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is commutative.

Starting with a quasi-coherent S-module &, we have a natural covering datum
on p*%, which consists of the canonical isomorphism

pI(p*F) =(pop)*F = (pop)*F = p3(p* 7).

So we can interpret the functor &% ——p*# as a functor into the category of
quasi-coherent S’-modules with covering data. It is this functor which will be of
interest in the following. We will show that it is fully faithful if p:§'— § is
faithfully flat and quasi-compact, and tl‘lat, furthermore, it is an equivalence of
categories if, instead of covering data, we consider descent data; i.e., special covering
data which satisfy a certain cocycle condition The problem of descent can be viewed
as a natural generalization of a patching problem cf. Example 6.2/A.

As usual we will call a diagram

.
A——«»B?C

of maps between sets exact if « is injective and if im« = ker(f, y), where ker(,7)
consists of all elements b € B such that f(b) = y(b). Working in the category of
abelian groups, the exactness of such a dla‘gram is equivalent to the exactness of the

sequence g
0— 4 —4 B C.

Proposition 1. Assume thatp: S’ — Sis fazthfully flat and quasi-compact. Let & and
9 be quasi-coherent S-modules, and set g ‘— p o py = p o p,. Then, identifying g*F
canonically with p¥(p*&) fori =1, 2, lzkewzse for q*g the diagram

Homg(#, g)—»Homs (p*/ p*g)—-)Homs T*F,9*9)
is exact. In other words, the functor & +—> p*%F from quasi-coherent S-modules to

quasi-coherent S'-modules with covering dajta is fully faithful.

Proof. The assertion is local on S, so we can assume that S is affine. Then §' is
quasi-compact, and it is covered by finitely many affine open subschemes S; = &',
i e I. Consider the disjoint union S’ := [1ierS; of these schemes.

Let u:5'— S be the canonical morphism, p: S’ — S its composition with
p:S ~ 8, and let p,, p, denote the projections of S” := §’ x4 S’ onto its factors.
Then we obtain a diagram

Homg(#,%) —"— Homg (p*#,p*%) ——3 Homs.(q*F,q*%)

u* (u x u)*

¥ ¥
Homg(#,9) ——— Homg(p*#,p*%) ——— Homs.(7*#,7*9)
Pz
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where := P © P1 = P © P,. The diagram is commutative if, in the right-hand square,
we consider single horizontal arrows, either p§ and p;or pf and p5f. Furthermore,

. 4 being faithfully flat, the vertical maps are injective. Using this fact, it is easily
~ checked that the upper row is exact if the lower row has this property. In other

words, we may replace p: S'— Sby p: S’ —> S and thereby assume that S and §’
are affine, say S = Spec R and §' = Spec R'. Then the problem becomes a problem
on R-modules.

Let
(*) R— R ZBR @R
be the diagram which corresponds to the projections §” — 5’ — S. We claim that
the assertion of the proposition follows if we can show that the tensor product of

() with any R-module M yields an exact diagram. Namely, consider R-modules M
and N such that & (resp. %) is associated to M (resp. N), and assume that we have

exact diagrams
M—M®gR—SMEzR @R,

N-—>N@RR3N®R QR .

Then the injectivity of N — N ®g R’ implies the injectivity of the map p* in the
assertion. Similarly, it is seen that any R’-homomorphism M ®; R'— N ®; R/,

" which corresponds to an element in ker(p¥, p%), restricts to an R-homomorphism

M — N. This yields im p* = ker(p¥, p¥). Since the opposite inclusion is trivial, our
claim is justified. So, in order to finish the proof of the proposition, it remains to
establish the following result:

Lemma 2. Let R — R’ be a faithfully flat morphism of rings. Then, for any R-module
M, the canonical diagram

M—M® RS M®zgR ® R

is exact.

Proof. We may apply a faithfully flat base change over R, say with R". Thereby we
can assume that R — R’ admits a section R’ — R. So all the maps in the above
diagram have sections, and the exactness is obvious. O

Next we want to introduce descent data and the cocycle condition characterizing
them. Set §”:=§' x5 8 x5 8, and let p;;: S” — S” be the projections onto the
factors with indices i and j for i <j; i, j = 1, 2, 3. In order that a quasi-coherent

§'-module #' with covering datum ¢: pf#’ — p5.#" belongs to the essential
image of the functor & — p*J it is necessary that the diagram

F Pty s ok pE G ok pk g PBP s kg

PPt F P12P3% = P3aP1 ¥ P3Pz ¥
pha0

* ok gt N % ok grt

pPispi & > Piap2 &
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is commutative; the unspecified identities are the canonical ones. Namely, if %' i
the pull-back under p of a quasi-coherent S-module and if ¢ is the natural covering
datum on &, then the diagram is commutative, because all occurring isomorphismg
are the canonical ones. The commutativity of the above diagram is referred to ag
the cocycle condition for ¢; in short, we can write it as
Pi30 = p330 0 pth0 .

It corresponds to the usual cocycle condition on triple overlaps when a global object
is to be constructed by gluing local parts. A covering datum ¢ on &' which satisfieg
the cocycle condition is called a descent datum on %'. The descent datum is called
effective if the pair (¥, @) is isomorphic to the pull-back p*# of a quasi-coherent
S-module & where, on p*%, we consider the canonical descent datum. Also we
want to mention that the notions of covering and descent data are compatible with
base change over §.

In the case where S and S’ are affine, covering and descent data can be described
in terms of modules over rings. Namely, let S = Spec R, §' = Spec R’, and consider
a quasi-coherent S’-module &' with a covering datum ¢ : p¥ %' — p3 %", where
&' is associated to the R'-module M’. Then p¥% ' and p%%"’ are associated to
M’ ®z R and R’ ®x M’, both of which are viewed as R’ ®z R'-modules. Thus the
covering datum ¢ on &’ corresponds to an R’ ®, R’-isomorphism

M @ R =R @z M’

which, again, will be denoted by ¢. Using the canonical map M'— M’ ®; R’
as well as the composition of the canonical map M’ — R’ @z M’ with ¢}, we
arrive at a co-cartesian diagram M' =3 M’ ®gz R’ over the canonical diagram
R'—3 R ®z R. This means that, considering associated arrows in both
diagrams, M’ ®z R is obtained from M’ by tensoring with R’ ®; R" over R’
Conversely, any such co-cartesian diagram determines a covering datum on M’
and, hence, on .

