V...UE".

Since each U} is smooth over k, and since Qgly; is locally free on U;, it follows
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that each ¥ is E'-permissible, and that Y} is, in fact, E-permissible. Furthermore,
note that, in terms of subsets of X, each Y} is disjoint from the smooth locus of X,
since E, and, hence, all F} are disjoint from it, and since the non-smooth locus of X
is a closed subset of X;.

Now we can carry out the induction step. Let X’ — X be the blowing-up of ¥
on X. Then 1

S(X', EY) < 8(X, EY)

by Lemma 1, because Y! is E‘i—permissible. Furthermore, due to the induction
hypothesis, there exists a morphism X" — X' which consists of a sequence of
E*-permissible blowing-ups with centers contained in the non-smooth loci of the
corresponding schemes, such that each a e E', when viewed as an R*"-valued point
of X", factors through the smboth locus of X”. Considering the composition
X" — X' — X, this modiﬁcati¢n does not affect the set E — E'. So it is a sequence
of E-permissible blowing-ups.
Writing (E") for the lifting of E to X"(R*"), let us consider the partition

E"= (E)'U...OEY,

where E” is obtained from the lifting of E by removing (E"); i.e., by removing the
set of points which factor throu:gh the smooth locus of X”. Then, obviously, this
partition equals the canonical partition of E". Since 8(X", E") < 6(X, E), a second
induction on the length of such a partition yields a sequence of E"-permissible
blowing-ups X" —» X" with centers in non-smooth loci such that all points of E”,
when viewed as R*"-valued points of X", factor through the smooth locus of X™.

Then |
XINE —_ XII — X‘! — X

is a sequence of E-permissible biowing—ups as desired. O

Remark 3. If in the situation of Theorem 2 it is not known that the generic fibre
Xy is smooth, the assertion nevertheless remains true if the generic fibres of the
points in E factor through the sjmooth locus of X and have a bounded defect of
smoothness. Namely, these are the properties of E and Xx which are used in the

proof.

3.5 Weak Néron Models

In the following let X, be a smooth and separated K-scheme of finite type, and let
K" be the field of fractions of a strict henselization R of R. As a first step towards
the construction of a Néron model of X, we want to look for a smooth and
separated R-model of finite type, say X, such that each K*-valued point of Xg
extends to an R¥*-valued point of X. We will see that such R-models X of X even
satisfy certain aspects of the universal mapping property characterizing Néron
models.
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If X, admits a separated R-model X of ﬁnlte type such that the canonical map
X(R*") — X (K*) is bijective, we can apply Corollary 3.1/4 to get a smooth
R-model of the type we are looking for. For example, in the case of an abelian variety
X we can proceed in this way, since there is|a closed immersion X c, P} into a
projective space; we can take X to be the sch:ematic closure of Xy in P%.

If it is only known that X (K™) is bounded in Xy, and if no separated R-model
X of finite type such that X(R™) — X (K*") lis bijective is given in an obvious way,
we will consider a finite collection of separated R-models instead of a single one as
before. Using the flattening techniques of Rayllaud and Gruson [1], one can actually
show that there exists a single separated R-r}nodel X of finite type such that each
K"-valued point of X extends to an R"-valued point of X; we will give a sketch
of proof in Proposition 6 below. But, for our purpose, it is not necessary to make
use of this result, since we are mainly intercl:sted in group schemes X. Namely,
in this case, it makes no difference if we start with a finite collection of R-models,
since group arguments will help us later toj reduce to a single R-model. As the
second method is much more elementary, we will use it for our construction. We
begin with a definition characterizing the collect1ons of R-models of Xy we want

to work with.

" Definition 1. 4 weak Néron model of Xy is a lfinite collection (X;);<; of smooth and

separated R-models of finite type such that ec}zch K -valued point of Xy extends to
an R™-valued point in at least one of these R-rlwdels.

Theorem 2. Let Xy be a smooth and separatedlK-scheme of finite type. If X (K"} is
bounded in Xy, there exists a weak Néron model of Xg.

Proof. Since X (K**) is bounded in X, it follows from 1.1/7 that there exists a finite
family (X;);; of separated R-models of finite | ‘type such that each K**-valued point
of Xy extends to an R™-valued point in at least one of these R-models. Applying
Corollary 3.1/4 to each X;, we obtain smootll and separated R-models X/ of finite
type such that the R**-valued points of X’ and X; correspond bijectively to each

other. Hence (X7);.; is a weak Néron model olf Xx. (]

Weak Néron models satisfy a certain mappmg property which later leads to the
universal mapping property characterizing Neron models.

Proposition 3 (Weak Néron Property). Let (X )ier be a weak Néron model of Xy,
and let Z be a smooth R-scheme with zrreducz()le special fibre Z,. Furthermore, let
ug : Zg ---> Xg be a K-rational map. Then there exists an i € I such that uy extends

to an R-rational map u: Z ---» X,.

Proof. There is an open dense subscheme VK ‘c: Zyg such that uy is defined on V4.
Let F be the schematic closure of Fy := Z, — VK in Z. Since we are working over a
discrete valuation ring, F, is nowhere densq in Z,, and we may replace Z by
V := Z — F which is R-dense in Z. Thereby we may assume that uy is defined on
all of Z, and thus is a K-morphism Zx — X, k- Moreover, we may assume that Z

is of finite type.
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Consider the graph of u and denote its schematic closure in Z x X; by I'’. Let
p;:T-— Z and ¢;: " — X; be the projections. It is only necessary to show that,
for some i € I, the projection p; is invertible on an R-dense open part of Z. Then
u:=gq;op;*:Z-—-»X;is a solution of our problem. One knows from Chevalley’s
theorem ([EGA IV,], 1.8.4) that T, the image of I}} under p,, is a constructible
subset of Z,, and we claim that, for some i € I, the set T; must contain a non-empty
open part of Z,. To verify this, we may assume R = R*, and hence, that k coincides
with its separable algebraic closure. Then, by 2.2/13, the set of k-rational points is
Zariski-dense in Z,, and each z, € Z,(k) lifts to a point z e Z(R). Let zx € Z(K)
be the associated generic fibre, and set xy := uy(zg). By the definition of weak
Néron models, there is an index i € I such that x; extends to a point x € X;(R).
Consequently, we must have (z,x) € I"(R) and thus z, € T!(k). This consideration
shows that ( J;.; T (k) is Zariski-dense in Z,, and, since all T;} are constructible and
I is finite, that there is some T containing a non-empty open part of Z,.

Fixing such an index i € I, let us consider the projection p; : I* — Z. The local
ring 0, , at the generic point 5 of Z, is a discrete valuation ring. Furthermore, as
we have seen, there is a point ¢ e I' above #. Thus O« . dominates 0y ,.. Since p; is
an isomorphism on generic fibres and since I' is flat over R, both local rings
give rise to the same field as total ring of fractions so that @, , — O ; is an
isomorphism. Since Z and I" are of finite type over R, there exist open neighbor-
hoods U of 7 in Z and V of ¢ in I" such that p; induces an isomorphism between
U and V. Hence p; is invertible over an R-dense open part of Z. - O

Corollary 4. Let Z be a smooth R-scheme, and let { be a generic point of the special
fibre of Z. Denote by R’ the local ring O of Z at { and by K' the field of fractions
of R'. If (X;); <y is a weak Néronmodel of X, then(X; ®g R');is aweak Néron model

of Xy ®¢ K

Proof. Since the strict henselization of R’ is a direct limit of étale extensions of R’,
it suffices to show that, for any étale Z-scheme Z', for any point {' of Z’' above {,
and for any K'-rational map uy. from Zy. to Xy, there exists an index i € I such that
ug- extends to a rational map u’ : Z' ---» X; which is defined at {’. Since ¢’ is a generic
point of the special fibre of Z', the assertion follows from Proposition 3. O

In the situation of Proposition 3, one cannot expect, in general, that the
R-rational map Z ---» X is a morphism if Z ---» X is a morphism, even if the weak
Néron model (X;),.; of X consists of a single proper R-model of Xj. In particular,
weak Néron models fail to be unique, even if one restricts to the class of weak Néron
models consisting of a single R-model of Xj.

Example 5. Set Z = X = P, the r-dimensional projective space over R, and consider a K-isomorphism
Uy Zy =5 X; ie, a K-automorphism uy : Py = P%. Using a set of homogeneous coordinates x,, ...,
x, of P, we can describe ug by .

xl—-—rZauxJ, i=0,..,r,

where A := (ay) is a matrix in Gl,,(K). We may assume that all coefficients a; belong to R. Then, by
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the theory of elementary divisors, there are matrices S, T € Gl,; (R)and integers 0 <np <...<n, such

that
e 0

SAT =
1] '

Hence there exist sets of homogeneous coordinates X, . .., X, and Xg, .. ., x/ of P% such that uy is described
by

X WX, i=0,..,r,
where we may assume ng = 0.
Ifng =...=n, = 0, it is clear that uy : Px =Pk extends to an automorphism u: Py = P%. How-
ever,ifng = ... = n;=0and nyq,..., n, > Oforsomes <, then u, extends only to an R-rational map

u: Py --> P%. Namely, u is defined on the R-dense open subscheme ¥ = P, which consists of the generic
fibre [P}, and of the open part ¥, = P} complementary to the linear subspace Q, where xo, ..., X, vanish.
In fact, if @ is the linear subspace in P} where x;.4, ..., x! vanish, we can view u, as a projection of P}
onto @ with center Q.

Finally, as indicated at the beginning of this section, we want to show how, for a separated
K-scheme Xy of finite type, one can always find a single separated R-model X of finite type such that
X(R®*) — X (K" is bijective. The key fact which has to be established is the following result:

Proposition 6. Let Xy be a separated (not necessarily smooth) K-scheme of finite type. Let X,, ..., X, be
separated R-models of Xy which are of finite type. Then there exist a separated R-model X of finite type
of Xy and proper morphisms X;— X, i=1,...,n, consisting of finite sequences of blowing-ups with
centers in the special fibres such that the given isomorphisms

X®KSX®K
extend to open immersions Xi < X.

Thus, using the valuative criterion of properness, we obtain the desired characterization of bounded-

ness.

Corollary 7. X((K*™) is bounded in X if and only if Xy admits a separated R-model X of finite type such
that each K*-valued point of Xy extends to an R®-valued point of X.

Before starting the proof, let us list some elementary facts we will need. Let U, U’, ¥, V' be separated
and flat R-schemes of finite type and, for shortness, let us refer here to an R-morphism W—U as a
blowing-up if it is a finite sequence of blowing-ups with centers in the special fibres; note that W is

separated, flat, and of finite type if U is.

(a) Let U'— U be a blowing-up, and let U < V be an open immersion. Then there exists a
blowing-up V' — V such that U’ — U is obtained from ¥’ — V by the base change U <» V.

Just extend the center of the blowing-up U' — U to a subscheme of V' and define V' by blowing up
this subscheme in V.

®) U —U,i=1,2,are blowing-ups, then there exists a commutative diagram of blowing-ups

v — U

uy — U.

Namely, if U/ — U is the blowing-up of the ideal .%; of @y, i = 1,2, then define U as the blowing-up
of 4, £, on U. Note that U'" is isomorphic to the blowing-up on U of the pull-back of # under U; — U
and to the blowing-up on U} of the pull-back of .%, under U — U.
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(c) Let f:U—>V be a flat R-morphism such that fi is an open immersion. Then f is an open
fmmersion.
Let us justify the latter statement. Since f is open, we may assume f faithfully flat. Furthermore, it
is enough to show that f is an open immersion after faithfully flat base change. So we may perform the
base change U — V and thereby assume that f has a section e. Then it is to verify that & is an
isomorphism. We know already that ¢ isja closed immersion, since f is separated. Thus we have the

canonical surjective map
o:0p— 6,0y .

Since fy is an isomorphism, the kernel of « ® K vanishes. But 0y is flat over R, so the kernel of o must
vanish identically. Then « is an isomorphism and, hence, ¢ is an isomorphism.

Finally we mention the technique of flattening by blowing up which will serve as a key point in the
proof of Proposition 6; cf. Raynaud and Gruson [1], Thm. 5.2.2.

Let f: U — V be an R-morphism such that fx is flat. Then there exists a blowing-up V" — ¥ such
that the strict transform f*: U —» V" of fiis flat.

Here U' is the schematic closure of Ug in U x, V" (the strict transform of U), and f” is the restriction
. . |
of f xy idy to U'. ]

Now let us give the proof of Propositiajn 6. By an induction argument, one reduces to the case where
only two R-models X; and X, are given. Denote by I" the schematic closure of the graph of the
isomorphism X; ® K = X, ® K in X 1| Xg X,. Applying the flattening by blowing up, there exist
blowing-ups X; — X;, i =1, 2, such tHat the strict transform p;:T7 — X; of the i-th projection
p;: T — X; is flat. Notice that the canonical map I} — I’ is a blowing-up, too. Then, by (c), the map
p/ is an open immersion and, by (b), there is a commutative diagram of blowing-ups

" — I3

r,—— T.

Furthermore, since p; : I} — X is an open immersion, there exists a blowing-up X; — X; such that
" — T is obtained from X; — X; by restriction to I7; see (a). Then I'” — X{ is an open immersion,
and we can glue X7 and X along I'". Th;ereby we obtain an R-model X of Xy which is of finite type,
and which contains X% and X} as open subschemes. Moreover, X is separated. Namely, let I'* be the
schematic closure of the graph of the ismjnorphism X'® K = X3 ® K in X7 x X3. Since I is flat
over R, the canonical isomorphism I'” ® K ~— T'* ® K extends by continuity to a morphism I — I'*.
Similar arguments show that the canonﬁcal morphism I'* ® K — I'® K extends to a morphism
T* —» I. Then, due to its construction, the morphism I'" —T° is proper, and it follows from [EGA
I], 5.4.3, that T — I'* is proper. Thus I is closed in T* and hence closed in Xj x X3. Thereby it is
seén that X is separated over R. i O

3.6 Algebraic Approximation of Formal Points

Apart from its importance for the construction of Néron models, the smoothening
process is also a necessary tool for the proof of M. Artin’s approximation theorem,
which will be the subject of this section. As a first step, we have to show that a
smoothening X’ — X of an R-scheme X satisfies the lifting property not only for
R’-valued points, where R’ is étalfe over R, but even for a larger class of extensions
R'/R. For example, we are concerned with the case where R’ is the m-adic
completion R of R. |
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Definition 1. A flat local extension R — R of discrete valuation rings is said to have
ramification index 1 if a uniformizing element 7 of R induces a uniformizing element
of R, and if the extension of theresidue fzeld sk' = R'/nR’ over k = R/nR is separable.

Recall that an extension of fields k'/k is separable if and only if k' ® ! is reduced

for all fields ! over k; cf. Bourbaki [1], Chap. VIII, § 7, n°3.
To illustrate the definition, we mention that the n-adic completion R of R has

ramification index 1 over R. Furthermore,|if R’ is essentially of finite type over R,

it has ramification index 1 over R if and| only if R’ is a local ring of a smooth
R-scheme at a generic point of the special fibre. In this case, R — R’ or, better, the
morphism Spec R’ — Spec R is regular in the sense of [EGA1V,], 6.8.1. The class
of ring extensions of ramification index 1 lis stable under the formation of direct
limits and completions.

If R — R’ has ramification index 1 and if, in addition, the extension of fields of
fractions K'/K is separable, the extension R'VR is regular. For example, the extension
R/R is regular or, equlvalently, the extension of fields of fractions Q(R)/Q(R) is
separable, if and only if R is excellent (cf. [EGA 1v,], 7.8.2).

Lemma 2. Let R be an excellent discrete val‘uatzon ring. If R — R’ has ramification
index 1, then R — R’ is regular. In particular, since the completion of R’ is of

ramification index 1 over R, it follows that R’ is excellent.

Proof. Let K (resp. K') be the field of fractlons of R (resp. R'). We have only to prove
that K’ is separable over K. So we may asspme p = char K > 0. It suffices to show
that L ® K' is reduced for each finite radicial extension L of K; cf. [EGA 1V,],
6.7.7. Let us first consider the case where the extension L/K is radicial of degree p.