If @ is a descent datum on %, we can pull it back with respect to the projections
p;: 8" — S". Due to the cocycle condition, the various pull-backs of #' to §” can
be identified via the pull-backs of ¢. Thereby we obtain in a canonical way homo-
morphisms (depending on ¢)

M @z R =M ®x R ®x R’
such that the diagram

(*) M =M @R =M @R @ R
is co-cartesian over the canonical diagram
(#%) 'R R=TR®RR.

Furthermore, (+) satisfies certain natural commutativity conditions just as we have
them for (x*) or for the associated diagram

Sm 3 S/I :)—) S/ ,
where p; o py, = py © 13, €tc. Conversely, one can show that each co-cartesian
diagram (*) over (+x), which satisfies the commutativity conditions, determines a

- over the canonical diagram
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descent datum on M’, ' and.hence on &". It is clear that a descent datum ¢ on %' is
effective if and only if the associated co-cartesian diagram M’ =3 M’ ®z R’ can be
enlarged into a commutative co-cartesian diagram

M-—>M=T]3MQEzR

R >R TR @R .

" Returning to the case where S and S’ are arbitrary schemes, it is sometimes con-

© venient to formulate the cocycle ?ondition within the context of T-valued points of
i §, where T is an arbitrary S—schemc So consider a quasi-coherent S'-module %
- with a covering datum ¢ : PrF — p3F . For t, t, € §'(T), denote by

go,i,,z.ti‘ﬁ'—»t;‘f’
the pull-back of ¢ under the morphism (t,t,): T — §”. Adding a third point
t; € S'(T), we can consider the morphism

Listyyts): T—> 8"

_—

and compose it with each one of the projections §™ :—:;_) §”. Then, pulling back ¢ to

T, we see that ¢ satisfies the cocy‘cle condition if and only if

Dry,t5 = Piyts © Prpty

for all t;, t,, ty € S'(T) and all T. In particular, for t = t, = t, = t3, the cocycle
condition implies ¢, , = ¢ and,‘hence ¢, = id. For example, if £: §' — §' is the
universal point of §', we see that the pull-back of a descent datum ¢ : pf #' — p3 &'
with respect to the diagonal morphism A: S’ — S” yields the identity on #".

Lemma 3. Assume that the morphism p: S' —» S admits a section. Then any descent
datum @ on a quasi-coherent S’-m:odule F' is effective. More precisely, the choice of
a section s: S — S’ of p determines an S-module &, namely & = s*&", such that
p*&F is isomorphic to the pair (F ", @).

Proof. Writing T := §', let us consider the points ¢ := idg- and f := s o p of §'(T).

" Then t*%' = ' and i*%"' = p*%, and we can consider the isomorphism

f=opF 5 prF
It is enough to show that f is compatlble with the descent datum on p*%; i.e., we
have to show that the diagram

prF —2— piF
S )
pip*F =——=pip*F

is commutative. In order to do this, consider the following S”-valued points of S":

Pi» P2, and tyi=sopop; =sopop;.
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Then ¢ = ¢, ,, since (py,p,) : §” — §” is the identity, and we have
Pif=pfoLi= Op.e fori=1,2,
since the diagram

s (Pists) s Xs s

N /; f) = (id,s 0 p)
S/
is commutative. Now the cocycle condition for ¢ yields

‘ qDl’h's = (PPsz © (pPuPz
and thus
pif=pifoe. O

Now we are ready to prove the desired result on the descent of quasi-coherent
S’-modules.

Theorem 4 (Grothendieck). Let p: §' — § be faithfully flat and quasi-compact. Then
the functor & — p*&, which goes from quasi-coherent S-modules to quasi-coherent
S’-modules with descent data, is an equivaler;zce of categories.

Proof. We know already from Proposition 1 that the functor in question is fully
faithful. So it is enough to show that each descent datum on a quasi-coherent

§’-module is effective. The latter is clear by | Lemma 3if p: S’ —> S admits a section.
We will reduce to this case.

Fu'st observc that we may replace the morphxsm p:S—Sbya composmon
7:5 5558, where u:S' — §' is falthfully flat and quasi-compact. This is
true since the functor F' > u*F’ is full§r faithful (see Proposition 1) and since
descent data on &' (with respect to p) can ejasily be pulled back to descent data on
w*Z' (with respect to p). So, proceeding as in the proof of Proposition 1, we may
assume that S and § are affine, say S = Spec R and S’ = Spec R'.

Let M’ be an R-module with descent datum ¢ : M’ ® R’ =5 R’ ®z M'. Then
@ determines a co-cartesian diagram M' —3 M’ ®g R’ over R =3 R' @z R". If M’
descends to an R-module, we know from Lemma 2 that it must descend to the
R-module

K:=ker(M' =3 M’ ® R').
So let us work with this module. We claim that the diagram
K—M=TM @R
is commutative and co-cartesian over
R— R =R @R

and, hence, that ¢ is effective. In order to verify this, we may apply a faithfully
flat base change and thereby assume that R — R’ admits a section. Then it
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; J: follows from Lemma 3 that (M’, @) descends to an R-module M. More precisely,
M’ =3 M’ ®g R’ extends to a commutative co-cartesian diagram

M— MM @R

over
R— R 3R @R .
Since M is mapped bijectively onto K by Lemma 2, our claim is justified. O

Keeping the morphism p: 8’ — S, we want to study the problem of when an
§'-scheme X' descends to an S-scheme X. The general setting will be the same as in
the case of quasi-coherent modules, and the definitions we have given can easily be
adapted to the new situation. For example, a descent datum on an S'-scheme X' is
an S”-isomorphism

@ P1X — piX’

which satisfies the cocycle condition; p¥X' is the scheme obtained from X’ by
applying the base change p; : §” — §'. Again there is a canonical functor X +— X
from S-schemes to S’-schemes with descent data. If p: §' — § is faithfully flat and
quasi-compact, we see from Theorem 4 that this functor gives an equivalence
between affine S-schemes and affine §’-schemes with descent data. More generally,
the same assertion is true with affine replaced by quasi-affine (use Theorem 6(b)
below). Thus, in this case, descent data on affine or quasi-affine §’-schemes are
always effective. Recall that an S'-scheme X is called affine (resp. quasi-affine) over
§'if, for each affine open subscheme S; = §', the open subscheme S; xg X' of X' is
affine (resp. quasi-affine). To be precise, one has, of course, to mention the fact that
one can easily generalize Theorem 4 from quasi-coherent modules to quasi-coherent

“algebras, so that it can be applied to structure sheaves of schemes over S or §'.

Working with an additional structure such as a multiplication on a quasi-coherent
S'-module, this structure descends if it is compatible with the descent datum.

Tt is not true that descent data on schemes are always effective, evenifp: S’ — S
is faithfully flat and quasi-compact; see Section 6.7. So one needs criteria for
effectiveness. First we mention that Lemma 3 carries over to the scheme situation.
Since the proof was given by formal arguments, no changes are necessary.

Lemma 5. Assume that p: S’ — S has a section. Then all descent data on S'-schemes
are effective.

In order to formulate another criterion, consider an §'-scheme X' with a descent
datum ¢ : pf X' — p¥ X', and let U’ be an open subscheme of X'. Then U’ is called
stable under ¢ 1f ¢ induces a descent datum on U’; ie., if ¢ restricts to an iso-
morphism p}U’ - p3U’.

Theorem 6. Let p: S' — S be faithfully flat and quasi-compact.
(a) The functor X — p*X from S-schemes to S'-schemes with descent data is

Jully faithful.
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(b) To simplify, assume S and S’ affine. Then a descent datum ¢ on an S'-scheme
X' is effective if and only if X' can be covered by quasi-affine (or, alternatively, by
dffine) open subschemes which are stable under ¢.

Proof. Assertion (a) is an immediate consequence of Proposition 1. Namely, consider
S-schemes X and Y, and write X”, Y’ for the schemes obtained by the base change
p:S —S. Then it is to show that the sequence

* pt
Homg(X, Y) £ Homg. (X', ¥') =3 Homg.(X", Y")
41

is exact. The problem is local on S and Y. So we may assume that S and Y are affine,
Furthermore, replacing S’ by a finite disjoint sum of affine open parts of §', we may
assume that §' is affine. Then, up to a local consideration on X, we can pose the
problem in terms of quasi-coherent algebras so that Proposition 1 can be applied.
In order to verify the if-part of assertion (b), we may use (a) and assume that X’
is quasi-affine. This means that X" is quasi-compact and can be realized as an open
subscheme of an affine scheme or, equivalently, that the canonical map

X' — SpecT'(X',04) =: Z'

is a quasi-compact open immersion; cf. [EGA II7], 5.1.2. Let S = SpecR and §' =
Spec R’. Then, using the fact that, for quasi-compact R’-schemes, the functor of
global sections commutes with flat extensions of R’, the descent datum on X" gives
a descent datum on the R’-module I'(X’, 04.) and hence on the affine ’-scheme Z'.
Thus it follows from Theorem 4 that Z’ descends to an affine S-scheme Z. Consider-
ing the canonical projections
z *z_—: 7%z,

where Z" is obtained from Z by the base change S” — S, we see g7 1(X’) = ¢51(X")
since the descent datum of Z' is stable on X'. However, this implies g (g(X")) = X’;
in particular, the inverse image of g(X’) with respect to g is open. Using the fact
that g: Z' — Z is faithfully flat and quasi-compact and that therefore the Zariski
‘topology on Z is the quotient of the Zariski topology on Z (cf. [EGA 1V, ],2.3.12),
we see that g(X") is open. So X’ descends to the quasi-affine piece g(X’) of Z. The
only-if-part of assertion (b} is trivial. O

We want to add a criterion for the effectiveness of descent data on schemes which
uses ample line bundles. Let us recall the definition of ampleness, cf. [EGA I1], 4.5
and 4.6. An invertible sheaf ¥ on a scheme X is called ample on X if X is
quasi-compact and quasi-separated, and if for some n > 0 there are global sections
l;,...,1, generating #®" such that X,,, the domain where the section /; generates
£#® is quasi-affine for each i. In fact, if & is ample on X, then, for any n > 0 and
any global section ! of £ ®", the open subscheme X, c X is quasi-affine as will follow
from arguments given below. An invertible sheaf .# on an S-scheme X is called
S-ample on X (or relatively ample over S) if there exists an affine open covering {S;}
of S such that the restriction of % onto X xg S; is ample for all j. The definition of
S-ampleness is independent of the choice of the particular covering {S;}, see [EGA

i such that the canonical morphism
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? 1], 4.6.4 and 4.6.6. If X admits an S-ample sheaf, then, by definition, it is automat-

jcally quasi-separated over S.

Consider now a quasi-compact and quasi-separated morphism f: X — § and
an invertible sheaf & on X. Fc:)r each n e N, the direct image f, £®" i§ a quasi-
coherent sheaf on §, see [EGA IJ, 9.2.1. Let U, be the open set of all points x € X

(fH(LO)— £ P"

is surjective. Then U, consists of all points x € X such that there is a section of £®"

. which is defined over the f-inverse of a neighborhood of f(x) in § and which

generates & ®n at x. Denote by U the union of all U, for n > 1. Let
M= @ [ (L

n=0

be the quasi-coherent graded S-algebra associated to %, and set P = Proj . see
[EGA II], § 2. There is always a canonical S-morphism r : U — P. Namely, assum-
ing S affine, one shows for each|global section I of #®" with n > 0 that there is a
canonical isomorphism
[P, Op) = T(X,, Ox)

use [EGA 1], 9.3.1, and hence a borphism
X,— P, P.

The morphism is an open immersion if and only if X, is quasi-affine over S. Thereby
it is seen that the sheaf & is S-ample on X if and only if U = X and the canonical
morphism r : U — P is an open immersion.

Returning to the problem o‘f descent relative to a morphism p:S — .S, the
notion of descent data generalizes naturally to pairs (X', %) where X' is an
§'-scheme and &’ is an invertiblé sheaf on X’. Namely, a descent datum on such a

pair consists of a descent datumi

¢:ptX — p5X’
on X" and of an isomorphism
L8 — o* %,

where % is the pull-back of %’ with respect to the projection pfX' — X'. Of
course, A must satisfy the cocycle condition, which is a cocycle condition over the

cocycle condition for ¢. More precisely, introducing the total space L" associated
to %', we can say that a descent datum on (X’, #’) is a commutative diagram

piL —i— piL’

pix —%— pix’,

where the vertical maps are the projections of the linear fibre spaces p} L' onto their
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bases p¥X’, where ¢ and 1 are descent data for schemes, and where A is an
isomorphism of linear fibre spaces over ¢. Another possibility is to view the descent

datum ¢ as a cartesian diagram

3 i} r
X %8 xs 8 =3 X' xS X

Sur ‘—;
—

|

—

with natural commutativity conditions (similar to what we have explained for
S’-modules), and to view A as an isomorphism

Aqre —

Gy .

The cocycle condition for A can then be formulated as usual by using pull-backs
with respect to the projections X' x5 8’ x5’ —= X’ x5 §".