Since R is excellent, the integral closure R of R in L is an R-module of finite type (cf.

[EGA 1V,], 7.8.3) and, hence, a free R-moJiule of rank p. Moreover, R is a discrete
valuation ring. So let k be the residue ﬁeld‘of R. If the degree of k over k is p, then
7 is a uniformizing element of R, and R ®¢ R'/(n) is isomorphic to k ®, k'. The latter
is a field, since k' is separable over k and smce k is radicial over k; hence R ®g R’
is a discrete valuation ring with uniformizing element . If k = k, the p-th power of
a uniformizing element % of R gives rise to a/uniformizing element of R, and R ®g R’
is a discrete valuation ring with uniformizing element 7 ® 1. In both cases, R®x R

is a discrete valuation ring. Considering its field of fractions, it follows that L ®x K

is reduced. Since a finite radicial extension can be broken up into radicial subexten-

sions of degree p, the same assertion remains true for arbitrary radicial extensions

Lof K. O

We mention that the ring of integers Z as well as all fields are excellent and that
any R-algebra which is essentially of finite type over an excellent ring R is excellent;
see [EGA IV,], 7.8.3 and 7.8.6.

We want to show that smoothenings arc compatlble with ring extensions R'/R
of ramification index 1. In order to do this, certam parts of the smoothening process
have to be generalized. So let X be an R- scheme of finite type, and let R'/R be a ring
extension of ramification index 1. Let a b¢ an R’-valued point of X such that its
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generic fibre ag factors through the smooth locus of the generic fibre X. Then, as
in 3.3, we set

8(a) := length of the torsion part of a*Qj/p -

Without changes, the proof of 3.3/1 shows that d(a) = 0 if and only if a factors
through the smooth locus of X. Furthermore, the key proposition of the smoothen-
ing process remains valid:

Proposition 3. Let Y, be the schematic closure of a; in X,. Let X; — X be the
dilatation of Y, in X, and denote by a' the (unique) lifting of a to an R'-valued point
of X.. Then 6(a’) < max{0,6(a) — 1} .

Literally the same proof as the one of 3.3/5 works in this case; namely, one has
only to observe the fact that g, factors through the smooth locus of the k-scheme
Y,. Since Y, is geometrically reduced, the generic point of Y, which is a,, is contained
in the smooth locus of the k-scheme ¥;; cf. 2.2/16. Applying Proposition 3 finitely
many times, one obtains an analogue of 3.1/3.

Proposition 4. Let X be an R-scheme of finite type, and consider an extension R'/R
of ramification index 1. Let a be an R'-valued point of X such that ag factors through
the smooth locus of Xx. Then there exists an R-morphism X' — X, which consists
of a finite sequence of dilatations with centers in special fibres, such that a lifts to an
R'-valued point of X' which factors through the smooth locus of X'.

Proposition 4 enables us to show that smoothenings are compatible with ring
extensions R'/R of ramification index 1. One has only to justify the following fact.

Lemma 5. Let X be an R-scheme of finite type with smooth generic fibre,let X' — X
be a smoothening of X, and consider an extension R'/R of ramification index 1. Then
each R'-valued point a of X lifts to an R'-valued point a’ of X' which factors through
the smooth locus of X'. v

Proof. Due to the properness of X' — X, the point a € X(R’) lifts to a point
a’ e X'(R’). Due to Proposition 4, there exists a finite sequence of dilatations
¢: X" —> X' such that ¢ is an isomorphism on generic fibres and such that the
(unique) lifting a” of a’ factors through the smooth locus of X”. Since the schematic
closure A} of a; in X}, is geometrically reduced and, hence, generically smooth over
k by 2.2/16, the set of those closed points x € A7 N X0 Which have a separable
residue field k(x) over k is dense in Aj; cf. 2.2/13. Since all these points lift to
Re*.valued points of X", the image of g{ in X', which equals a;, is contained in the
smooth locus of X’ (because X' is a smoothening of X). O

Corollary 6. Let X be an R-scheme of finite type with a smooth generic fibre, let
X' — X be a smoothening of the R-scheme X, and consider an extension R'/R of
ramification index 1. Then X' ®g R' — X ®g R’ is a smoothening of the R'-scheme
X®z R.
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Proof. Since R — (R')™ has ramification index 1, the assertion follows from
Lemma 5. O

Using the preceding result and the existence of Nagata compactifications (Nagata
[1] and [2]) for separated schemes of finite type over R, we can generalize 3.5/4 and
show that weak Néron models are stable under extensions R'/R of ramification
index 1. As usual, fields of fractions are denoted by K, residue fields by k, and strict
henselizations by an index “sh”.

Proposition 7. Let Xy be a smooth K-scheme of finite type admitting a weak Néron
model (X,);.,; over R. Let R'/R be of ramification index 1. Then X;®g R')ierisa
weak Néron model of Xy over R'.

Proof. Using 3.5/6, one easily reduces to the case where the index set I consists of
a single element. So let X be a smooth and separated R-model of finite type of Xy
such that the canonical map X (R*") — X (K*")is bijective, and consider a K'-valued
point of Xy; ie., a K-morphism ay: Spec K' — Xy. We have to show that ag
extends to an R-morphism a : Spec R’ — X. In order to do this, let X be a Nagata
compactification of X. The latter is a proper R-scheme containing X as a dense
open subscheme. Since X is flat over R, we see that X is dense in X and, hence,
that X is dense in X.

By the properness of X, the morphism ay extends to an R-morphism
a:Spec R’ —> X such that the image of the generic point of Spec R’ is contained in
X and, thus, in the smooth locus of Xy. So we can apply Proposition 4 and thereby
find a finite sequence of dilatations X’ —> X with centers in special fibres such that
a lifts to an R’-valued point @’ of the smooth locus of X". Similarly as in the proof
of Lemma 5, let 4, be the schematic image of the special fibre of @’ in the special
fibre of X". Since A, is generically smooth over k, the set E, of its closed points x;
which have separable residue field k(x,) and which belong to the smooth part of X’
is dense in A,.

All points x, € E, lift to R*"-valued points of X’ by 2.2/14, and we claim that the
liftings can be chosen in such a way that their generic fibres factor through Xy.
Namely, as in the proof of 2.2/14, one uses the Jacobi Criterion 2.2/7 in order to
construct local coordinates g, ..., g, in a neighborhood U = X' of x, which, on
the special fibre, generate the ideal of x,. The g; give rise to an étale morphism
g: U —— A%. Since the image of Xy — Xy under g is thin in A, it follows that x,
can be lifted to a point x € X’(R**) whose generic fibre belongs to X, x(K*) as claimed.

Now, composing each such x € X'(R**) with the morphism X' — X, we obtain
a set of points F < X(R*") whose generic fibres belong to Xy and whose special
fibres are dense in 4,. But then, since X is a weak Néron model of Xy, we
must have F < X(R*"), and it follows that the generic point of 4, belongs to X.

Consequently, the R-morphism @: SpecR' —» X factors through X giving rise to-

the desired extension of ay : Spec K — Xj. (]

For the remainder of this section, we will be concerned with approximation
theory. Let.A be a local noetherian ring with maximal ideal m, and denote by A its
m-adic completion. We say A satisfies the approximation property if, for each
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A-scheme X of finite type and for each A-valued point 4 of X, there exists an
A-valued point a of X such that the diagram
Spec A > Spec A/mA
a f

X | e Spec 4

<

Spec A

is commutative. Since A is hensjelian, it is clear by Definition 2.3/1’ that A is
henselian if it satisfies the approximation property. Morever, if A is henselian, we
see from 2.3/5 that, for each A-valued point 4 of X which factors through the
smooth locus of X, there exists aﬁ A-valued point of X which coincides with 4 on
Spec A/mA.

Using the smoothening process, it is easy to verify the approximation property
for discrete valuation rings which are henselian and excellent, as can be seen from
the following proposition. :
Proposition 8. Let R be an excellent} discrete valuation ring, and let R be its completion.
Furthermore, let X be an R-scheme of finite type, and let ¢ be an R-valued point of
X. Then there exists a commutative diagram of R-morphism

|
"
X'=..

=

Spec

where X' is smooth over R.

Proof. We may assume that ¢ is schematically dense in X. Since R is excellent, the
generic fibre Xy is geometrically reduced and, hence, smooth at the generic point;
cf. 2.2/16. So oy factors through the smooth locus of Xy and the assertion follows
from Proposition 4. O

Corollary 9. Let R be a discrete valuation ring which is henselian and excellent. Then
R satisfies the approximation property.

In the following we denote by K the field of fractions of R. If X is a K-scheme
which is locally of finite type, we can provide Xg(K) with the canonical topology,
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which is induced by the valuation on K. We claim that this topology coincides with
the one generated by all images of maps X (R) — X(K), where X varies over all
R-models of Xy which are locally of ﬁnit}e type over R. Namely, each R-model U
of an open subset Uy = X induces an R—‘gnodel X of Xy by gluing U and Xy over
Uy. Since X(R) = U(R), it is enough to check the equality of the topologies for an
affine K-scheme Xy, say Xy = Spec Ag. Inlthis case, a basis of the topology of X «(K)

induced by the valuation of K is given by|the family of subsets of type
U(gys...,9,) = {x & Xg(R) ;| x*(g;)eRfori=1,...,r}
where g4, ..., g, € Ax. Without loss of generality, we may assume that gis -5 Gr

generate Ay as a K-algebra. Then consider the R-model X = Spec 4 of Xy, where
A is the image of the R-morphism

R[T,...T1—Ac, Ty,

It follows that U(g,,...,g,) is the image of X(R) — X(K). Conversely, let X be
an R-model of locally finite type of X! It remains to show that the image of
X(R) — Xg(R)is open in Xx(K). We may assume that X is affine, say X = Spec A.
Let hy, ..., h, generate A as an R-algcbra‘ and denote by g; the pull-back of h; to
Xy. Then the image of X(R)— Xy (K) Lcoincides with the set U(gy,...,g,) (as

defined above) and, hence, is open in X(K).

Corollary 10. Let R be a henselian discretej valuation ring and let Xy be a K-scheme
which is locally of finite type. Assume eithe:r that R is excellent or that Xy is smooth.
Then Xy(K) is dense in Xg(K) with respect to the topology induced by the valuation
of K.

Proof. 1t suffices to show that each R-moidel X of Xy which admits an R-valued
point admits an R-valued point. But this follows from Corollary 9 if R is excellent,
and from Proposition 4 if X is smooth. | ) 0

There are examples of discrete valuati}on rings which are henselian, but which
do not satisfy the approximation property; see the example below. Such rings cannot
be excellent. In fact, it is easy to show that a discrete valuation ring R is excellent

if it satisfies the approximation property. Thus, the approximation property for R
is equivalent to the fact that R is henselian and excellent.

Example 11. Let k = F, be the prime field of characteristic p > 0, and let A be the localization of the

polynomial ring k[ T] at the maximal ideal generate:

d by T. The completion A of A with respect to T is

the ring k[[T]] of formal power series. Looking at the cardinality of k[[T]] (resp. of k[ T]), it is clear

that the extension k((T))/k(T) of the fields of fraction

s is not algebraic. So pick an element ¢ € A which

is not algebraic over k(T). Set U = £P, and let L be the field generated by T and U over k. Now define

R as the intersection of L with A. Then R is a discrete
k[[T]]. Furthermore, K = Q(R) is not separable ove
The henselization R" of R can be viewed as the set of al
over K. In particular, ¢ is not contained in R*, an

approximation property.

valuation ring whose completion R coincides with
r K = Q(R) since £ € K — K. So R is not excellent.
1 elements of k[[T]] which are separably algebraic
1 it is easily verified that R* does not satisfy the
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Next we want to generalize Propositibn 8 to the case where the base consists of
a polynomial ring over an excellent discrete valuation ring. The resulting assertion
will be crucial in the proof of M. Artin’s approximation theorem.

Theorem 12. Let R be an excellent discrete valuation ring, and denote by R its n-adic
completion. Let Ty, ..., T, be variables, and set

S =SpecR[Ty,...,T,],

§ = SpecR[[T;,..., T,1] .

Let X be an S-scheme of finite type, and let o be an S-valued point of X. Then there
exists a commutative diagram of S-morphisms

th <

where X' is smooth over S.

The proof is done by induction on the number n of variables Ty, ..., T,. The case
n = 0 is settled by Proposition 8. So let n > 0. We may assume that X is a closed
subscheme of AY and that X is defined by global sections of Ony, sy

X =V(fi,--. /) = AY;

the coordinate functions of AY will be denoted by Y;,..., Yy. Let 5 (resp. 7)) be the
generic point of the special fibre of S (resp. S), let § be the closed point of S, and let
s be its image in S.

In order to carry out the induction step, we will establish three lemmata, the
first and the third one under the assumption of the induction hypothesis; i.e., under
the assumption that Theorem 12 is true for less than n variables.

Lemma 13. Let f; be a global section of Ony such that o*f, does not vanish at #.
Then there exists a commutative diagram of S-morphisms

i
Mool

i Y

i hc

1 S

It "‘\l/:
i DNy
¢ e

g s

th
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such that V' is smooth over S and such that t*f, divides each %, i=1,...,1,in
r,o0,).

In the proof of the lemma, we will use WeierstraB division for the formal power
series ring R[[Ty,..., T,11; cf. Bourbaki [2], Chap. VII, §3, n°8. Let us first recall
some basic facts of this theory. An element f € R[[T....., T,1]is called a Weierstraf3
divisor in T, of degree d = 0 if the coefficients a, € R[[T},.-.,» Tn-11] of the power
series expansion

f= i a, Ty
satisfy the conditions “0
1)) a;is a unit in R[[T,.... T4 1],
V)] aﬁe(n,TI,...,’E,_l)foré=0,...,d—1.

An element of R[[T%,..., T,]]is called a Weierstraf3 polynomial in T, of degree dif
it is 2 monic polynomial in T, of degree d with coefficients in R[[T;,..., T,-1 1] and
ifit is a WeierstraB divisor in T, of degree d. Note that an element f € R[[T,..., T,1]
is 2 WeierstraB divisor in T, of degree d if and only if the reduction of f modulo 7,
as an element of k[[T,,..., T,1], is a Weierstral divisor in T, of degree d. Since R
is complete, the WeierstraB division theorem for k[[T5,. .., T,]] lifts to a division

theorem for R[[T,,-.., T, 1T

If fe R[[Ty,-.., T,1] is a Weierstrap divisor in T, of degree d, then R[[T;,..., T,1]
decomposes into a direct sum

d-1
() R[[T,....T1] = Q R[[Ty,.... o T @ RIL T, TS

of R[[T3,..., T,y 1]-modules. F urthermore, f can be written as a product of a unit in
R[[T.,...,T,1] and a Weierstraf3 polynomial of degree d.

The last assertion follows easily if one applies the decomposition (¥) to the
element T2, say

Ti=Y a7 +uf.

=0
Then u is a unit, and
d—1
d ']
p=T1;— Z a;T,
=0

is the WeierstraB polynomial we are looking for. Further, we want to mention that,
for each element f € R[[T;,. .., T,]] which does not vanish identically modulo =,
there exists an R-automorphism ¢ of R[[T;,..., T,1] of type

T,— T,
T— T+ Tk, i=1..,n—-1,

such that @(f) is a WeierstraB divisor in T, of some degree d > 0.
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Proof of Lemma 13. I 6*f5 is a unit, then f; is invertible in a neighborhood of a($)
and, hence, the assertion is obvious. So we may assume that o*f, is not a unit. Since
o*f,, does not vanish at 4, there exists an R-automorphism of R[[Ty,..., T,]] of type

LT, TroT+T¢, i=L..,n-1,

such that o*f, will be transformecii by this automorphism into a WeierstraB divisor
of degree d > 1. So we may assume that o*f, is a WeierstraB divisor of degree d > 1.
Then o*f, can uniquely be written as

oc*fo=1"p

with a Weierstral3 polynomial
p=T +aj T + ...+ aye R[[Ty,..., T, J1[T]

of degree d and a unit 4 in R[[T,,..., T,]]. The WeierstraB division theorem yields

~ a decomposition of R[[Ti,..., T,]] into a direct sum

d—

=

(¥) RI[T;,....T,]]1= [[T.... T, JITZ ® RI[T,,..., 111D

o

of ﬁ[[T!, ..., T,y ]]-modules. We will use the decomposition () in order to make
the application of the induction hypothesis possible. First we want to construct an
auxiliary S-scheme V as a subscheme of AY’, where ‘

N =N-d+d+N.

Il
(=]

Let
Y5 v=1...,N, 6=0,...,d—1,

As; 0=0,...,d-1,
..N,
"so that AY = Spec R[T,, Y,5, 45, Z,]. Consider

Z,; v=1

v

Wi e

be the coordinate functions of A
the polynomial

p=T + A, T +...+ 4,
and define an S-morphism 7: A} — A by setting
ox =5 v 2
for v =1, ..., N. Then Euclid’s division yields unique decompositions
(%) r*ﬁ=:;1)fi‘;‘7;,"+q,~'p, i=0,...,r,

in Oy where fj; is independenr‘ of T, for all i and 6. Furthermore, each f;; is
independent of Z,, ..., Zy by the definition of 7. Thus we have

Denote by 8 (resp. §') the spectrt{m of R[T,,..., T, ] (resp. R[[T},..., T,—111), set
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N'=d'N+N,
and regard the above ring R[T,, K,,,,,A,,,j as the ring of global sections of Opy-..
Then the inclusion
RIT, Yy, A1 < RITys Vg A 2,1
where on the left-hand side y runs from 1 to n — 1 and on the right-hand side from
1 to n, defines a projection

p:AY — AN
Consider now the closed subschemes
W=V, cAY', and
30, d—
V=V,  <AY.
5=0,.1.d—1

Then V is the pull-back of W by the map|p. So V is isomorphic to A%, and T,,

Z,,...,Zycan be viewed as coordinate functions of A}*1. Due to the decomposition
-(x), for each v we obtain a representation

pv = O-*Yv = }'C +£vﬁ s

where
d—1
=2 meT
=0 .
with y,; € R[[Ty,..., T,_,11 and %, e R[[T;,..., T,]1]. Then define an §’-morphism
@8 — AY
by setting

()*Yys=y,; for v=1,...,.N, 6=0,...,d—1,
(¢p)*A4; =a; for 6=0,...,d—1.

Furthermore, consider the S-morphism

¢:§—AY
defined by |
0,....,d—1,

O*Yu=v; v=L..,N, &

Q*A; = ay; 6=0,...,d—1,
¢*Zv=2v; V=1,...,N.

Then we have o = 7 0 ¢, @*p = p, and ¢*ﬁ5 = (@')*f;; for all i and 4. In order to
see that ¢’ factors through W, one considers Taylor expansions of

oMy = i) = Ky +2B),
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thereby obtaining
o*f; = fi(y') modp-R[[T,,...,T,]], i=0,..,r.
Since o*f; =0fori=1,...,r, it follows
f(y)=0 modp-R[[T,...,T,]]
for i > 0. Moreover, since p and o*f, differ by a unit in R[[T;,..., T,]], we have
f(y)=0 modp R[[T,..., ;1]

for i = 0, too. On the other hand, using (*+) we get relations
d—1 d—1
o¥f; = p*c¥f; = o* (620 for T+ qi-p) =X @V T+ di°b

fori=0,...,r, where §; € R[[T},..., T,]]. Then, since o*f; = 0 mod p, the direct
sum decomposition (+) implies (¢')*f;; = O for all i and all é. So ¢’ factors through
W, and the induction hypothesis can be applied. Thus there exists a factorization
of ¢’ into S"-morphisms

r
W
TN
' RN
i .
’
| ¥
1 \\
v ’ ™,
W g
S

where W’ is a smooth S'-scheme. By base change we obtain from W’ the smooth
S-scheme W” = W’ xg. S and, hence, the smooth S-scheme

r — AN _ AN+1
V' =AY = AN

where Z,, ..., Zy give rise to a set of coordinates of AY... Furthermore, we can
define an S-morphism

V:S—V
(over §' — W) by setting
U*Z, =2, for v=1,...,N.
Then there is a commutative diagram of S-morphisms
Ay «——V «— V'

4 @ v

S < S .

The map V — AY is induced by t; let us call it 7, too. It remains to show that ™*f
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divides t*f;,i=1,...,7, atleast locally at @(8). Due to the definition of V, it suffices
to know that the factor g, defined by the relation (#+) is invertible at ¢($). But this
is clear. Namely, the equation

i-p = oy = ¥ty = ©*(qo) P
shows that ¢*(go) = @ is a unit in R[[T},..., T,11. |

We will apply the preceding lemma in the situation where f, is the square of a
maximal minor of the Jacobi matrix

%;
J= : .
(aYv> \l/:i ..... 4

.....

Before this can be done, however, we have to justify the following reduction step.

Lemma 14. It suffices to prove Theorem 12 in the case where X, at the point o(#}), is
smooth over S of relative dimension N —m and where X, as a closed subscheme of

AY, is defined by m global sections Sis-oos fuof Ony.

Proof. Replacing X by the schematic image of ¢, one may assume o to be schemati-
cally dense in X. Since the fields of fractions of R[[Ty,..., T,]]and of R[Ty,..., T,]
are separable over each other (cf. [EGA 1V,], 7.8.3), the generic fibre of X is
geometrically reduced and, hence, generically smooth over S. Denote by A the local
ring of S at 7 and by A’ the local ring of § at #. The extension A — A’ is regular,
and 7 is a uniformizing element of A and of A". Set T = Spec A and T' = SpecA.
Then ¢ induces a T'-valued point oy of X7 = X xg T. Since the generic point ¢’ of
T'is mapped to the generic point of Xy and since the generic fibre of X r is generically
smooth over T, Proposition 4 shows the existence of a commutative diagram

where X} is smooth over T and where X7 —» X is constructed as a finite sequence
of dilatations with centers in the special fibres. Using a limit argument, we may
assume that X}, — Xy is induced by the base change T — S from an S-morphism
X' —> X which is constructed in the same way; namely, we can extend the centers
of the blowing-ups to closed subschemes which do not meet generic fibres. Due to
the construction of X', Proposition 3.2/1 implies that ¢ lifts (uniquely) to an
R-morphism ¢’ : S — X' which induces o} : T' — X7. Obviously, ¢’ is an
S-morphism. Thus we may assume that X is smooth over S at ¢(#), say of relative
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dimension N — m. Due to 2.2/7, we may assume that f;, ..., f., define X as a
subscheme of Af at o(f). Now consider the closed subscheme V < AY given by f;,
., fn- Then X < ¥, and both coincide in a neighborhood of o(#). In particular, the
morphism § — X factors through V. Since smooth S-schemes are locally integral,
we may replace X by V. Namely, if V' —V is an S-morphism from a smooth
S-scheme V' to V such that S —‘> V factors through V' — V, we can assume that
V' is integral. Then there is aniopcn dense subscheme V" — ¥’ which is mapped
into X, and it follows that the map V' — V must factor through X because V' is

integral and because X is closed in V. O

Thus we may assume that X | as a closed subscheme of AY, is defined by m global

sections, say
X

and that the determinant

>

does not vanish at o(#); cf. 2.2/

= V(fiseresfu) = AY,

af;
= det <ﬁ>l =1,..., m

Jj=i,...,m

7. We will now finish the proof of Theorem 12 by

establishing a third lemma; see Bourbaki [2], Chap. III, §4, n°5, for a similar

statement.

Lemma 15. Consider a situation
fo = A% Then there exists a dia

V/

|

as in Lemma 13. Assume that X is as above and that
gram

v
; \a\‘\ .
A S — — S
AN

where X' — V' is étale; in part

cular, X' is smooth over S. Except for the square in

the upper left corner, the diagram is commutative.

Proof. In the following, we writ
indicates the transpose. On V' ¥

(+)
with a column vector a’ = (a},.
A,, ..., A, the (m x m)-minors 0

=

e f for the column vector (f},..., f,)'; the index ¢
¢ have a relation

o*f = 1*A2-a’

.,a.,) of global sections of @.. Denote by A, = A,

.....
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Due to Cramer’s rule, there exist (N x m)j-matrices M,, A=1, ..., I, with global
sections of Uy as entries such that
(%) JM,= A;. ™

I,is the (m x m)-unit matrix. We will construct X" as a subscheme of AL¥. So denote
by Z,,, A=1,...,Lv=1,...,N, the coordlnate functions of A5M. Let Z;, be the
column vector (Z FPT4 m)‘ A Now consider the S-morphlsm

: A’V,” ———> A¥
given by
*Y = 121:1 ‘c*A%'Zm + *Y
where Y is the column vector (Y,..., Yy). By Taylor expansion we get an equation
p*f =¥ + Zl: ‘L’*A,.'T*J'Z(L) + 1::;1 T*A).'T*Au"I(A,p)

with certain column VeCtors gz, ,y = (@au1s---»daum)- Each g, is a polynomial in
the variables Z,, with global sections of (9,, as coefficients, and each monomial of

g, has degree > 2. Using (+) and (x), we can write
¢ = t*A - (T¥A - ,,,)-Ea =1*A-7*J - q,
with
) = T*]‘jll a

Furthermore, we have

]
Y A =T 4
n=1 |
with |
Lo
A= Y, TM, qu,, -
p=1
Setting ag;, = 0for A =2, ..., |, we see
1
p¥f = ,121 A ¥ [y + Zay + 4w -
Then let X’ be the closed subscheme of ALY which is defined by the global sections

agy + Zoy + 4y, A=1,...,1.

Due to 2.2/10, the projection X’ —» V" is étale along the zero section of ALY — V.
Obviously, the morphism X’ — A¥ induced by p factors through X. Since o*A is
not a zero divisor, the relation

0 = o*f = o*A2-y*a’

implies Y*a’ = 0 and, hence, Y*a(;, = 0 for A =1, ..., L. Thus, the zero section of
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ALY induces a lifting ¢ of y. Replacing X" by the étale locus of X' — V7, the
assertion of the lemma is clear. =

Thereby we have finished the proof of Theorem 12. The statement of Theorem
12 was announced by M. Artin in [8]. Its proof, given in terms of commutative
algebra, has been published recently by M. Artin and C. Rotthaus; cf. Artin and
Rotthaus [1]. The method of proof is similar to the one used in Artin [4], where
it is shown that the henselization of R[T,,..., T,] at (n, Ty,..., T,) satisfies the
approximation property. In fact, the latter result can be obtained as a consequence
of Theorem 12.

Theorem 16. (M. Artin). Let R be a field or an excellent discrete valuation ring, and
let A be a henselization of a local R-algebra A, which is essentially of finite type over
R. Let m be a proper ideal of A, and let A be the m-adic completion of A. Then, given
a system of polynomial equations

fY)=
where Y = (Y,,..., Yy) are variables and f = (f1,...,f,) are polynomials in Y with

coefficients in A, given a solution 9 = (9,,..., y) € A" and an integer c, there exists
a solution y = (y4,...,yy) € A" such that

y, =9, modmA4
forv=1,...,N.

Proof. Following M. Artin, we will reduce the assertion to the special case where
Ay is the localization of R[ T, ..., T,] at the point (r, T;,..., T,) of SpecR[T,,..., T,],
where the integer ¢ is 1, and where the ideal m is the maximal ideal of A. In this
case, the assertion is an easy consequence of Theorem 12. So let us start with the

reductions.
One may assume that m is the maximal ideal of A and that the integer c is 1.

‘Namely, there exist elements a,e 4 such that

$,=a, modm‘-A4

forv=1,..., N.Letmy, ..., m, be a system of generators of m‘. Then there exist
elements J,; of A such that '

t
- z ﬁv]mj= 0 .
Jj=1
Let
a—z vj JEA[Y’ v_)]v =1 N
J=10

and consider the system of polynomial equations given by f,, ..., fi g1, ---» gy in
the variables (Y,.) and (Y,.;). This system has the solution ((9,), (§,;)) over A, and
any solution of this system lying in A4 gives rise to a solution of the required type
of the system we started with.
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We may assume that R is a discrete valuation ring and that the maximal ideal
m of A lies over the closed point of Spec R. Namely, if R is a discrete valuation ring
and if m lies over the generic point of R, we can replace R by its field of fractions.
If R is a field, we can replace it by the power series ring R[[T]], and view 4 as an
R[[T1]-algebra by sending T to zero. Since R[[T]] is excellent, this reduction is
permissible.

We may assume that the residue field k' = A/m is finite over k = R/nR. Since
A, is essentially of finite type over R, the field k' is finitely generated over k.Letd
be its degree of transcendence. Then there exist elements z, ..., z; € 4o such that
k' is finite over k(z,,...,Z,), where Z; denotes the residue class of z; mod m. Let R"
be the localization of R[Z,,...,Z,] at the prime ideal (n). The R-morphism

R[Zla---azd]_>AO

sending Z, to z;for § = 1,..., d factors through R’, since z;, ..., Z; are transcendental
over k. Furthermore, R’ is an excellent discrete valuation ring, see [EGA1V,],7.8.3,
and A, is essentially of finite type over R'.

We may assume that A is a finite S-algebra where S is a henselization of the
localization S, of a polynomial ring R[T5,..., T,] at (%, Ty,..., T,). Namely, let t4,
..., t, be a system of generators of the maximal ideal of 4,. The R-morphism

QD:R[TIV--”I;:]—’AO

sending T to t;for i = 1,..., ninduces a morphism S, — A,. Since 4, is essentially
of finite type and since the residue field A/m is finite over k, it is easily seen that
Spec A, — Spec S, is quasi-finite at the maximal ideal of 4,. Then the extension
S — A, ®s, Sisfinite (cf. 2.3/4); 50 4, ®s, S is a direct sum of local henselian rings.
Since A4 is among them, the extension S — A is finite.

It suffices to prove the theorem for a henselization S of the localization S, ofa
polynomial ring R[ T, ..., T,] at (n, Ty,..., T,). Since we may assume that 4 is finite
over S, the m-adic completion A4 of 4 is isomorphic to A ®s S. Write A as a quotient
of a polynomial ring over S, say

0—a—S[X,,.... X, ] —mA—0.

Then let ay, ..., a, be a finite system of generators of a. Lifting the system f(Y)
over A to a system g(Y) over S[X] and lifting the given solution y of f(Y) to
P =(PL,..., D) with 91, ..., Py € S[X] ®s S, we get a relation

!
(*) g(y) = ;::1 alé(l)

where Z;) = (£,1,...,2,,) is a column vector of elements of S[X] ® S. Then con-
sider the system of equations

1
(*%) g(Y) — ;.Zi a,Zy =0
over S[X], where Y = (Y;,..., Yy) and Z = (Z;;), for A =1, ..., Li=1,...,r are

variables. Due to (¥), the system (x#) has a solution in S[X]. Looking at the
coefficients of the polynomials in X, ..., X,, appearing in (#), we can rewrite (+*)
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as a finite system of polynomial equations over S which has a solution over S.
Clearly, a solution over S of this system induces a solution over A of the system we
started with.

Now let us show how, in this situation, the proof of the theorem follows from
Theorem 12. The polynomials fy, ..., f, € S[Y,..., Yy] define a closed subscheme
X of AY. Since only finitely many coefficients occur in fi, ..., f,, the scheme X is
actually defined over an R[ Ty, ..., T,]-algebra of finite type. So we may view X as
an R[T},..., T,]-scheme of finite type. The solution y = (§1,..., Py) € SN gives rise
toan R[[Ty,. .., T,1]-valued point ¢ of X. Then Theorem 12 yields a commutative

diagram

Xe— % SpecR[[T]]

SpecR[T
where X' is smooth over R[Tj. The closed point § of Spec R[[T]] induces a

—

_k-rational point x’ = ¢’(§) of X'. Due to 2.3/5, the k-valued point x’ lifts to an

S-valued point of X’ and, hence, to an S-valued point x of X. Then, x gives rise to
a solution y over S of f(Y) = 0, the one we are looking for. O

Let us conclude with some remarks on the history of the approximation pro-
perty. Corollary 9 was first established in Greenberg [2], where the author actually
proves a much stronger result, lthe so-called strong approximation property for
discrete valuation rings. Theorem 16 is due to M. Artin, cf. Artin [4]; he even shows
the strong approximation propefty for polynomial rings k[T},..., T, ], where k is a
field. By methods of model theoriy, it can also be seen from Artin’s result (Theorem
16) that all rings R[Ty,..., T,] satisfy that property whenever R is an excellent
discrete valuation ring; cf. Becker, Denef, Lipshitz, van den Dries [1]. Artin’s
conjecture that the approximation property holds for every excellent ring 4 was
recently verified by C. Rotthaus f(j)r the case where A4 contains the rational numbers;
see Rotthaus [1]. ﬁ

The importance of the approximation theorem is based on the applications to
moduli problems; there it is a powerful tool to show that certain functors are
representable by algebraic spaces; cf. Artin [5] and [6]. We will come back to this
point in Section 8.3.