Theorem 7 (Grothendieck). Let p: S’ — S be faithfully flat and quasi-compact. Let
X' be a quasi-compact S'-scheme, and consideir an invertible sheaf &' which is §'-ample
on X'. Then, if there is a descent datum on (X', &), the descent is effective on X', and
the pair (X', %') descends to a pair (X, %) with an S-ample invertible sheaf & on X.

We give only a sketch of proof for the case where S and § are affine. First, using
Theorem 4, the graded S'-algebra 4" = (P, 5 of1 (L ®"), where f': X' — 5" is the
structural morphism, descends to a graded S-algebra M = Puso M, Next, let I be
a global section in some .#"®". Then we can write

with global sections g; of 05, and global sec
certain point x € X, at least one of the glo
at this point. Thereby it is seen that X’ can

®1

tions I; of #,. If I' generates #'®" at a
bal sections 1 ® I; must generate #'®"
be covered by quasi-affine open pieces

X, where 1 is a global section in some %'®" which descends to a global section in

. Then the descent datum is stable on the
6. Finally, %’ descends to .% with respect to
one can use Theorem 4 again.

6.2 Some Standard Examples of De

1, and X’ descends to X by Theorem
the canonical projection X’ — X since

scent

We start with an example which shows that the problem of descent occurs as a

natural generalization of a patching problem.

Example A (Zariski coverings). Consider a

quasi-separated scheme S and a finite

affine open covering (S;);c; of S. Let S’ := | ;. S; be the disjoint union of the S;,
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and let p: S’ — S be the canonical projection. Note that p is faithfully flat and

quasi-compact. A quasi-coherent S'-module &’ may be thought of as a family of

Si_modules %. Under what conditions does &' descend to a quasi-coherent
s-module #; ie., under what conditions can one glue the &; in order to obtain
a quasi-coherent S-module & from them? By Theorem 6.1/4 we need a descent
datum for & with respect to p: ' — §. Such a datum consists of an isomorphism
0:PiF ' = p3# ' satisfying the cocycle condition, where p, and p, are the projec-
tions from S” onto S'. In our case, we have

§'=8xs8 =[] 8§ xs8= [ SinS,

i,jel i,jel

and on S; X5 S; = §;N S, the first projection p, is the inclusion of §;N §; into §;
whereas p, is the inclusion of §; n §; into ;. Thus the isomorphism ¢ consists of a
family of isomorphisms

Py gzilsinsj - Jﬁjlsinsj
satisfying the cocycle condition, namely, the condition that

QDikls,.ns,.nsk = (ijls,.nsjnsk © Qylsins;ns,

. for all i, j, ke I. So the descent datum ¢ is equivalent to patching data for the

S-modules &, and the cocycle condition assures that the patching data are com-
patible on triple overlaps.

Example B (Galois descent). Let p: S’ — S be a finite and faithfully flat morphism
of schemes, and assume that p is a Galois covering; i.e., there is a finite group I" of
S-automorphisms of S’ such that the morphism

I'xS—8", (0, x) — (0x,%) ,

_is an isomorphism; I" x §" is the disjoint union of copies of ', parametrized by T".
For example, if K'/K is a finite Galois extension of fields, the morphism p:

Spec K’ —» Spec K is such a Galois covering. Similarly, for a pair of discrete

valuation rings R c R, the morphism p : Spec R’ — Spec R is a Galois covering if Rbonse

R is henselian, R’ is (finite) étale over R, and the residue extension of R’/R is Galois; State,

use 2.3/7 and the fact that R’ is henselian. We want to describe the descent of schemes Gl

with respect to p: 8’ — S. ' P32
Counsider an S'-scheme X' with an action I' x X’ — X’ which is compatible

with the action of I' on §'; i.e., we require that, for each ¢ € I', the diagram

X/_"'___)Xr

]

g —72 , 5

is commutative (for simplicity, automorphisms given by ¢ are again denoted by
o). Notice that the diagram is cartesian. We claim that an action on X’ of the type
just described is equivalent to a descent datum on X".
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Namely, from the isomorphism
I'x§>=8, (o, %) — (0x,x) ,
we obtain an isomorphism
I'xI'x 8 =8,

Taking these isomorphisms as identifications, the projections p;:S” — S” and
p;: 8" — §' define projections

IxI'x S ST x5}

(o,7,%) —> ((0 0 T)X, TX, X)

which are described by
© P2
— (0,7X) ,
s ox

©) (©,5x) —25 (go1,x), (0,%)
—_— X
—r, (T, x)

Now assume that we have an action of I" on X’ which is compatible with the
action of T on §'. Then we can use the same definitions (0) in order to define
“projections” from I' x T’ x X" to I' x X’ and from the latter to X". Thereby we
obtain a diagram ‘

IxITxX3BIxX 33X

- T

IxIx83Tx8=¢§

where the vertical maps are the canonical ones. Since the diagram (x) is cartesian,
all squares above are cartesian if in the first and second rows maps are considered
which correspond to each other. Furthermore, in the last row we have the usual
commutativity relations

(@) propiz=pP1°P13>
(ii) py o P23 =P2°P125
(it)) py © paz =Pp20P13 -
The same relations hold for the first row. Indeed, (ii) and (iii) are trivial whereas (i)
is equivalent to the associativity condition
o(tx) =(co1)x; o,tel’, xeX' .

So it is clear that (x#) yields a descent datum on X', the associativity of the action
accounting for the cocycle condition.

Conversely, start with a descent datum ¢ on X". Then, applying the base change
X’ — §' to the morphism

IxIxSBTrxstss,

and
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¢ obtain the following canonical diagram

I'xI'xX — I xX — X'

W

'xI’'x§ —— I'x§ —— §
which has cartesian squares. In particular, we have canonical isomorphisms

I'x X' =58 xg X',

IxITx X' =58 xs8 xg X'

Therefore we can write the descent datum ¢ in the form of a diagram (+). Further-

. more, we may assume that (x+x) forms a part of (+#), the one, where in both rows

of (++) only the lower morphlsms are considered. We claim that the morphism
I x X' — X' over p;: T x §' — §' defines the desired action on X'. To justify
this, note first that each o € I" acts ‘as an automorphism on X’. Next, the commuta-
t1v1ty conditions (ii) and (iii) 1rnply\ that the morphisms

FxeX’——>FxX’

are defined as in (0) and, finally, as beforc condition (i) accounts for the associativity
of the action of I" on X". !