Chapter 4. Construction of Birational Group Laws

In the previous chapter, we discussed the smoothening process and, as an applica-
tion, proved the existence of weak Néron models. The next step towards the
construction of Néron models requires the|use of group arguments.

For the convenience of the reader, we start with a general section on group
schemes where we explain the functorial point of view. Then we discuss the existence
of invariant differential forms and their pro;perties. They are used in order to define
the so-called minimal components of weak Néron models, which are unique up to
R-birational isomorphism. The actual construction of Néron models is continued
in Section 4.3. Starting with a smooth K-gr})up scheme Xy of finite type and a weak
Néron model (X;); . ;, we select the minimal ¢omponents from the X;. After a possible
shrinking, we glue them along the generic fibre to produce a smooth and separated
R-model X of Xy and we show that the| group structure on X, extends to an
R-birational group law on X. Admitting the fact (to be obtained in Chapters 5 and
6) that X with its R-birational group law can uniquely be enlarged to an R-group
scheme X, we show in Section 4.4 that X will be a Néron model of X. This is done
by employing an argument of A. Weil, saying that a rational map from a smooth
scheme to a separated group scheme is defined everywhere if it is defined in

codimension 1.

4.1 Group Schemes

Let C be a category; for example, let C be the category (Sch/S) of schemes over a
fixed scheme S. Each object X e C gives rise to its functor of points

hy:C— tSets)
which associates to any Te C the set
hx(T):= X(T):= Hom(T; X)

of T-valued points of X. Each morphism X — X' in C induces a morphism
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hy — hy. of functors by the composition of
a coyvariant functor
h:C— Hom

of C to the category of covariant functors f;
of sets; the category Hom(C?, (Sets)) is den
contravariant functors from C to (Sets).

morphisms in C. In this way one gets

C?, (Sets))

rom C° (the dual of C) to the category
oted by C; it is called the category of
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Proposition 1. The functor h: C — C is fully faithful; i.e., for any two objects X,
X' e C, the canonical map

Hom¢(X, X") — Home(hy, hy)

is bijective. More generally, for all objects X € C and & € C, there is a canonical
bijection

ZF(X) = Homep(hy, F)

mapping u € % (X) to the morphism hy — F which to a T-valued point g € hy(T),
where T is an object of C, associates the element & (g)(u) € F(T). The bijection
coincides with the above one if & = hy. and is functorial in X and % in the sense that
F > Home(h(+), F) defines an isomorphism C — C.

Proof. Consider an element u € #(X). We have only to show that there is a unique
functorial morphism hy — % mapping the so-called universal point idy € hy(X)
onto u € & (X) and that it is as stated. Then all assertions of the proposition are
immediately clear. So let us show how to justify this claim. For any object T € C,
each T-valued point g : T — X factors through the universal point of X. Thus, if
hy — & exists as claimed, the image of g under hy(T) — % (T) must coincide with
the image of u under #(g): #(X) — % (T). Conversely, taking the latter as a
definition, we see that iy — & can be constructed as required. O

In particular, if a functor % € Hom(C?, (Sets)) is isomorphic to a functor hy,
then X is uniquely determined by & up to an isomorphism in the category C. In
this case, the functor & is said to be representable. Thus Proposition 1 says that the
functor h defines an equivalence between the category C and the full subcategory
of Hom(C®, (Sets)) consisting of all representable functors.

In order to define group objects in the category C, it is necessary to introduce
the notion of a law of composition on an object X of C. By the latter we mean a
functorial morphism

Yihy X hy— hy .
Thus, a law of composition on X consists of a collection of maps
12 hx(T) X hy(T) — hy(T)

(laws of composition on the sets of T-valued points of X) where T varies over the
objects in C. The functoriality of y means that all maps y; are compatible with
canonical maps between points of X, i.e., for any morphism u: 7' — Tin C, the
diagram

hy(T) x hy(T) —— hy(T)

hx(u) x hx(u) hx(u)

hy(T') x hy(T") —Z— hy(T")

is commutative. If the law of composition has the property that hy(T) is a group
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under yy for all T, then y defines on hy the structure of a group functor, ie., of a
contravariant functor from C to the category of groups. In this case, y is called a
group law on X. ’

Definition 2. A group object in C is an object X together with a law of composition
9 hy X hy — hy which is a group law.

It follows that a group object in C is equivalent to a group functor which, as a
functor to the category of sets, is representable.

When dealing with group objects, it is convenient to know that the category
in question contains direct products and a final object, say S. The latter means
that, for each object T of C, there is a unige morphism T —>S. So, in the
following, assume that C is of this type, and consider a group object X of C with
group law y. Then, since the product X x X exists in C and since the functor
h: C — Hom(C®, (Sets)) commutes with direct products, the law of composition
y:hy X hy —> hy corresponds to a morphism m: X x X — X, asis seen by using
Proposition 1. Furthermore, the injection of the unit element into each group hx(T)
yields a natural transformation from hg to hy, hence it corresponds to a morphism

e:S— X,

called the unit section of X, which is a section of the unique morphism X — §.
Finally, the formation of the inverse in each hy(T) defines a natural transformation
hy — hy and hence a morphism

1 X—X,

called the inverse map on X. The group axioms which are satisfied by the groups
hy(T), and hence by the functor hy, correspond to certain properties of the maps
m, & and 1. Namely, the following diagrams are commutative:

(a) associativity

m x idy

XxXxX —> XxX
jidxxm jm
XxX ——— X

(b) existence of a left-identity
x P, g x X xx X
idy ["‘
D. G

where p: X — S is the morphism from X to the final object S.
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(c) existence of a left-inverse

x 4, x o x
S LN X

(d) commutativity (only if all groups hy(T) are commutative)
XxX—oXxX
~_ |
X

where T commutes the factors.

Note that a left-identity is also a right-identity and that a left-inverse isalsoa
right-inverse. It is clear that onc{: we have an object X and morphisms m, ¢, and 1
with the above properties, we can construct a group object in the given category
from these data, and furthermore, that group objects in C and data (X,m,¢,1)

correspond bijectively to each other.

Proposition 3. The group objects in a category C correspond one-to-one to data
(X, m,e,1) where X is an object of \C and where

mXxX—X, e:S— X, 1: X— X

are morphisms in C such that the diagrams (a), (b), (c) above are commutative.
Furthermore, a group object in C is commutative if and only if, in addition, the
corresponding diagram (d) is commutative.

In the following we restrict ouirselves to the category (Sch/S) of S-schemes where
S is a fixed base scheme. Then the direct product in (Sch/S) is given by the fibred
product of schemes over S, and the S-scheme S is a final object in (Sch/S).
1

Definition 4. An S-group scheme lS agroup objéct in the category of S-schemes (Sch/S).

Due to Proposition 3, an S-group scheme G can be viewed as an S-scheme X
together with appropriate morphisms m, & and 1. When no confusion about the
group structure is possible, we %will not mention these morphisms explicitly. In
particular, in our notation we will make no difference between the group object G
and the associated representing is‘cheme X. Also we want to point out that there
exist group functors on (Sch/S) which are not representable and thus do not
correspond to S-group schemes. For example, let X be a smooth S-scheme and, for
any S-scheme T, let Zy;s(T) be the set of all T-birational automorphisms of X, =
X xg T. Then, in general, the group functor Rys is not representable by a scheme,

even if X is the projective line ov]er a field.
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It follows immediately from Definition 4 that the technique of base change can
be applied to group schemes. Thus, for any base change §' — S, one obtains from
an S-group scheme G an S’-group schexﬁe Gs :=G x5 8. If § = Spec R for some
ring R, we talk also about R-group schemes instead of S-group schemes. Further-
more, if K = R is a field, an algebraic K-éroup is meant to be a K-group scheme of
finite type (not necessarily smooth). ‘

There are many notions for ordinary groups which have a natural analogue for
group functors and thus for group schemes. For example, a homomorphism of
group functors ¥ — ¥ is a natural trarﬂ‘sformation between ¥’ and ¥ (viewed as
functors from (Sch/S) to (Groups)). If ¥’ and ¥ are represented by S-schemes G’ and
G, respectively, such a homomorphism co‘rrcsponds to a morphism G’ — G which
and on G. We also have the notions of
subgroup, kernel of a homorphism, monoimorphism, etc., for group functors. How-
ever, when dealing with S-group schemes G, we reserve the notion of subgroup
schemes to such representable subgroupi functors which are represented by sub-
schemes of G (the latter is not automatic).l A subscheme Y of G defines a subgroup
scheme of G if and only if the following conditions are satisfied:

(i) the unit-sectione: S — G factorsi through Y,
(ii) the group law m: G x5 G — G restricts to a morphism Y xg Y, and

: L] .
(iii) the inverse map 1: G — G restricts to a morphism Y — Y.

|
Let us look at some examples of S-group schemes. We start with the classical
groups G, (the additive group), G,, (the‘multiplicative group), GL, (the general
linear group), and PGL, (the projective general linear group). In terms of group

functors, these groups are defined as follows. For any S-scheme T set

G,(T) := the additive group Or(T)

G(T) := the group of units in|@4(T)
GL,(T) := the group of Or(T)-linear automorphisms of (O4(T))"
PGL,(T) := Aut, (P(O%)) .

All these group functors are representable by affine schemes over Z. Working over
S := Spec Z, the additive group is represented by the scheme '

X :=SpecZ[(]

(¢ is an indeterminate), where the group law m: X x X — X corresponds to. the
algebra homomorphism

Z[0—Z[{(1®z Z[{], (—{®1+1¢.

Similarly, for G,,, the representing object is Spec Z[{,{ '] with the group law given
by { > { ® {. In the case of GL, we consider a set { ;; of n? indeterminates. Then

X := Spec Z[{y, det((;) ]

is a representing object; the group law is defined by the multiplication of matrices.
Finally, PGL, is represented by the open subscheme

X = ProjZ[{,]

4.2 Invariant Differential Forms 9

~ where det(; does not vanish. For a general base S, the representing objects are

obtained from the ones over SpecZ by base extension. It is clear that the above

rocedure works as well for further classical groups (SL,,Sp,, O,,...). Also it
should be mentioned that one can define GL,,PGL,, ... for any vector bundle
v over 8. Just replace 07 in the above definitions by the pull-back of V with respect
toT—S.

All the above group schemes are affine, i.e., the representing schemes are affine
over the base S. Another important class of group schemes consists of the so-called
abelian schemes over S. Thereby we mean smooth proper S-group schemes with
connected fibres (the latter are abelian varieties in the usual sense). They are always
commutative. As examples one may consider elliptic curves over fields which have
a rational point or, more generally, Jacobians of smooth complete curves.

4.2 Invariant Differential Forms

Throughout this section, let G be a group scheme over a fixed scheme S. First we
want to introduce the notion of translations on G. In order to do this, consider a

T-valued point
g:T—G

of G;i.e., an S-morphism from an S-scheme T'to G. Then g gives rise to the T-valued
point
gr:=(9,1d): T— Gr:=G x5 T

of the T-scheme Gy := G x5 T.If p, : G — G denotes the first projection, we have
g = p, o gr. In the special case where T:= G and g := id; is the universal point of
G, the morphism g, equals the diagonal morphism A of G. For any other T-valued
point g of G, the morphism g, is obtained from A by performing the base change
g: T— G.

As usual, let m: G xg G—> G be the group law of G and write my for its
extension when a base change T— S is applied to G. Then, for any T-valued point
g of G, we define the left translation by

~ gr xid m
1,: G =5 Txy Gy —— Gy X1 Gp — Gp

and the right translation by
T Gp = Gy X7 T22% Gy g Gp 5 Gy .
Both morphisms are isomorphisms. Quite often we will drop the index T and
characterize the map 7, by writing
7,:G— G, X+gx;

the same procedure will be applied for v and for similar morphisms. In the special
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case where T := G and g := id is the universal point, 7, is the so-called universal
left translation, namely the morphism

DP:TxsG— TxsG, (x, y) — (x, xy).
Similarly, 7, gives rise to the universal right translation

P:GxsT—GxsT, (x,y)—(x3,)).

Each left translation by a T-valued point g : T — G is obtained from the universal
left translation ® by performing the base change g : T — G; in a similar way one
can proceed with right translations.

Now let us consider the sheaf Qs of relative differential forms of some degree
i 2 0 on G; it is defined as the i-th exterior power of Qg 5. For any S-scheme T and
any T-valued point g € G(T), the left translation t,: Gy — G gives rise to an
isomorphism

* )i ~ i
13 Q6 —> Qg -

A global section w in Qs is called lefi-invariant if t¥w; = wr in Qg 7 for all
g € G(T) and all T, where wy is the pull-back of @ with respect to the projection
p1: Gy — G (see 2.1/3 for the canonical isomorphism p¥Qf s > Qf 7 see also
Section 2.1 for our notational convention on the pull-back of differential forms).
Using right translations 7, one defines right-invariant differential forms in the same
way. Since each translation on the group scheme Gy is obtained by base change
from the universal translation, it is clear that one has to check the invariance under
translations only for the universal translation. Generally, in connection with
translations, we will drop the index T and write w instead of wy if no confusion is
possible.

In the following we will frequently use the fact that two global sections w and
' of a sheaf # on G are equal provided they coincide on every T-valued point g
of G; i.e, provided g¥w,; = g¥wy in g¥Fr, where F; is the pull-back of # to Gy.
This is easily verified by using the universal point g := id; of G; namely, for T = G,
we have the commutative diagram

T—" 5 G

G

where Gy — G is the projection. Similarly, one shows that two sheaves &% and ¥
are isomorphic if their restrictions to each T-valued point of G are isomorphic.

Proposition 1. Let G be an S-group scheme with unit section e : S — G. Then, for each
wg € I'(S, e*Qf 5), there exists a unique lefi-invariant differential form o € T'(G, Qgs)
Such/ that e¥w = wg in £¥Qs. The same assertion is true for right-invariant differential
Sforms.
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Proof. It is only necessary to consider left-invariant differential forms since the

. inverse map G — G, x —> x~1, transforms left-invariant forms into right-invariant

>

ones.
The uniqueness assertion is easy to obtain. Consider two global left-invariant

sections w, @’ of Qs such that e*co = ¢*w' = w, in £¥*Qf/s. Then we have g*w =
g¥o' in g*¥QL Gs for each point g e G(S), since g = 1, o &. Hence w and o’ coincide at,
all points of G(S). This fact remains true after base change. So w and o’ coincide at

- the universal point of G and we have 0=

In order to settle the ex1stence part, it is only necessary to consider the case where
i = 1. Furthermore, the problem is local on S; so we may assume that w, lifts to a
section ' of Qs which is defined over a neighborhood U of the unit section
g:S — G. Then the decomposition

() Qb x5 = PTQGs © P Qgs

of 2.1/4 gives a decomposition
m*e' = w; ® w,

over m~Y(U), where m: G xg G —— G is the group law. If

-1

6:G— G x5G, x+— (x71,X)

denotes the twisted diagonal morphism, m*w’ is defined in a neighborhood of the
image of & so that d*w, gives rise to a global section w of Qg;s. We claim that w is

left-invariant and satisfies e*w = w, in £*Qgs.
For an arbitrary T-valued point g € G(T), the commutative diagram

G —*, G
) 1)
GxG % GxG

gives t¥6%w, = 8% (ty-1 X T,)*w,(in Qg7 So o will be left-invariant if we can show
(th-1 X T,)*w, = w,. Since the product map t;-: x 7, respects the decomposition (*)
over m~1(U), we see

= (G X 7)* 0 ETOn UL @bys) =12

However m o (t,-1 X 1,) = m so that
|
m*e' =, @ 0, = d; ® @, .