As for the effectiveness of the desccnt one may look at the condition given in
Theorem 6.1/6. Assuming S and, hence S’ affine, as well as X’ quasi-separated, a
necessary and sufficient condmon‘ is that the I"-orbit of each point x € X' is con-
tained in a quasi-affine open subscheme of X'. Namely, considering translates of
such subschemes under elements ¢ € I" and taking their intersections, we can cover
X' by quasi-affine open pieces which are I'-invariant and hence stable under the
descent datum. For example, if X’ — §' is quasi-projective, the condition is fulfilled,
and the descent is always effective.

Example C (Descent from R’ to R, where R = R’ is an étale extension of discrete

valuation rings with same residue field). Let K (resp. K') be the field of fractions of

R (resp. R'). We want to show th:e following result on the descent from R’ to R,
which will be further generalized ip Example D.

Proposition C.1. The functor whtchmssoctates to an R-scheme X the triple (X, X', 1),
consisting of the K-scheme Xy := ‘X ®R K, the R’-scheme X' .= X ®gx R’, and the
canonical isomorphism ©: X ®x K' =5 X' Qg K', is fully faithful. Its essential
image consists of all triples (X, X ’L 1) which admit a quasi-affine open covering.

The notion of an<open coveri111g of a triple (X, X', 7) is meant in the obvious
way. Such a covering consists of a ﬁamily of triples (Ug;, U;, 7;), where the Ug ; (resp.
the U;) form an open covering pf Xy (resp. X'), and where 7 restricts to an
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isomorphism t;: Uy ; ®x K' — U; ®g. K'. The covering is called quasi-affine if a[|
Uy, ; and all U; are quasi-affine.

Starting with a triple (X, X’,t), we have the canonical descent datum op
Xy ®x K'. Transporting it with 7, we obtain a descent datum on the generic fibre
X' ®g K’ of X', and by the lemma belovﬁl, this descent datum extends canonically
to a descent datum on X". Then the assertion of Proposition C.1 is a consequence of
6.1/6. So it is enough to show:

Lemma C.2. For each R’-scheme X', any descent datum with respect to K — K’ on
the generic fibre of X' extends canonically to a descent datum with respect to R — R’
onX'.

Proof. Let us use the notations R” and R” for R"®; R and R’ ®z R' ®z R'.
Since R’ is étale over R, the diagonal embedding Spec R’ — Spec R” is open (cf.
2.2/2). Thus its image, the diagonal A" of SpecR”, is a connected component
of Spec R”. Furthermore, since the residue extension of R’/R is trivial, the special
fibre of A” coincides with the special fibre of SpecR”; i., SpecR" = A" U T”
where the special fibre of T" is empty. Alsimilar assertion is true for the diagonal
A" in Spec R".

Write K” and K" for the two- and threefold tensor products of K’ over K.
Furthermore, consider an R'-scheme X " and a descent datum with respect to
K — K’ on its generic fibre. Indicating generic fibres by an index K, the descent
datum on X corresponds to a diagram

—
" r — ’
Xy = Xy /| Xk

) J - | J v

Spec K" =3 Spe c K" = Spec K’

with cartesian squares such that the rows satisfy the usual commutativity condi-
tions. In order to extend the descent datum to a descent datum on X', it is enough

to extend the diagram (*) to a diagram

" :Il - ’
X" =5 X 3 X

o J j

Spec R” =3 Spec R” =3 Spec R’
of the same type. In order to do this, we have to realize that, by restriction, the lower
row in () gives rise to unique isomorphisms
() A¥ =5 Ay -5 Spec K’
and that the upper row in (x) gives rise to unique isomorphisms

(7)™ (A%) - (') () 5 X
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That the maps Xg — X coincide on the p"-inverse of Ay follows from the fact that
the pull-back of descent data with respect to diagonal maps always yields the

" jdentity map (cf. 6.1). A similar reasoning applies to the maps Xy —; = Xx.

Now it is easy to extend (#) into (). Since the special fibre of SpecR” is

‘ concentrated at the open and closed subscheme A", similarly for Spec R” and its

diagonal A", we have just to extend the part of (x) which lies over (*+*). However

* this is trivial by the above isomorphisms.

Example D (Descent from R’ to R where R R’ is a pair of discrete valuation

' rings with same uniformizing element & and with same residue field). The situation is

more general than the one considered in Example C. For example, R’ can be the
maximal-adic completion of the discrete valuation ring R. But we will see that,
nevertheless, the results C.1 and C.2 remain valid in this case.

Consider a pair of discrete valuation rings R < R’ as required, and denote their
fields of fractions by K and K'. By an index K we will indicate tensor products with
K over R. Let ¢ : Spec R — Spec R” be the diagonal embedding where, as usual,

R"=R ®gR.

Leinma D.1. Let M" be an R"-module and denote by M’ its pull-back with respect to
5. Assume that the quotient M"/T" is flat over R" where T" is the kernel of the
canonical map M" — My. Then the canonical diagram

MI! M/

|

" i
My — My

is cartesian; i.e., M" is a fibred product of Mg and M' over My (in the category of
sets, resp. R-modules, resp. R"-modules).

For example, the flatness condition on M"/T" is satisfied if we start with an
R'-module M’ and take for M" the pull-back of M' with respect to a projection
p;: Spec R" —> Spec R'.

Proof. Since the horizontal maps are surjective, we may extend the diagram to a
commutative diagram of exact sequences

0 » L M" . M , 0
0 Ly » ML > My )

The second row can be thought of as being obtained from the first one by taking
tensor products over R with K. We claim that the map L — Ly is an isomorphism;
ie, that L is already a K-vector space. Then it is immediately clear that M" is the
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fibred product of My and M’ over M; the universal property is checked by meang
of diagram chasing in (x).

So it remains to show that L is already a K-vector space. Let us consider the
first row of () for the special case where M” = R". Thereby we obtain the exact
sequence

(%) 0—J"—sR"—>R —0

of R-modules (or, alternatively, R”-modules). In terms of R-modules, the sequence
is split exact, since R” — R’ admits a section. In particular, taking the tensor
product of (x+) over R with R/n"R for any n > 0 gives a split exact sequence

0 —_ S”/nnsﬂ — R”/Tr"R” —_— R//TEIIR! s 0 A
By the assumptions on R and R, we see that the map

R"/m"R" — R[n"R’

o

is bijective. Thus, for n =1, we have J"/23" =0 and, therefore, 3" = n3". So J"
is a K-vector space since R” and, hence, 3" have no n-torsion. Now, tensoring
(**) over R” with M" and using the fact that M’ is the pull-back of M" with
respect to the diagonal morphism Spec R’ — Spec R", we get the exact sequence
S @+ M” — M" — M’ —> 0. Comparing it with the first row in (), we have a
surjective R-homomorphism 3" ®g~ M" — L. Therefore, since 3" is a K-vector
space, the same must be true for L, provided L has no n-torsion.

Thus it remains to show that the n-torsion of L is trivial. To do this we consider
first the case where M” = T”. Using a limit argument, we may assume n"M" =0
for some integer n. But then the isomorphism R"/z"R" -~ R'/7"R’ yields an
isomorphism

M// - MII/TchII —:> M//T[IIMI —_ Ml
so that L is trivial in this case. In the general case we tensor the exact sequence
0 — TI/ — MII — M!//T// _ 0
over R” with R', thereby obtaining the sequence
0 —_— TII ®R" Rl — MI — (M///TII) ®R” R! — O .

The latter is exact because M”/T" is flat over R”. By the same reason, (M"/T") ®g~ R’
is flat over R’ and, thus, T' := T" ®g~ R’ is the torsion-submodule of M. Since the
canonical homomorphism M” — M’ maps T" surjectively onto T’, the first row
of the diagram (x) yields an exact sequence

0—LNT"—T" —T —0

and it follows from the special case considered above that L n T” must be trivial.
So the n-torsion of L is trivial and we see that L is a K-vector space. O

Reversing arrows in the definition of cartesian diagrams and fibred products,
one arrives at the notions of co-cartesian diagrams and amalgamated sums. We want
to translate the assertion of the above lemma into a statement on amalgamated
sums of schemes. First note that Lemma D.1 remains true if we work in the category
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of- R-algebras or R"-algebras. So iit yields a statement on amalgamated sums in the
category of affine R-schemes or R”-schemes. We want to generalize it to the case of
pot necessarily affine schemes. Set S = SpecR, §' = Spec R, §” = Spec R”, and let

5.8 — S" be the diagonal embedding. For any R-scheme X, let X = X ®g K et
its generic fibre.

Proposition D.2. Let X' be an S'<scheme and let X" be its pull-back with respect to
one of the projections p;: 8" — §'. Then the canonical diagram

X = 8*Xg— X

o

X' = X X

is co-cartesian in the category of iR-schemes (resp. R"-schemes); i.e., in this category,
X" is the amalgamated sum of X' and X under X.

Proof. In order to reduce the assertion of the proposition to Lemma D.1, we need
to know that a subset F < X" is closed if and only if F n X' is closed in X’ and
F n X}, is closed in Xg; note thé:it, in terms of sets, the above diagram consists of
injections and that X" = X’ U Xk, due to the assumption on R and R’. The necessity
of the condition is clear. In ordejr to show that it is sufficient, we may assume that
X' is affine, say X’ = Spec A'. Then the above diagram of schemes corresponds to

a diagram of R"-algebras

AH A/

|

" ’
Ay —— A,

which is cartesian in the category of sets. Now assume that F n X" is closed in X’
and that F ~ X% is closed in Xg. Let 3’ = A’ and Iy < Ak be the corresponding
reduced ideals. Since F n X’ coixilcides with F n X§ on Xk, we have
|
rad(AxJ') = rad(AxJk) -

The fibred product of I’ and S}’(‘ over A, exists in the category of sets. Denoting it

by 3", we see that we have a canonical inclusion J" = A" furthermore, it is easily
verified that 3" is an ideal in A”. We claim
|

rad(3'4)=F  and  rad(3"4y) = .

The inclusion “ < is trivial in both cases. To justify the opposite inclusions, consider
anelement f'e J'. Using the equation between radicals above, it is seen that a power
of f has an inverse image in S”;iso ferad(3"4"). Similarly, if fe Ik, a power of ©
times a power of f has an inverse image in 3" and, hence, ferad 3" Ag. This justifies
the above description of 3 and J, and it follows that the closed subset of X" given

by 3" coincides with F n X’ oniX " and with F n Xy on X. Hence F is closed in



146 6. Descent

X", since X” = X' U Xg. Thereby we haye proved the desired topological charac.
terization of closed sets in X”. Looking at complements of closed sets, we see that
a subset of X” is open if and only if its intersection with X’ is open in X’ and its

intersection with X} is open in Xg.
Now it is easy to verify the assertion of the proposition. Consider a scheme Z

and a commutative diagram

Xy — Xy

where the solid arrows are given and where the square is the canonical diagram. It
has to be shown that the diagram can be supplemented by a unique morphism
X" ---+ Z. Let W be an open affine subscheme of Z, let U’ be its inverse image in X"
and Uy its inverse image in Xg. Then by the above topologxcal characterization,
U” := U’ U U} is an open subscheme of X” which extends ¥ and whose pull-back
with respect to the diagonal embedding J : X' — X" yields U’. So we can look at

the problem
Uy — Uy

Working locally on U” and applying Lemma D.1, we want to show that it has a
unique solution. To do this, it is enough to verify the flatness condmon of Lemma
D.1 or, equivalently, the fact that the schematlc closure X" of X in X" is flat over
R”. Since the projection p; we are cons1der1pg is flat, we see that X " can be interpreted
as the pull-back under p; of the schematic closure X' of X} in X'; cf. 2.5/2. However,
X'isflat over R’ by its definition. So X" is flat over R” and Lemma D.1 is applicable.
It follows that the above local problem has a unique solution U” — W and, by
working with respect to an affine open covering of Z, that the above global problem

has a unique solution X" — Z. O

Now we want to explain how the results D.1 and D.2 imply that descent data
with respect to Spec K’ — Spec K extend to descent data with respect to ' — S.

Lemma D.3. Consider an R'-module M’ (resp. an R'-scheme X') and a descent datum
@k with respect to K — K’ on My (resp, on Xy). Then @y extends uniquely to a
descent datum with respect to R— R’ on M’ (resp. on X').
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- Proof. A descent datum with respect to R—— R’ on M’ may be viewed as a
commutative diagram

M ®g R’ R ®g M’
MI MI ° s

where ¢ is an isomorphism satisfying the cocycle condition and where the vertical
maps are the canonical ones obtained from the diagonal map ¢ : §’ —» S”. Similarly,
for the descent datum @y on the generic fibre of M’, we get the upper square of the
following commutative diagram

(M' @ R)y —2—(R ® M)

Then, taking the fibred product of the first and third rows over the second row,
Lemma D.1 shows that ¢ extends uniquely to an R"-isomorphism

P:M @R — R ® M,

whose pull-back with respect to the diagonal map & : 5" — S yields the identity
on M". That ¢ satisfies the cocycle condition follows in a similar way from Lemma
D.1. Thus ¢ is a descent datum on M’ which extends gy; it is unique. For the case
of schemes, the assertion is deduced in formally the same way from Proposition D.2.