The two decompositions must coincide. Hence &, = w,, and  is left-invariant.
It remains to show e*@ = @, in £¥Qg;s. Consider the morphism

er:T=G—GxsT=Gx%x5G

obtained from the unit section & : § —> G by the base change T — S. Since e§pT Qs
vanishes in Qg5 and since m o &, = idg, we have

ehw, = X0, + 0,) = efm*o' =0 in Qfs.
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Since p, o 7 = idg = p, o 9, there is a canonical identification
8#1’3‘911;/3 = ch;/: = 0*pFQgys .
Then § o & = g o & implies
e*6*w, = e¥*efw, in e*Qbs.
Furthermore, we know 6*w, = . So we get
e*w = g*6*w, = e¥efw, =g*0w = w, in *Qgs .

Thus w is as desired. O

Using the structural morphism p : G —|S, we can state the result of Proposition 1
more elegantly in the following form:

Proposition 2. There are canonical isomorphisms

Pre* Qs =5 QGs ieN,
which are obtained by extending sections in e*Qfs to left-invariant sections in QLjs.
Similar isomorphisms are obtained by using right-invariant differential forms.

Actually, Proposition 1 provides only an @g-module homomorphism
p*e* Qg s — Qs which, under the pull—ba;ck by &, becomes an isomorphism. How-
ever, applying translations, the same assertion is true for any S-valued point of G.
In particular, after base change T := G -— S, the above homomorphism is an
isomorphism at the point g4 € G4(T) WhiCFJ is induced by the universal point g of
G. Hence, the above homomorphism is an isomorphism already over G. O

We are specially interested in the case v:vhere G is a smooth group scheme over

a local scheme S. Then each Oz-module Qf s is locally free, and &*Qf s is a free
Os-module. Thus we see:

Corollary 3. Let G be a smooth group scheme of relative dimension d over a local

. d
scheme S. Then each Qg5, 0 <i <d, is a| free Og-module generated by (1) left-
invariant differential forms of degree i. The same is true for right-invariant differential
forms.

For the rest of this section, let us assume that G is a smooth S-group scheme of
relative dimension d, and that there is a left-invariant differential form w € Qg;5(G)
generating Qs as an Og-module. For an arbitrary T-valued point g of G we can

consider the interior automorphism
inty=1,01..:6G—G, x+—ogxgt,

given by g.
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Proposition 4. There exists a unique group homomorphism y : G — G,, (a character
on G) such that

int¥w = ¥.0 = y(g)w

for each T-valued point g of G.

Proof. Since left translations commute with right translations, we see immediately
that

intfo = 41io = 5o
is left-invariant (on Gy) for any T-valued point g of G. Hence, since @ and int} @
generate Q¢ 7, there exists a well-defined unit y(g) € Or(T)* such that

intf o = y(9)w ;

recalling the functorial definition of the multiplicative group G,, and of group
homomorphisms, one easily shows that g — y(g) defines a group homomorphism
1:6G— G, O

Now let us consider the case where S = Spec K and where K is the field of
fractions of a discrete valuation ring R. As usual, let R*" denote a strict henselization
of R and K*" the field of fractions of R™. Let | | be an absolute value on K and K,
which corresponds to R and R*. We want to look a little bit closer at the character

"y occurring in the above lemma.

Proposition 5. Let G be a smooth K-group scheme of relative dimension d, and assume
that G(K) (resp. G(K**)) is bounded in G. Then the character y of Proposition 4
satisfies | x(g)| = 1 for each g € G(K) (resp. each g € G(K*™)).

Proof. The character y is bounded on G(K); hence we may view y(G(K)) as a
bounded subgroup of K*. Such a subgroup consists of units in R. O

Remark 6. If, in the situation of Proposition 5, the group G is connected, one can actually show that
the character y is trivial. To see this, one uses the fact that G contains a maximal torus T defined over
K, [SGA 3,1, Exp. XIV, 1.1. If y is non-trivial, it induces a sugjective map T — G,,, and T must contain
a subtorus isogenous to G,,. But then G(K) cannot be bounded.

4.3 R-Extensions of K-Group Laws

Let R be a discrete valuation ring with uniformizing element 7, with field of fractions
K, and with residue field k. As usual, R** denotes a strict henselization of R, and K**
denotes the field of fractions of R**. Let X be a smooth K-group scheme of dimension
d, assume that Xy is of finite type, and that X (K*") is bounded in X . As a group
scheme over a field, X is automatically separated. The purpose of this section
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is to construct a smooth and separated R-scheme X of finite type with generic fibre
X such that the group law of Xk extends to an R-birational group law on X and
such that each translation on X by a K*-valued point extends to an R*"-birational
morphism of X. Later, it will turn out that X is already an R-dense open subscheme
of the Néron model of Xk. '

We start our construction by choosing a weak Néron model (X;);cs of Xk; for
the existence see Theorem 3.5/2. There is no restriction in assuming that the special
fibres X; ®g k are (non-empty and) irreducible for all i € I. We will pick certain
“minimal components” of this collection and glue them along the generic fibre to
obtain the R-model X of X we are looking for.

In order to define minimal components, consider a left-invariant differential
form w of degree d on Xy which generates Q% x; for the existence see 4.2/1 and
4.2/3. It follows that o is unique up to a constant in K*. We want to define the
order of w on smooth R-models X of X which have an irreducible special fibre
X,, always assuming that X is separated and of finite type over R.

To do this, consider a general situation where & is a line bundle on a smooth
R-scheme Z and where { is a generic point of the special fibre Z,. Then the local
ring @ . is a discrete valuation ring with uniformizing element 7 and, for any section
f of & over the generic fibre Zx which does not vanish at the generic point of Z
lying over {, there is a unique integer n such that 7~"f extends to a generator of &
at {. The integer n is called the order of f at {, denoted by ord,f.

Going back to the situation where we considered the section @ over the generic
fibre of X, there is a unique generic point ¢ of the special fibre X, since the latter
has been assumed to be irreducible. We call ord. the order of w at X and we
denote it by ordyw. If n = ordyw, then 7" generates Q4% r over X. Namely, 7™ "®
is defined on X up to points of codimension = 2,and X being normal, z™"@ extends
to a global section of X. Furthermore, since the zero set of a non-zero section in a
line bundle is of pure codimension 1 on an irreducible normal scheme, it is seen that
n~"o extends to a generator of Q% over X. Similarly, for sections a € I'(X, Ox,)
(provided a is non-zero at the generic point of Xg lying over X), the order ordya
can be defined. If m = ordya, it follows that 7~™a extends to a global section of Oy.
The latter is invertible if a is invertible over X. In this case, we have |a(x)| = |7"|
for each K*i-valued point x of X which extends to an Re*-yalued point of X.

Lemma 1. Let X’ and X" be smooth and separated R-models of Xy which as above
have irreducible special fibre each. Consider an R-rational map u: X' -+ X" which
is an isomorphism on generic fibres; in particular, there is a unit a eI'(Xg, 0%)
satisfying ufw = aw. Assume that |a(x)| =1 for some x € X (K**) such that x
extends to a point in X'(R™). Then:

(@) n':=ordywzn" = ordy.@.

(ii) If U is the domain of definition of u, the morphism u: U — X" is an open
immersion if and only if n' = n".

Proof. Since ™" o (resp. 7" @) generates QY. g (resp. Qf-g), there is a section
b e I'(X', Oy) such that
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o) =bn "o

|

over X'. Actually, b is-only defined over U; however X' — U is of codimension =2
in X' so that b extends to a section over X'. The preceding equation gives @ = ™" "b
over Xx. Since ordy.a = 0 by our assumption on a, we see

n—n"=ordyb20.

This verifies the first assertion.

To obtain the second one, we see from 2.2/10 that u is étale on U if and only if
w* Qg — Q4  is bijective; i.e., if and only if b is invertible over U and hence over
X'. The latter is equivalent to n’ — n” = 0. Furthermore, since uy is an isomorphism,
Zariski’s Main Theorem 2.3/2' implies that u is étale on U if and only if it is an open
immers1on. O

Let X’ and X" be smooth, separated R-models of X which are of finite type over
R and which have irreducible special fibres. Then X’ and X" are called equivalent
if the identity on X extends to ;an R-birational map X’ ---» X",

Proposition 2. Let X be a smooith K-group scheme of finite type such that X (K9
is bounded in Xy. ;

(i) There exists a largest int:eger n, such that ordyw = ny for all R-models X of
Xy which are smooth, separated, and of finite type over R, and which have an
irreducible special fibre X;. All such R-models X with ordyw = ng are called
w-minimal. }

(ii) Up to equivalence there eixist only finitely many R-models X, ..., X, of Xg
which are w-minimal.
Proof. (i) Let (X;); be a weak Néron model of Xj; for the existence see 3.5/2. We
may assume that the special fibre of each X; is irreducible. So the order of @ is
defined with respect to each X;. Let n, be the minimum of the finite set {ordy w;
ie I}. We claim that ng satisfies assertion (i). Namely, consider a smooth R-model
X of X which is separated and% of finite type over R and which has an irreducible
special fibre. Due to the weak Néron property 3.5/3, the identity on Xy extends to
an R-rational map u: X ---» X; for some i € I. Then ordyw = no by Lemma 1. In
a similar way, assertion (ii) is deduced from Lemma 1 (ii). O

Since w, as a left-invariant difjfercntial form of degree d, is unique up to a constant
in K*, it is clear that the notion of w-minimality does not depend on the choice of
. One has to interpret the w-minimal R-models as those smooth R-models with
irreducible special fibre, which aie of “biggest” size, just as can be seen from the two
R-models
SpecR[(,¢™*] |« and  SpecR[(, {7, (( — 1)/x]

of the multiplicative group G, dver K, and from the left-invariant differential form
o := {7'd{. Furthermore, we le?.ve it to the reader to verify that, for the additive
group G, over K and for the left-invariant differential form o := d{, there does not
exist any o-minimal R-model. |
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Lemma 3. Let Z be a smooth R- scheme,‘and let n be a generic point of the special
fibre of Z. Denote by R' the local ring 0 . of Z at u, and by K’ the field of fractions
of R.If X4,..., X, is a set of representatives of the w-minimal R- models of Xk, then,
uptoa Splittmg of special fibres into connected components, X, ®g R, ..., X, @y R’
represent the w'-minimal R'-models of X X ®x K', where o' is the pull back of wto
X, ®K'.

Proof. Due to 3.5/4, weak Néron models are compatible with the base change
R — R'. Furthermore, each generic poinit & of the special fibre of X; ®; R'lies over
a generic point ¢ of the special fibre of X;. Thus, we have ord,w = ord.w'. Hence
the R’-extension of an w-minimal R-model of X decomposes into a union of

’-minimal R’-models of Xk.. 0O

Now we are able to construct the R-model X of X we are looking for.

Proposition 4. Let X, be a smooth K-group scheme of finite type such that the set of
K*"-valued points of X is bounded in X ‘K Then there exists an R-model X of Xy
which is smooth, separated, faithfully flat, and of finite type over R and which satisfies
the following conditions:
(i) Each open subscheme of X which is an R-model of Xy with irreducible special
fibre is w-minimal.
(ii) For each w-minimal R-model X'\ of Xk, the identity on Xy extends to an
R-rational map X' ---+ X which is an open immersion on its domain of definition.
(iti) Let R’ be the local ring Oz ; of a smooth R-scheme Z at a generic point { of
the special fibre, and let K' be the field of fractions of R'. Then each translation on
Xy by a K'-valued point of Xy extends ito an R'-birational morphism of X ®g R/,

which is an open immersion on its domain of definition.

Proof. Let X4, ..., X, be a set of represen?tatives of the w-minimal R-models of Xy.
By shrinking the special fibre of each X; swe may assume that the following condition

is satisfied:
(*¥) For each pair of indices i, j € {1,..., h} with i # j, the diagonal of X xx Xy

constitutes a Zariski-closed subset i1§1 X; xg X;.

Namely, let Ag be the diagonal in X x "i Xy, and consider its schematic closure A
inX; xg X; Letp,:A— X, forh =ior ] be the projection onto the first or second
factor. It is enough to know that the i 1mage of A, under p; is nowhere dense in (X;);.

Assume the contrary. Then the image of A,, contains a non-empty open part of (X;),
and, hence, there is a point 7 € A above tﬂe generic pomt & of the special fibre of X;.

Thus the local ring @, , dominates Oy, , & Since p; is an isomorphism on generic
fibres and since A is flat over R, both local rings give rise to the same field of fractions.
But then, 0, . being a discrete valuatio;n ring, the map Oy .— 0, , is an iso-
morphism. Since A is of finite type ove; X;, there exist open neighborhoods U
of £ in X; and V of 7 in A such that|p; induces an isomorphism between V'

and U, cf. [EGA I], 6.5.4. Hence p; is lnvcrtlblc over an R-dense open part of
X;, and
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0 (pila) ™ X > X;

constitutes an R-birational map, as is seen by Lemma 1. However, this contradicts
the choice of Xy, ..., X,.

Now we can construct the desired R-model X of X by gluing all models
X,, ..., X, along generic fibres. Then X is separated due to condition (*), and it
satisfies conditions (i) and (ii) by construction.

To verify condition (iii), assume first R = R’, and consider a translation ty:
Xy — Xx on X by a K-valued point. Fix an open subscheme U of X consisting
of the generic fibre Xy and of an irreducible component of the special fibre X,.
Furthermore, let (X;);.; be a weak Néron model of Xy, where the special fibre of
X, is irreducible for each i e I. Then, due to the weak Néron property 3.5/3, there
exists an index i € I such that 7y extends to an R-rational map 7: U -+ X;. Since
U is w-minimal, the map 7 is R-birational; it is an open immersion on its domain
of definition by Lemma 1 (note that, for right translations, the assumption of Lemma
1 is satisfied by 4.2/5). Moreover, X; is w-minimal. Then it is clear that 7, extends
to an R-rational map

7:X - X.
Likewise, one can construct an R-rational extension
T7: XX

of the inverse translation ()™ on Xj. Since t and 7’ are composable with each
other in terms of R-rational maps, it is easily seen that they are, in fact, R-birational.
Finally, Lemma 1 shows that 7 is an open immersion on its domain of definition.
So,if R = R’, condition (iii) is satisfied. In the general case, we can perform the base
change R — R’, and thereby reduce to the above special case by using 3.5/4 and
Lemma 3. |

Applying assertion (iii) of the preceding proposition, we want to show next that
we can extend the K-group law on X to an R-birational group law on the R-scheme
X we have just constructed.

Proposition 5. Let X be a smooth K-group scheme of finite type such that the set of
K*"-valued points of X is bounded in Xy. Let X be the R-model obtained in Proposi-
tion 4 by gluing a set of representatives of w-minimal R-models. Then the group law
my on X g extends to an R-birational group law on X.

More precisely, my extends to an R-rational map

m:X xpg X-—-»X
 such that the universal translations
Q: X xg X-—-»X xpg X,
WX xgX-—->X xg X

(x, y) — (x7 m(x’ y))
(x, y) — (m(x, ), )

are R-birational. Furthermore, m is associative; i.e., the usual diagram for testing
associativity is commutative as far as the occurring rational maps are defined.
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Proof. Let & be a generic point of the special fibre X, of X, and denote by R’ the
local ring Oy, of X at £ Let S be the spectrum of R'; it can be viewed as an X -scheme
and as an R-scheme. Due to Proposition 4, the translation 7, obtained from @ by
the base change Sx — Xx extends to an $'-birational map

718 Xg X > 8 xg X .

Now consider the commutative diagram of rational maps

It follows from 2.5/5 or by a simple direct argument that @ is defined at all generic
points of the special fibre of X' x X which project to ¢ under the first projection.
As we can apply this reasoning to any generic point of the special fibre X, we see
that @ is R-rational. Since each 1, is §'-birational, it follows that @ is R-birational.