O

Now, applying Theorems 6.1/4 and 6.1/6, we can derive from the above lemma
the desired generalization of Proposition C.1.

Proposition D4. (a) The functor which associates to each R-module M the triple
(Mg, M, ), where My := M ®g K, M’ := M ®g R',and 1 : My ®x K' -~ M’ ®g K’
is the canonical isomorphism, is an equivalence of categories.

(b) The functor which associates to each R-scheme X the triple (X, X', 7) consist-
ing of the K-scheme Xy := X ®g K, the R'-scheme X' = X ®g R’, and the canonical
isomorphism ©: Xy ®x K' = X' ®pg. K, is fully faithful. Its essential image consists
of all triples (X, X', ©) which admit a quasi-gffine open covering.

Finally, we want to mention that it is an easy exercise to verify assertion (a) of
the proposition by a direct argument. Applying a limit argument, one reduces to
the case of finitely generated R- or R'-modules, where it is possible to treat the case
of torsion and of free modules separately. However, for the purpose of assertion (b),
it was necessary to prove more precise results also in the module case.
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6.3 The Theorem of the Square

Let S be a scheme, let X be an S-scheme, and consider an S-group scheme G which
acts on X. Using the notion of T-valued points for arbitrary S-schemes T, such an
action corresponds to an S-morphism

GxsX—X, (gx)r—gx,

where

glg'x)=(gg)x and lyx=x

for arbitrary points g,g’' € G(T), x € X(T), and for the unit element 1; € G(T).
Alternatively, interpreting G (resp. X) as a functor from the category of S-schemes
to the category of groups (resp. sets), we can say that the group functor G acts on
X; ie., that, for each S-scheme T, we have an action of G(T) on X(T) which is
compatible with S-morphisms T' — T in the usual way. Similarly as in the case of
group schemes, one defines for any g € G(T) the translation

T, X— X, X gx,

where, more precisely, 7, has to be interpreted as a T-morphism from X to Xr.

Now let us fix an invertible sheaf % on X. Its pull-back to X will again be
denoted by .%. So we can talk about the pull-back of & with respect to a translation
1,, g € G(T), thus obtaining the invertible sheaf

Fy =1L
on Xy. Let Pys be the functor which associates to any S-scheme T the group
Pic(T x5 X)/p*Pic(T) ;

ie. the group of invertible sheaves on X xg T modulo the pull-back under the
projection p: T xg X — Tof invertible sheaves on T. Then Py;s is a commutative
group functor, and we can consider the morphism

0y:G— Pys, gr—oclasof Z£,®%7,

which is a functorial morphism between functors from the category of S-schemes
to the category of sets. We will say that £ satisfies the theorem of the square if g
respects group structures and, thus, is a functorial morphism between group
functors. We do this in analogy to the classical case, where X is an abelian variety
over a field K, and where the action of G on X is given by translation. In this case,
the functor Py,s coincides with the relative Picard functor Picys (see 8.1/4), and the
classical theorem of the square asserts that, for each invertible sheaf % on X, the
morphism ¢ is a morphism of group functors. For proofs see Weil [2], § VIII, n°57,
Thm. 30, Cor. 2, as well as Lang [1], Chap. III, § 3, Cor. 4, and Mumford [3],
Chap. 11, § 6, Cor. 4.

The purpose of the present section is to extend the classical theorem of the square
to a more general situation. For the applications we have in mind, it is enough to
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know that, for each invertible sheaf % on X, a power % ®" satisfies the theorem of

he square.

* Theorem 1. Let S be a Dedekind scheme and let G be a smooth S-group scheme with
~ connected fibres which acts on an S-scheme X, where X — S is smooth, of finite type,
 and has geometrically connected gieneric fibres. Then, for any invertible sheaf £ on
X, there is an integer n >0 such that &®" satisfies the theorem of the square.

If the generic fibres of X are proper or if the local rings Os . at generic points
- teS are perfect fields, the assertion holds for n = 1.

E We will reduce the theorem to the classical situation where S consists of a field.
" In fact, we will show that & satisfies the theorem of the square if and only if this is
* the case over each generic point of §; see Lemma 2. In order to carry out this
reduction step, it is necessary to write down somewhat more explicitly the condition
of g : G — Pys being a morphism of group functors. Let m be the group law on
G.Set T := G x5 G, and consider the projections p;, p;: G x5 G 3 G as T-valued
points of G. Furthermore, let

fiGxsGxs X—Gx5G

" be the projection onto the first two factors. Then we claim that ¢ is a morphism

of group functors if and only if
M = Loy @ %' ® ‘s’pp_zl ®Z,
as an invertible sheaf on G x5 G xg X, is isomorphic to the pull-back f*A4" of an
invertible sheaf 4" on G x5 G.
In fact, the class of ./ in Pys(G x5 G) is given by

0 (m(p1,72)) — P(P1) — P (p2) -

Thusitis trivialif ppisa morphisrin of group functors. In order to show the converse,
we mention the following fact: |

For an arbitrary S-scheme T
Lnig.g) @ %_1 ® -5:’;71 ® Z is the
(9,9") xsidy

diagram

gm(g.y’) ® =$g_1

where p is the projection onto the

and two points g,g' € G(T), the invertible sheaf
pull-back of .# with respect to the morphism

i Txg X—GxgGxsX.

So if # = f*A4 for some invertible sheaf #" on G X5 G, the commutative

)i
TxsX P51 G xsGxsX
Pk f

T @), GxsG

first factor, yields
® %' ®Z = p*(9,9)(A))
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and, hence,

P2(m(g,9)) = 02(9) + 02(9) .

This justifies our claim. We will now reduce the theorem of the square to generic
fibres.

Lemma 2. Let S, G, X and & be as in Theorem 1, and let M be the invertible sheaf
on G x5 G x5 X which has been defined above. Then the Sfollowing conditions are
equivalent: )

(a) There exists an invertible sheaf & on G Xs G such that # is isomorphic to
the pull-back f* A" of A" with respect to the projection fiG x5G xs X — G x5 G;
Le., & satisfies the theorem of the square.

(b) For each generic point & of S, the invertible sheaf & satisfies the theorem of
the square after performing the base change Spec k(&) — .