Dealing with ¥ in the same way as with @ yields an R-birational extension
W of ¥,.. Choose an R-dense open part W < X xg X containing the generic fibre
such that ® and ¥ are defined on W. Then, composing ® with the projection onto the
second factor of X x X, and ¥ with the projection onto the first factor, we obtain
two extensions W —s X of the group law my of X, which must coincide. Thus, myg
extends to an R-rational map

m:X xg XX,

and we see that ® and ¥ can be described by m as stated. In particular, the associati-

vity is a consequence of the uniqueness of R-rational extensions of K-morphisms.
O

It is a general fact that an R-birational group law on X, as obtained in the
preceding proposition, always determines an R-group scheme X; cf. 5.1/5.

Theorem 6. Let Xy be a smooth K-group scheme of finite type. Let X be a smooth
and separated R-model of Xy which is of finite type, and assume that the group law
my of Xy extends to an R-birational group law m: X xg X -+ X. Then there is a
smooth and separated R-group scheme X of finite type, containing X as an R-dense
open subscheme, and having Xy as generic fibre such that the group law on X extends
the R-birational group law m on X. Up to canonical isomorphism, X is unique.

This result which, for the case of birational group laws over a field, goes back
to A. Weil [2],§ V, n°33, Thm. 15, will be proved in Chapter 5 for a strictly henselian
base ring R. The generalization for an arbitrary discrete valuation ring will follow
in Chapter 6 by means of descent theory. That X satisfies the Néron mapping
property will be shown in the next section by using an extension theorem for
morphisms into group schemes; cf. 4.4/4.
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44 Rational Maps into Group Schemes

In order to establish the Néron mapping property for the R-group scheme X which
has been introduced in the last section, we want to make use of an extension
argument of Weil for rational maps into group schemes; cf. Weil [2], § II, n°15,

Prop. 1.

Theorem 1. Let S be a normal noetherian base scheme, and let u:Z ---» G be an
S-rational map from a smooth S-scheme Z to a smooth and separated S-group scheme

G. Then, if u is defined in codimension <1, it is defined everywhere.

As in Weil’s proof, which deals with the case where the base consists of a field,
we will proceed by reducing to the diagonal; the following basic fact is needed:

Lemma 2. Let u: Z ---> Spec A be a rational map from a normal noetherian scheme
Z into an affine scheme Spec A. Then the set of points in Z, where u is not defined, is
of pure codimension 1. In particular, if u is defined in codimension <1, it is defined
everywhere.

The a_sser_tion (cf. [EGA IV,], 20.4.12) is due to the fact that a rational function
on Z, which is defined in codimeqsion <1, is defined everywhere or, equivalently,
that any noetherian normal integral domain equals the intersection over all its

localizations at prime ideals of height 1.

Now let us start the proof of ’I%’heorem 1. Consider the rational map

v:Z XSZ""’q > (21;22)‘_"1‘(21)”(22)_1,

A | . .
and let U (resp. V) denote the domain of definition of u (resp. v). Then U xg U is
contained in V. First we want to show that ¥ contains the diagonal A of Z x5 Z.
Since 5

VmA%WxRWmA=U

(where we have identified Z withi A), we see that vy, factors through the unit
section&: S —» G.Set F := (Z x5 Z) — V. We have to show F n A = (J. Consider a
point x of FN A, and let se S be the image of x in S. Let H be an affine open
neighborhood of &(s) in G. Then there exists an open neighborhood WofxinZ x5 Z
such that v induces a rational map

v = vl W--->H.

Let V' be the domain of definition of v’; we have ¥’ < V. Since v|~, factors through
H wesee VVAnA=VnA. Furthc.%rmore, set F' :== W — V', Since H is affine and
Z xg Z is normal (cf. 2.3/9), it follows from Lemma 2 that F” is of pure codimension
11in W. Since 3

FAA=FnAcZ—-U
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(where we have identified Z with A again), we know that F' n A is of codimension
22in Aifuis defined in codimension <1.Let d be the relative dimension of Z over
S at x. Since F" is of pure codimension 1in W c Z x5 Z, and, since A< Z x5 Z is
defined locally by d equations, due to the smoothness of Z, we get

dim (F' A A) 2 dim, F' — d = dim(Z x5 Z) — 1 — d = dim,A — 1 .

However, this contradicts the fact that F'/n A is of codimension =2 in A. Thus v

must contain the diagonal A as claimed.

It remains to show that this fact implies U = Z. Due to 2.5/5 it is enough to
show that there exists a faithfully flat Stmorphism f:Z'— Z from a smooth
S-scheme Z' of finite type to Z such that u o f is defined everywhere. So, let Z’ be
the intersection of ¥ with Z x5 U in Z xg Z. Then the first projection from Z x5 Z
to Z gives rise to a faithfully flat morphism f:Z’— Z. Namely, since smooth
morphisms are flat, it only remains to show that f is surjective. So,let z: T — Z
be a geometric point of Z; i.e., T is the spectrum of a field. Viewing V as a Z-scheme
with respect to the first projection, the scheme T’ x ; Vis non-empty since V contains
the diagonal A of Z x5 Z. Furthermore, the domain of definition U of u is S-dense
open in Z. Hence the intersection of T x5 Vwith T x5 U in T x4 Z is not empty.
Thus we see that the morphism f is surjective and, hence, faithfully flat. Now look
at the morphism

Vn(Z xgU)— G, (z1,2,) > v(z, z)u(z;).

It is clear that this map coincides with u o f, in terms of S-rational maps. Thus,
the S-rational map u is defined everywhere, and we have finished the proof of
Theorem 1. O

Remark 3. The method of reduction to the diagonal which was used in the proof of
Theorem 1 works also within the context of formal schemes or rigid analytic spaces.
So, if R is a complete discrete valuation ring, the assertion of Theorem 1 remains
true if Z is of type Spec R[[t]] or Spec R{t} (formal or strictly convergent power
series in a finite number of variables t,,...,¢,).

Now it is easy to show that the R-group scheme X we have introduced in Section
4.3 satisfies the Néron mapping propcrty and thereby to end the proof of the
existence theorem 1.3/1 for Néron models over a discrete valuation ring R (modulo
the proof of Theorem 4.3/6). Recall the situation of 4.3. Starting with a smooth

K-group scheme of finite type X such t:hat the set of its K*-valued points is
bounded in X, we have constructed in 4. 3/4 a smooth and separated R-model of
finite type X such that the group law on X K extends to an R-birational group law
on X; cf. 4.3/5. In 4.3/6 we have claimed that there is a unique extension of X to a

smooth and separated R-group scheme of finite type X containing X as an R-dense:
open subscheme.

Corollary 4. Let X be the R-model of Xy as|considered in 4.3/4 and 4.3/5, and let X
be the associated R-group scheme in the sense of 4.3/6. Then X is a Néron model of
Xy over the ring R.
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Furthermore, for each w-minimal R-model X' of Xy, the identity on Xy extends
to an open immersion X' <, X over R.

Proof. In order to show that X satisfies the Néron mapping property let Z be a
smooth R-scheme and let uy: Z ~» X x be a K-morphism. We have to show that
uy extends to an R-morphism u: Z — X.

It is enough to consider the case where Z has an irreducible special fibre. Let {
be the generic point of the special fibre of Z, and let R’ = @y, be the local ring of
Z at (.

Look first at the rational map

VA Xgr X->Z XRr X ’ (Z’ x) - (Z‘a uK(Z)x) 5

which is defined on the generic fibre. Applying the base change Spec R’ — Z, this
map is turned into an R’-rational map; cf. 4.3/4. Then it follows from 2.5/5 that
the map

T:Z XR)?----)X—, (2, %) — ug(z)x ,

is defined at all generic points of the special fibre of Z x ; X which project to { under
the first projection. So 7 is an R-rational map. Since it is defined at the generic fibre,
it is defined everywhere by Theorem 1. Therefore, if we denote by p the structural
morphism of Z, and by ¢ the unit section of X, the composition of the morphism

(idz,e0p):Z—Z xg X

with 7 yields an R- -morphism u: Z — X extending uy. The uniqueness of u follows
from the separatedness of X.

If X" is an »-minimal R-model of Xy, the identity on X extends to an R-rational
map from X’ to X by 4.3/4. Hence it extends to an R-mlorphlsm from X’ to X by
Theorem 1. Then it is an open immersion, due to 4.3/1. ]




Chapter 5. From Birational Group Laws to
Group Schemes

For the construction of Néron models, we need the fact that an S-birational group
law on a smooth S-scheme with non-empty fibres can be birationally enlarged to a
smooth S-group scheme; see 4.3/6. The purpose of the present section is to prove
this result in the case where S is strictly henselian. In Chapter 6, the result will be
extended to a more general base. ‘

The technique of constructing group schemes from birational group laws is
originally due to A. Weil [2], §V, n°33, Thm. 15; he considered birational group
laws over fields. More general situations were dealt with by M. Artin in [SGA 3,1,
Exp. XVIII, among them birational group laws over strictly henselian rings. The
proof we give in this chapter, essentially follows the exposition of M. Artin [9].
Finally, in Chapter 6, descent techniques can be used to handle the case where the

base is of a more general type.

5.1 Statement of the Theorem

In the following, let S be a scheme, and let X be a smooth separated S-scheme of
finite type. Furthermore, we will assume that X has non-empty fibres over S or,
which amounts to the same, that X is faithfully flat over S.

Definition 1. An S-birational group law onA X is an S-rational map
m:X xg XX, (uy)r—xy,
such that
(a) the S-rational maps
DX xg XX xs X, (6y)r—(xy),
PX xg XX xs X, (u)— ),

are S-birational, and
(b) m is associative; i.e., (xy)z = x(yz) whenever both sides are defined.

Just as in the case of group schemes, the maps @ and ¥ will be referred to as
universal left or right translations.

Note that, in place of (a), it is enough to require ® and ¥ to be open immersions
on an S-dense open subscheme U of X X5 X. To see this, one has only to verify that
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' the images V = ®(U) and W = (U) are S-dense in X x X. Since each fibre of U

over S has the same number of components as the corresponding fibre of X x5 X
over S, the same is true for the fibres of ¥ and W over S. Hence V and W are S-dense
in X xs X if ® and ¥ are open immersions on U.

The notion of S-birational group law is compatible with base change. Further-
more, an S-birational group law on X induces an S-birational group law on each
-dense open subscheme of X. In particular, if X is an S-group scheme and if X is
an S-dense open subscheme of X, the group law of X induces an S-birational group
law on X. But there are S-birational group laws which do not occur in this way.
Namely, even if the base consists of a field, one can blow up a subscheme of a group
scheme X and consider the induced birational group law on the blowing-up. So it
is natural to shrink X in order to expect that an S-birational group law on X extends
to a group law on an S-scheme X containing X.

Definition 2. Let m be an S-biratipnal group law on a separated and smooth S-scheme
X which is faithfully flat and of finite type over S. A solution of m is a separated and
smooth S-group scheme X of finite type over S with group law m, together with an
S-dense open subscheme X' < X and an open immersion X " =, X such that

(a) the image of X' is S-dense in X, and

(b) m restricts to mon X'.

First we want to show that solutions of S-birational group laws are unique.

Proposition 3. Let m be an S-biratjional group law on a separated and smooth S-scheme
X which is faithfully flat and of ﬁnite type over S. If there exists a solution of m, it
is uniquely determined up to canonical isomorphism.

|

For the proof we need the fo?llowing well-known lemma.

Lemma 4. Let G be a smooth S-gr‘oup scheme, and let U be an S-dense open subscheme
of G. Then the morphism
: UxsU—G, (x, y)— xy

is smooth and surjective.

Proof of Proposition 3. Let
o Xy o X, and 0,: Xy o X,

be solutions of the S-birational group law m on X, and set Y := X7 n X5. Then Y

is an S-dense open subscheme of X, and each ¢,(Y) is S-dense openin X;, i =1, 2.

The group laws ; of X; give rise to morphisms

ﬁiO(aixai:Yst——»)?i, i=12,
which are faithfully flat by Lemma 4. Furthermore, the morphisms g, and o, yield

an S-birational map
a=0,00. X X,

which is compatible with the group laws; i,

iy o (03 X 0,) = a oy o (0; X 07).
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So, due to 2.5/5, the map o is defined e\j/erywhcre. Since o is compatible with the
group laws, it is clear that « is a group homomorphism. Similarly, f = ¢; o 6,7 is
a group homomorphism which is deﬁne‘d everywhere. Since o and f§ are inverse to
each other, they yield S-isomorphisms b(jatween X, and X,. 0

Next we want to look at the existenti;e of solutions of S-birational group laws,
In the present chapter we will consider the case where the base consists of a discrete

valuation ring; see 6.6/1 for the case whe}rc the base is more general.

Theorem 5. Let S be the spectrum of a fiejld or of a discrete valuation ring, and let m
be an S-birational group law on a smooth separated S-scheme X which is Saithfully

flat and of finite type over S. Then there e:;cists a solution of m, i.e., a smooth separated
S-group scheme X of finite type with a group law m, together with an S-dense open
subscheme X' = X and an S-dense open immersion X' — X such that m restricts to

mon X',

The group scheme X is unique, up to c}anonical isomorphism. If (in the case where
the base S consists of a valuation ring) the generic fibre Xy of X is a group scheme
under the law my, the above assertion is true for X' = X. So, in this case, it is not

necessary to shrink X.

The proof of the existence will follow in the subsequent sections (cf. 5.2/2, 5.2/3,
and 6.5/2), whereas the uniqueness has already been proved. So, accepting the
existence of X, let us concentrate on the additional assertion on the domain X’
where the group laws on X and X coincide. Assume that the base S consists of a
discrete valuation ring and that the generic fibre Xy is a group scheme. By the
uniqueness assertion, the S-rational map

1 X s X

induced by X' —, X restricts to a K-isomorphism
1g: Xg ——> X .

Hence 1 is defined in codimension <1 so that, by 4.4/1, the rational map 1 is defined
everywhere. Now let w be a differential form generating Q%,s, where d is the relative
dimension of X over S; cf. 4.2/3. Pulling back w, we get a differential form *w on
X which generates Qs over X’ U Xy; hence i*w generates Q%sin codimension <1.
Since on a normal scheme, the zero set of a non-vanishing section of a line bundle
is empty or of pure codimension <1, we see that r* has no zeros. Thus : is étale
by 2.2/10. Since : is birational, Zariski’s Main Theorem 2.3/2' implies that 1 is an

open immersion. O

5.2 Strict Birational Group Laws

In the following, let S be a scheme, and let X be a smooth separated S-scheme of
finite type. Furthermore, we assume that X is faithfully flat over S.
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If X is an S-dense open subscheme of an S-group scheme X, then, for each
T-valued point x: T — X, the set of points ye T x5 X which is characterized

symbolically by the conditions
xyeTxsX, x'yeTxsX, and xy'eTxsX

;s T-dense and open in T x5 X. Thus, we see that the group law of X induces an
S-birational group law on X which is of a special type. Namely, there is an open
subscheme U of X xg X which is X-dense in X x X (with respect to both projec-
tions pi: X xs X — X, i=1, 2 ie., X-dense when X xg X is viewed as an
X-scheme via each p;), such that the universal translations

D: X xg X X x5 X, (x, y) +— (x, xy),
P:X xg XX xsX, (%) (xp)),

are defined and open immersions on U, and their images V := ®(U) and W:= ¥(U)
are X-dense in X x5 X. Just take for U the intersection of X xg X with the inverse
images of X x5 X under the group law and both universal translations on X. So it
is natural to introduce the following terminology:

Definition 1. An S-birational group law on X is called a strict (S-birational) group
law if it satisfies the following condition: There is an X-dense open subscheme U of
X xg X, on which m is defined, such that the universal translations

O: X xg X=X xsX, (xy)+—(xxy),
V:X xg XX xsX, (%) (x1)),

are isomorphisms from U onto X-dense open subschemes V= ®U) and W=
P(U) in X x5 X. (As before, X-density is meant with respect to both projections
from X xg X onto its factors.)

Note that X-density implies S-density. So the subschemes U, ¥, and Wabove
are S-dense in X xg X. The first step in the existence proof of 5.1/5 consists in
showing that each S-birational group law on X induces a strict group law on an
S-dense open subscheme of X if S consists of a field or of a discrete valuation ring.

Proposition 2. Let S consist of a field or of a discrete valuation ring. Let X be a
smooth separated S-scheme of finite type, and consider an S-birational group law m
on X. Then there exists an S-dense open subscheme X' of X such that m restricts to

a strict group law on X'

Proof. Let U be the S-dense open subscheme of X xg X such that m is defined at
U and such that the universal translations ® and ¥ are open immersions on U. Set
V = ®(U) and W = W(U). Since U, ¥, and W are S-dense in X x5 X, the set

Z=UnNnVnW

is again S-dense open in X xg X. We want to show that there exists an S-dense
open subscheme Q; of X such that Z n(Q, x5 X) is Q;-dense in Q; x5 X with
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respect to the first projection p;. Due to 2.5/1, the set
T; = {x € X; Z n(x xg X)is not dense in x x5 X}

is constructible in X. Since Z is S-dense in X xg X, the generic points of the fibres
of X over S do not belong to T,. Hence the closure T; of T; in X cannot be dense
in any fibre of X if S consists of a discrete valuation ring. So the open subscheme
Q, = X — T, is S-dense in X and has the required property. Similarly, one defines
a subscheme Q, of X by considering the second projection. Then the subscheme

X =0,nQ,

is S-dense open in X, and Z N (X’ xg X') is X'-dense in X' x5 X" (with respect to
both projections).

Setting
U= Un (X x5 X')(mly) (X)),
Vi=oU),
W .=¥(U’),

it remains to show that these open subschemes are X'-dense in X' x5 X'. As a
general argument, we will use the fact that U, ¥, and W give rise to X’-dense open
subschemes in X’ x; X', because Z = U n V n W.Now consider a pointa € X". We
may assume that the base S is a field and that a is an S-valued point of X". First we
will show that U’ is X’-dense in X’ xg X’ with respect to the first projection p,. If
we view X xg X as an X-scheme via p,, the base change a — X transforms @ into

®a,):Un(@axsX) DVn@axsX)caxsX,
which is an open immersion with dense image. Then the open subscheme
D(a, )V 0 (a x5 X)) = (mly) (X)) N (a x5 X)

is also dense in a x5 X. This shows that U’ is p,-dense, i.e., X'-dense with respect
to p,. In a similar way, using ¥, one shows U’ is p,-dense. Next, it is clear that
V' is p,-dense, since ¥V’ n(a x5 X') is the image of the dense open subscheme
U’ (a x5 X') of a xg X under the open immersion ®(a, *); the latter has a dense
image in a x5 X. By the same argument, using ¥'(-,a), we see that W' is p,-dense.
In order to show that W' is p,-dense, set U, := m~*(a), and consider the diagram of

isomorphisms

U ———— Wnaxs X)=W,
2 v —2,w :
to

V,.=Vn(X xsa)c V
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Since a belongs to X, the set ¥, is dense in X x5 a, and W, is dense in a x5 X. The
same is true if we replace V, by its; restriction to X' x5 a and W, by its restriction to
a x5 X'. Taking inverse images with respect to ® and ¥, the set

U,nU =074 (V,n(X xsa)) " ¥ (W, n(a xs X))
is open and dense in U,. Hence its image under W, which is W’ n (a x5 X), is open

and dense in a xg X. Thereby we/sce that W’ is p;-dense. Similarly, one shows that
V' is p,-dense. . ]

The proposition reduces the proof of Theorem 5.1 /5 to the problem of enlarging
a strict group law on X to a group law on a group scheme X If the base scheme S
is normal and strictly henselian (of any dimension), we will construct the group
scheme X in a direct way. The case where S consists of a field or of a discrete
valuation ring, without assuming that the latter is strictly henselian, will be reduced
to the preceding one by means of descent theory, cf. 6.5/2. For further generaliza-
tions see Section 6.6. i

Theorem 3. Let S be the spectrum bf a strictly henselian local ring which is noetherian
and normal, and let m be a strict gjroup law on a separated smooth S-scheme X which
is faithfully flat and of finite type over S. Then there exists an open immersion X < X
with S-dense image into a smooth éeparated S-group scheme X of finite type such that
the group law m of X restricts to m on X.

The S-group scheme X is uniq;ue, up to canonical isomorphism.

The uniqueness assertion of ”Ij‘heorem 5.1/5, which has already been proved in
Section 5.1, yields the uniqueness assertion of the present theorem. A proof of the
existence part will be given in Section 5.3, assuming that the base § is strictly
henselian. The idea is easy to describe, although a rigorous proof requires the
consideration of quite a lot of unpleasant technical details. Namely, a smooth
scheme X over a strictly henselian base S admits many sections in the sense that
the points of the special fibre X which lift to S-valued points of X are schematically
dense in X,; cf. 2.3/5. So the idea 1s to construct X by gluing “translates” of X. More
precisely, consider an S-valued point a of X and a copy X (a) of X, thought of as a
left translate of X by a. Then one can glue X and X(a) along the correspondence
given by the left translation by a} ‘

(i)(a, )X - X

The result is a new S-scheme X' = X L X(a), and it has to be verified that the strict

group law m on X extends to a sTcﬁct group law m’ on X'. The left translation by a

() X X'
is now defined on the open subscbeme X of X'. Repeating such a step finitely many
times with suitable S-valued points a;,...,a, € X(5), and applying a noetherian
argument, one ends up with an S-scheme X = X® such that the strict group law m
on X extends to a strict group law 7 on X, such that the S-rational map

m:X xg XX
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is defined on the open subscheme X x sXcXx s X. Then it is not difficult to show
that /n defines a group law on X, and that}f is the S-group scheme we are looking
for. i

The technical problems in the proof of Theorem 3 are due to the fact that, for
a point a € X, the product ax is only deﬁllled for “generic” x e X. This drawback
disappears, when we look at the situation from the point of view of group functors,
Let m be a strict group law on X, as in Theorem 3, and consider the group functor

Ry;s : (Sch/S) — (Sets)

which associates to each S-scheme T the set of T-birational mapsfrom Xy = X xg T
onto itself. Identifying X with its functor of points hy = Hom(+, X), cf. 4.1, we claim
that there is a monomorphism X —, Zys respecting the laws of composition on
X and Ry,s. Namely, due to the definition of strict group laws, one knows that the
universal left translation

O X XSX"'"’X XSX, (X,}’)'—’(X,m(xd’))

is X-birational if X xg X is viewed as an X-scheme via the first projection. So, for
any S-scheme T and any T-valued point a ¢ X (T), the map

T T Xg X 3T x5 X,

the “left translation” by a obtained from @ by means of the base changea: T —s X R
is T-birational and thus belongs to Zxs(T). It is clear that the maps

X(T)——)‘@X/S(T) 3 ar—1,,
constitute a morphism of functors X —s Rys-

Lemma 4. The morphism X —> Rx;s is a monomorphism which respects the laws of
composition on X and on Ry;s; i.e., for any|S-scheme T and all T-valued points a,
b, c € X(T) satisfying m(a, b) = c, one has T,0T, =T,

Proof. We have to show that all maps X (T)—> Ry,s(T) are injective. So consider
a,b € X(T) with 7, = 1,. Applying the base change T — S to our situation, we may
consider T as the new base, writing S inste}ad of T. Let U be the X-dense open
subscheme of X xg X required by Definition|1 (on which the universal translations
are open immersions). Using the X-density of U with respect to the first projection,
we see that the compositions 3 :

a x idy |

WoiSxs X~ X x Xt X kX,
b x idy |
W18 xs X — s X Xy X s X g X
are defined as S-rational maps. Since ¥, = (1:,,}, idy) and W, = (z,,idy) when S x s X
is identified with X, we see that T, = T, yields ¥, = ¥,.Now ¥isan open immersion
on U, s0 a x idy and b x idy must coincide on the S-dense open subscheme
|

X = (a x idy)  (U) n (b x idg) (V)

L . .
of § x5 X, hence on all of § x4 X. In partlcu‘lar, their first components agree, ic.,
a = b. Thus we see that X — Ry)sis a monaemorphism. That this transformation
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respects the laws of composition follows immediately from the associativity of m.

d

If X has been expanded into an S-group scheme X such that X is S-dense and
open in X and such that the group law on X restricts to the strict group law m on
X, then there is a canonical commutative diagram of natural transformations

X ——— Rys

.

X —_ .@f/s

where the vertical arrow on the right-hand side isan isomorphism, since X is S-dense
in X. Although it is not in general true that the group functor X is generated by X,
ie., that X(T) generates the group X (T') for all S-schemes T, the latter is nevertheless
correctif T'is a strictly henselian local S-scheme. Namely the group law on X induces
a surjective and smooth S-morphism

X xgX—X,

cf. 5.1/4, so that, by 2.3/5, each T-valued point of X lifts to a T-valued point of
X x5 X.

5.3 Proof of the Theorem for a Strictly Henselian Base

We have already seen in 5.2/2 that Theorem 5.2/3 implies Theorem 5.1/5 if the base
is strictly henselian. So we may restrict ourselves to strict group laws and give only
a proof of 5.2/3. In this section we assume that the base S consists of a strictly
henselian local ring which is noetherian and normal. Furthermore, let X be a smooth
and separated S-scheme which is faithfully flat and of finite type over §, and let m
be a strict group law on X; the symbols ®, ¥, and U, V, W will be used in the sense
of 5.2/1.

Introducing further notational conventions, let X" be the n-fold fibred product
of X over S, and, for integers 1 < i <...<i,Zmlet

Piyi X" — X7

be the projection of X" onto the product of the factors with indices i 15+« 5. In such
a situation, we can view X" as an X"-scheme with respect to the morphism p; ;.
So we have the notion of X’-density in X "; to be more precise, we will speak
of p;, .. ;-density. Sometimes, we will write x = (x4,...,%,) for points in X" and
(x;,5-..,x; ) instead of Py, ..i,(x) for their projections onto X". As usual, the S-rational
map m: X2 --» X will be characterized by (x,, x,) — X15.
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Lemma 1. Let Q be the set of points (x, y,z,w) € X* such that
(zwelU, »welU, and (x,ywye U .
Then Q is p,,5-dense in X*.

Proof. Recall that the intersection of finitely many p,,3-dense open subschemes of
X*is p,,5-dense and open again. Since U is p,-dense in X2, the first two conditions
pose no problem. So it remains to show that the set Q' of all points (x, y, w) e X3,
satisfying (y,w) € U and (x,yw) € U, is p; ,-dense and open in X 3, We can describe
Q' as the inverse image of U with respect to the following morphism:

idy x @
X xgU 222, x3 2 X7,

(x,y,w) — (x,y,yw) | — (X,yW).

Since U is p,-dense in X2, and since @ leaves the first component fixed and is an
open immersion on U with a p,-dense image in X2, we see that Q' is p;,-dense and
open in X3. |

The assertion of Lemma 1 is only an example for similar assertions of this type.
Roughly speaking, it says that, fixing X, y, and z, the stated conditions form open
conditions on w; these are satisfied if w is generic.

Lemma 2. Let T be the schematic closure in X* of the graph ofm:U—X. Let T
be an S-scheme. If (a,b, ¢) is a T-valued point in I(T) = X3(T), then, using the functor
Rys of 5.2, the T-birational maps t,, Ty, and T, of X ¢ satisfy 1,0 T, = 7. in Rxs(T).

Proof. Let Q be the py,5-dense open subscheme of X* which was considered in
Lemma 1. Then the S-rational maps

Xt X, (%0, 2, W) (%, 3, X(yw), W),

pi Xt X4, (605w (X, ),2W, W),

are defined on Q. Next, let Q 1= Qnp,, *(U). We claim that Q' N (T xg X) is
schematically dense in @ N (I x5 X). Namely, p L) NI x5 X)is schematically
dense in T' xg X by the definition of I" (since X is flat over S), and this density is
not destroyed when we intersect both sets with an open subscheme of X* such as

Q. Since the law m is associative, the morphism u|r x, x) ~g factors through A,

the schematic image of A|q. By continuity, also ulr x, x)no factors through A, and
thus yields a morphism

pTxs X)NnQ—A.
Now set
® =(a,b,c) x idy: T xg X — X*,

and Q, ;.= @ (). Then Q. is T-dense and open in Xr. Let o7 : X7 — X% be
the T-morphism derived from ¢, and let yr be the T-morphism obtained from p by
means of the base change T— S. Then p; o pr o @r coincides with 7, on Q, , ., but
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also with 7, © 7 since pt o @ factors through A. Hence, we have 7, 0 T, = T,in Rys(T)-

O

We state an important consequence of Lemma 2.

Lemma 3. Let T be the schematic closure in X3 of the graph of m:U — X, and
let q;:T — X* be the morphisms induced from the projections py: X>— X2
Then each g;; is an open immersion and has an image which is p,-dense and p,-dense
in X* ‘

Proof. First we want to show that each gj; is injective as a map of sets. If (a, b, c) is
a T-valued point in T'(T) for some S-scheme T, then 7, 0 7, = T, by Lemma 2. Since
this is an identity in the group QX/S(T), any two of the maps 7., 7, T, determine the
third one. As stated in 5.2/4, the natural transformation X — Zx;s is a mono-
morphism. Hence a point of I iis known if two of its components are given. This
implies that g;; is injective as a map of sets and, hence, that g;; is quasi-finite. We
claim that the maps g;; are, in fa¢t, S-birational. Namely, using the notation of 5.2/1,
the projection ¢, gives rise to an isomorphism g73(U) = U because m is defined
on U. Furthermore, ¢, 3 deﬁnes} an isomorphism g73(V)-=»V because q,3 is injec-
tive and because @y is an isoimorphism U -~ V. Likewise, q,3 defines an iso-
morphism g33(W) =5 W because g,3 is injective and because ¥y is an isomorphism
U -~ W. Thus, by Zariski’s Main Theorem 2.3/2 (recall that S is normal), each g;;
is an open immersion and, due to the X' -density of U, ¥, and W in X 2, the image
of each g;;is X-dense in X 2 (with respect to py and p,). |
|

Fixing points a, b, ce X (T:) for some S-scheme T, we see from the preceding
jemma that there exists at most one point x € X(T) such that ax = ¢ and at most
one point y € X (T) such that yb = c. Suggestively, we will write a*c for x and cb™*
for y. With this notation the assertion of Lemma 3 can be interpreted as follows:
The maps ‘

q13° q;% :XZ -3 XZ > (aa b)H(a:ab) >
Gpso gil: X2 X2, (ab)r—(bab),

q23° q;% :XZ == X2 s (aa C) — (a—lc: C) >

d12°4d13 1X2 -3 X2,  (@c)r—(aa'c),
Giaodil: X2 X2, (b (b0,

q12°q;§:X2 B X2 s (b,C)}——)(Cb_l,b),
are S-birational. They are open immersions on their domains of definition; the latter
as well as the corresponding images are X-dense in X? (with respect to both
projections). In addition, the lemma shows that the law m: X? ---» X is defined at
a point (x,y) € X? as soon as the fibre g72((x,y)) is non-empty. This fact will be
needed in the next lemma.
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Lemma 4. Let a be an S-valued point of X ,‘and consider another point b € X. Then
a Xg b can be viewed as a point in X?, and the law m: X? ---> X is defined at a x4 b
if and only if the birational map <,: X ---»X| is defined at b.

Proof. Tt is only necessary to verify the if-part of the assertion. Considering the -

S-dense open subscheme U, := U n (a xg X) of a x5 X = X, we know that 7, is at
least defined on Uj,. Let I, be the schematic closure in X2 of the graph of Tau,- Then
we have

(@axs)n(axsU, xs X) =T

and, by continuity, also a x4 I, = I'. Since the image of the morphism
axgl,c,T L» Xx?

contains the point a x4 b, the fibre over it w1th respect to g, is non-empty. Thus,
the assertion follows from Lemma 3. j O

The preceding lemma is very useful 1f \one wants to expand the domain of
definition of m: X2 ---» X by means of enlargmg X. Namely, one has only to enlarge
the domain of definition of 7, : X ---» X for su1tab1e sections a € X (S). This can be
done by introducing sort of a translate of X| } by a and by gluing it to X.

Therefore, fix a section a € X(S) and, as in the proof of Lemma 4, consider the
schematic closure I, in X2 of the graph of the S-birational map 7,. Thena x4 I, = T’
and, by Lemma 3, both projections p;: l"\ — X are injective as maps of sets.
Since 1, is S-birational, Zariski’s Main Theorem implies that p, and p, are open
immersions; furthermore, p, and p, have S- dense images in X. So these projections

define gluing data, and we obtain an S- scher}ne

X=X u§ X,
which is smooth and of finite type over S, and which is covered by two S-dense open

subschemes isomorphic to X. Due to its deﬁmtlon I, is closed in X?, hence X" is

separated over S.
We need to distinguish betwecn the two‘coples of X which cover X'. So let us

write more precisely

plzr,,—»)]r(a),
Pzil—::—’):(

for the gluing data, where X (a) is another copy of X. This way we have fixed one of
the two canonical embeddings of our originalJS-scheme X into X'. We want to show
that X'(a) can be interpreted as a “left translate” (in X’) of X by a. Namely, consider
the S-birational map t,: X ---» X. It is defined at least on U, so that we have the
following factorization:

5.3 Proof of the Theorem for a Strictly Henselian Base 123

Working in X', we can write this diagram also in the form

I,
/ 3
U, ——»\X(a) ;

Since the horizontal map is the restriction to U, of the canonical isomorphism
X = X(a), we see that 7,: X ---» X extends to an isomorphism t,: X -~ X(a),
namely the canonical one. In particular, 7, extends to an S-birational map X' ---» X’
which is defined on X.

Lemma 5. As before, let X' be the S-scheme obtained by gluing a left translate
X(a) = 1,(X) for some point a € X(S) to X. Then X' contains X as an S-dense open
subscheme, and the strict group law m on X extends to a strict group law m’ on X'.

Proof. We have already seen that X is S-dense in X". 8o it is clear that m extends
to an S-birational group law m’ on X’, and we have only to show that m' is strict,

ie., that there exists an X’-dense (with respect to both projections) open subscheme

U' « X' x5 X' satisfying the following conditions:
(a) m' is defined on U’,
(b) the universal translations

DX xg X' -+ X' xg X', (x, ) F— (x, xy) ,
P X xg X'+ X' xg X', ) (xy,y),
are open immersions on U’, and the images V' := ®(U’) and W' := ¥(U’) are

X’'-dense in X' x5 X' (with respect to both projections).
The product X x5 X’ is the union of the open subschemes

X xs X, X(a) xg X, X x5 X(a), and X(a) x5 X(a) .

In order to define U, let U, as before, be the open subscheme of X x4 X whose
existence is required in Definition 5.2/1 for the strict group law m on X. Further-
more, let U, be the image of U under the isomorphism

T, xid : X xg X =5 X(a) xg X .
Then m'is defined on U since m is defined on U, and the isomorphism 7, : X -~ X (a)
can be used in order to obtain the morphism
Ul — X(a) s (Ta(x)5 y) — Ta(x.v) s

from m: U — X. Both morphisms coincide on an S-dense open part of U, due to
the associativity of m. Thus m’ is defined on the open subscheme U U U; of X' x5 X’;
the latter is X'-dense with respect to the first projection.

Next consider the open subscheme

{(x,y,z)eX3 i(x,»elU, (Xy,z) € U}

of X3. Similarly as in the proof of Lemma 1, one shows that it is pa5-dense in X3,
Hence, intersecting it with X x5 a xg X and applying the isomorphism
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idy x 7,

p
X xgaxgX = &

X x5 X(a),

we obtain an open subscheme U, of X x¢ X(a) which is X (a)-dense with respect to
the second projection. Then the morphism

(*) U,—X, (xu®)r—(ay

is defined and, using the associativity of m, it coincides with the multiplication
m: U — X on an S-dense open part of U. Thus, writing U’ for the X'-dense (with
respect to both projections) open subscheme U u U; U U, of X’ x4 X', we see that
m' is defined on U’ and, hence, that U’ satisfies condition (a).

In order to verify condition (b), notice that the universal translations @ and ¥’
corresponding to m’ extend the universal translations ® and ¥ corresponding to m.
Thus, since @ and ¥ are open immersions on U, we see that @ and ¥’ are open
immersions on each one of the schemes U, U,, and U,. In particular, ® and ¥’ are
quasi-finite on U’. Since these are S-birational maps on X’ xg X', Zariski’s Main
Theorem 2.3/2" implies that they are open immersions on U’.

As in 5.2/1, set ¥V := ®(U). Furthermore, let ¥; be the image of V under the
isomorphism

T, X T, X xg X =5 X(a) xg X(a) .

Then V' := @'(U’) contains VU V;, and the latter is X'-dense in X' x5 X' (with
respect to both projections); in particuiar, V' is X’-dense in X’ x5 X".

Similarly, one shows that W' := ¥'(U’) is X"-dense in X’ xg X’ with respect to
the first projection. In order to see that the same is true for the second projection,
notice that W, := W'(U’) is X-dense in X’ xg X with respect to the second projec-
tion. Furthermore, consider the open subscheme

W, =¥ (U,) c X x5 X(a)

and look at the description () of m’ on U, which was discussed above. Then W, is
seen to be X (a)-dense in X’ X X (a) with respect to the second projection since; for
any T-valued point z of X, the right translation

Xr-—->Xs, X+ X2z,

is T-birational. Hence W' = W¥'(U’) is X'-dense in X’ xg X’ with respect to both
projections. The latter finishes the verification of condition (b). O

Now consider a sequence d,, 4,, ... of S-valued points of X. Iterating the
construction of X' by using these points, we obtain a sequence of S-schemes

X=XOcxWcXxBe |

where X® = X¢ D y X0(qg,). Each X contains X as an S-dense open subscheme,
and X® is separated, smooth, and of finite type over S. Furthermore, Lemma 5
shows that the strict group law m on X extends to a strict group law m® on each
X%, Using a noetherian argument, we want to show that the sequence X <
XM c X® <, becomes stationary at a certain X®. Then, for a suitable choice of
the a;, we will see that X® is the S-group scheme we are looking for.
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* Lemma 6. There exist finitely m}any S-valued points a;,...,a, € X(S) such that, for
 x™ gs above, the S-rational map m:X x5 X -—-» X extends to an S-morphism

o, |

Proof. First we show that we canj find ay,...,a, € X(S) in such a way that, for each
2 € X(8), the S-birational map t, : X ---» X extends to an S-morphism X — xXo,
Proceeding indirectly, consider a sequence ay, as, ... in X(S) such that

- 'X-—-+X“'), i=12,...,

qi+1 "

is not defined everywhere on X. Let I'® be the schematic closure in (X )3 of the
graph of m: U — X. It coincides with the schematic closure of the graph of the

induced strict group law m® on X®; so we know from Lemma 3 that
pia: TH — X0 x o XO

is an open immersion. Setting
09 :=p,(T) N (X x5 X),

the 0 form an increasing sequence of open subschemes of X x5 X, since the re
form an increasing sequence. However, the base S consists of a noetherian ring,
which implies that the topological space X X X is noetherian. Thus the 09 must
become stationary at a certain index n € N, and we claim that, for a = a,,, the map
1,: X - X is defined everywhere. Namely, consider a point b € X. By the defini-
tion of X1, the birational map 7, : X -—-» X@*V is defined everywhere. So we see
from Lemma 4 that the law m‘"T" on X®*1 js defined at a x5 b. Hence the fibre

over a xg b of \

i
plz . r(r+1) —_— X(n+1) XS X(n+1)

|
is non-empty, and a x5 b & Q®*Y). But, since Q"+ = 0™, the fibre over a X b of
P12 : ™ — X® xg X®
\

cannot be empty, and we see fro;m Lemma 3 that the law m™ on X is defmed at
a xg b. In particular, 7, ., =17,:X --> X" is defined at b. This contradicts our
assumption on the sequence ay, ay,...; so there must exist a,,...,4, € X(S) such
that 7, : X - X® is defined everywhere for each a € X(S).

Tt remains to show that, in this situation, the S-rational mapm: X x5 X ---» X®
is defined everywhere. We know already from Lemma 4 that m is definedona xg X
for each S-valued point a of X. However, this is not enough, and we now have to
use the fact that our assumption on X to be a faithfully flat and smooth scheme
over a strictly henselian base S yields the following property:

Let ¢ be a point of S, and let C, be the reduced subscheme of X x5t whose
underlying topological space is the closure in X xst of the set of points
{a(d;a € X(S)}. Then there exists a component X of X, contained in Cy cf.
Lemma 7 below. :

Moreover, let k' be an extension field of k(s), and let t' be the scheme of k. Then
C, x, t' coincides with the reduced subscheme of X xgt’ whose underlying topo-

logical space is the closure of the points {a(t');a € X(S)}; cf. [EGA 1V,], 11.10.7.
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In particular, if Z, is a dense open subscheme of X' x ¢/, there exists a point a € X(5)

such that a xg t' gives rise to a point of Z,.
Now let us continue the proof of Lemma 6. Using the notation of Lemma 3, we

know that
q23 ° q;% :X ><S X i X XS X H (W,x) > (W_lx, x) 3

is an S-birational map. It is an open immersion on its domain of definition D, and

this domain as well as its image are X-dense in X2 with respect to both projections.

Now consider a point t € X2 It follows that the set

Z = {(w,x,y) € X*;(w,x)je D and (w'x,y) e U},

where U is as in 5.2/1, is open and p,5-dense in X and, hence, open and dense in
X xg t. So, applying the base change t — X? to X x5 X 2, the assumption on X as
explained above implies the existence of a point a € X(S) such that a x t € Z. Then
the S-rational map

Xxg XX, (u))r@™y,
is defined at t. Furthermore, since the left translation

T X b X®
is defined everywhere, we see that
X xg X > X", (xy)r—al@’x)y),
is defined at t. However, this map coincides on X xg X with the strict group
law m, since m is associative. So we see that m extends to an S-rational map
X xg X - X®

which is defined at all points of X 2. |

Lemma 7. Let T be a noetherian scheme, let Y — T be a morphism of finite type,
and let {a;,i € I} be a family of sections of |Y. Let t, and to be points of T such that
to is a specialization of t,. Let C; be the closure of the set of points {a;(t;), i € I} in
the fibre Y, ,j =0, 1. Thendim G, 2 dim C,.

In particular, if T is strictly henselian and noetherian, and if Y — T is smooth
and surjective, then, for each point t € T, there exists a connected component Y? of
the fibre Y, such that the set of the points {g(t), ae Y(T)} is dense in Y,°.

Proof. 1t suffices to show the first assertion after a base change ¢ : T" —» T such
that the points #,, t; belong to the image of ¢. So, due to [EGA II], 7.1.4, we may
assume that T consists of a discrete valuation ring with generic point ¢, and closed
point 4. Denote by V the schematic closure of C, in Y;so V is flat over T, since T

consists of a discrete valuation ring. Then it is clear that

1
dimV, zdimV¥, ;

cf. [EGA 1V;], 14.3.10. Since C, < V, the first assertion is clear.
For the second, we may assume that |the relative dimension of Y over T is
constant on Y. Due to 2.3/5 the closure of|the set of points {a(t,), a € Y(T)} is Y,
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for the closed point ¢, of T. Hence the second assertion follows from the first one.

O

Now the proof of Theorem 5.2/3 is quite easy. Namely, let X be the S-scheme
x® constructed in Lemma 6. Then X is separated, smooth, of finite type, and
contains X as an S-dense open subscheme. Furthermore, by Lemmata 5 and 6, the
strict group law m on X extends to a strict group law m on X, and the S-rational
map it : X? ---» X is defined on X2. It is a general fact that X is an S-group scheme
in this situation; so we can end the proof of 5.2/3 by establishing the following result:

Lemma 8. Let X be a smooth and separated S-scheme of finite type which is equipped
with a strict group law m. Assume that X (S) is non-empty and that there exists an
S-dense open subscheme X of X such that # is defined on the open subscheme X 2of
X2 Then X is an S-group scheme with respect to the law .
Proof. First we want to show that

m:X xg XX, x,y)— xy,

is defined everywhere. Since the domain of definition is compatible with faithfully
flat base change (2.5/6), it suffices to show that, for each point (b, c) € X2, the map

iy =idy x #: X xg X2 —->X xg X

is defined at some point (a,b,c) € X x5 X2 above (b, c). For example, let (a, b, c) be
a generic point of the fibre over (b, ¢). Then (a,b) € X x¢ X is a generic point in the

~ fibre over b and the map

Xxs X=X, (Wx)——xw,

is defined at (a, b), since m is a strict group law on X. Likewise, using Lemma 3, the
map

Xxg XX, Wyr—wly,

is defined at (a, ¢) which is a generic point in the fibre over c. Since 7 is defined on
X2, the map

miX xgX xg X =X xs X, . (w,x,y)— (w, xw)(w1y))

is defined at (a,b,c), and the associativity of m shows that m’ coincides with .
Thus i is defined on all of X2.
Similar arguments show that the map

XxgX—X, () —x7ty,

is defined everywhere. But then 7 defines on X the structure of an S-group scheme.
Namely, returning to the functorial point of view, consider the monomorphism

of 5.2/4. The group law on %xs restricts to the law 7 on X, and X(T) # ¢ for
T = S and, hence, for all S-schemes T. Thus, since the map (x, y) s (x1y) is defined
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on X xg X, we see that each X(T) is a subgroup of Zgs(T). So X is a subgroup
functor of Zx,s and in fact, the representability being granted, an S-group scheme
with group law . |

So we have finished the proof of Lemma 8 and thereby also the proofs of 5.2/3
and of 5.1/5 for the case where the base S consists of a strictly henselian valuation
ring or of a separably closed field.

Chapter 6. Descent :

During the years 1959 to 1962, Grothendieck gave a series of six lectures at the
Séminaire Bourbaki, entitled “Techmque de descente et théorémes d’existence en
géométrie algebrique”. In the ﬁrstw lecture [FGA], n°190, the general technique of
faithfully flat descent is mtroduced It is an invaluable tool in algebraic geometry.
Quite often it happens that a certam construction can be carried out only after
faithfully flat base change. Then qne can try to use descent theory in order to go
back to the original situation one started with. Before Grothendieck, descent was
certainly known in the form of Galms descent.

We begin by describing the ba51c facts of Grothendieck’s formalism and by
discussing some general criteria for effective descent, including several examples.
Then, working over a Dedekind scheme our main objective is to study the descent

" of torsors under smooth group schemes; see Raynaud [4]. As a preparation, we

discuss the theorem of the square and use it to show the quasi-projectivity of torsors.
Relying on the latter fact, CffCCtIVC descent of torsors can be described in a very
convenient form; we do this in Section 6.5. As an application, we look at existence
and descent of Néron models for torsors. Also, working over a more general base,
we are able to extend the technique of associating group schemes to birational group
laws as discussed in Chapter 5. The chapter ends with an example of non-effective

descent.

6.1 The General Problem

Let p:S'—> S be a morphism of schemes and consider the functor # — P*F,
which associates to each quasi-coherent S-module & its pull -back under p.
Then, in its simplest form, the problem of descent relative to p:S'— S is to
characterize the image of this functor. The procedure of solution is as follows. Set
§":=8 xg§,andlet p;: 5" — S\ be the projection onto the i-th factor (i = 1,2).
For any quasi-coherent S’-module &', call an S”-isomorphism ¢ : pf &' — piF’
a covering datum of &'. Then the\palrs (%', ) of quasi-coherent S-modules with

covering data form a category in a natural way. A morphism between two

such objects (#',¢) and (%', w) éonsmts of an S-morphism f: %' — % which
is compatible with the covenng data ¢ and y; thereby we mean that the

diagram ;