Proof. The fact that an invertible sheaf on X satisfies the theorem of the square is
preserved by any base change. Thus the ini1plication (a) =>(b) is obvious.

In order to show the converse, we may assume that S is irreducible with generic
point . If condition (b) is given, there is an invertible sheaf Nz on (G x5 G),
satisfying

M = [N

where the index ¢ indicates restrictions to generic fibres. We can extend N to an
invertible sheaf 4" on G x5 G because G x5 G is regular. For example, this can be
done by considering a divisor on (G xg G), which corresponds to .#;. Taking its
schematic closure in G xg G, the associated invertible sheaf on G x s G may be
viewed as an extension of Nz

Now consider the invertible sheaf .4/ := .# ® (f*(#))™ on G x4 G x5 X.
Using the projection p: G x5 G x5 X — S, we claim there is a divisor A on S such
that

M’ = p*(Os(4)) -

Namely, .#; is trivial. So we can choose a global generator and view it as a mero-
morphic section of .#’. Then it generates ' over an open subset of G x5 G xg X
whose complement consists of at most finitely many fibres over closed points in

S. Thus thereis a divisor D on G x5 G x5 X whose support meets only finitely many
fibres of p over closed points of S such that

M = Og . 6x, x(D) .
Now look at the projection
P3:GxsGxg X — X .

Since the structural morphism G xg G—> S is smooth and has geometrically
irreducible fibres, the same is true for p, and it is easily seen that the pull-back of
a prime divisor on X yields a prime divisor on G x s G xg X. Hence, the Weil divisor
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D, whose support is not dominant over X, is of the tye p¥(A’) with a Weil divisor
A’ of X. So we have

QN M= MQ(fHA)T! = p5(0x(A)),

and it remains to show that ¢y (A’) is the pull-back of an invertible sheaf on S. If X
has irreducible fibres over S, a similar argument as above shows that A’ is pull-back
of a divisor on S. In the general case, consider the morphism

q=(56idy): X — G x5 G x5 X ,

where ¢ is the composition of the structural morphism X —» § with the unit section
S — G. Pulling back () with respect to ¢, we get on the right-hand side Ox(A’). On
the left-hand side, the pull-back of .# is trivial; it is the evaluation of .# at the unit
section of G x5 G. Furthermore, since fo q: X — G x5 G factors through S, we see
that g*(f*(4"))is the pull-back of an invertible sheaf on S. So @y (A’) is the pull-back
of an invertible sheaf on S as claimed; we can write it in the form Og(A) with a divisor
AonS.
Now, looking at the isomorphism

M fEN) ® p*(0(A))

obtained from (+), we can replace .#" by its tensor product with the pull-back of
0Os(A) to G x5 G. Then the resulting invertible sheaf, again denoted by 4, satisfies
M = f*(A). Thus # is as required in condition (a). |

The essence of the lemma consists in the fact that an invertible sheaf & on X
satisfies the theorem of the square as soon as the pull-back of .# to each generic
fibre of X satisfies this theorem. So, in order to establish Theorem 1, it can be
assumed that S is the spectrum of a field.

In the main case where G = X is an abelian variety we are done by the classical
theorem of the square. For the general case, we refer to Raynaud [4], Thm. IV. 3.3,
in order to see that a power of . satisfies the theorem of the square. In fact, one
shows that . itself satisfies the theorem of the square if the field K is replaced by
a finite radicial extension; cf. Raynaud [4], Thm. IV. 2.6.

We want to add two possibilities of obtaining the theorem of the square in special situations, always
assuming that the base is a field. First, let us consider the case where X is proper. In order to show that

‘PY:G“_'PX/K

is a morphism of group functors, look at the relative Picard functor Picy g (cf. Section 8.1). Since X is
proper, smooth, and geometrically connected over K, the canonical morphism

Py — PicX/K
is injective (cf. 8.1/4). So it is enough to show that @ defines a morphism of group functors
@y :G—> Picy, .

Now we use the fact that Picy,y is representable by a group scheme over K (cf. 8.2/3) and that (Pick/k)rea
is an abelian variety 4 over K; cf. [FGAJ, n°236, Cor. 3.2. Since ¢} maps unit sections onto each other,
it must factor through A. Then the rigitiy lemma (cf. Lang [1], Chap. I1, § 1, Thm. 4) shows that the



152 ) 6. Descent

resﬁlting morphism
G— A
is a morphism of group functors. Hence, it follows that . satisfies the theorem of the square.

The second method we want to mention applies to the case where X is a torsor under G. The
applications of Theorem 1 we have in mind refer to this situation. Still considering the case where §
consists of a field K and replacing K by its algebraic closure, we may assume that X coincides with G
and, thus, is an algebraic group over an algebraically closed field. Then, by the theorem of Chevalley
9.2/1, there is an exact sequence of algebraic groups over K

1—Gy—G—A—1

where G, is smooth, connected, and affine, and where A is an abelian variety. Since the Picard group
of the affine group G, consists only of torsion, one can show that a power of . is the pull-back of an
invertible sheaf on A. So one is essentially reduced to the case where G is an abelian variety.

6.4 The Quasi-Projectivity of Torsors

We want to introduce the notion of torsors, a notion which is closely related to the
concept of group schemes. Consider a base scheme S, an S-scheme X, and an
S-group scheme G which acts on X by means of a morphism

GXSX—_)X’ (g,x)l——+gx.

Assume that G is (faithfully) flat and locally of finite presentation over S. Then X
is called a torsor (with respect to the fppf-topology), more precisely, an S-torsor
under G if

(i) the structural morphism X — S is faithfully flat and locally of finite
presentation, and

(i) the morphism G x5 X — X Xg X, (g,x)— (gx,x), is an isomorphism.
Viewing G xg X and X x5 X as X .schemes with respect to the second projec-
tions, we see that the isomorphism in (i) is, in fact, an X-isomorphism. In other
words, applying the base change X — S to X and G, both schemes become
isomorphic. The same is, of course, true for any base change Y — S which factors
through X. In particular, if X(5) # &, the choice of an S-valued point of X gives
rise to an S-isomorphism from G to X, and there is no essential difference between
G and the torsor X. We say that the torsor X is trivial in this case. Furthermore,
X —> S satisfies any of the conditions listed in [EGA IV,],2.7.1 and [EGA IV,],
17.7.4, for example, being smooth, separated, or of finite type, provided these
conditions are satisfied by G — S. Namely, in order to apply the cited results, it is
enough to consider the case where S is affine. Then, since X — Sis open, there exists
a quasi-compact open subscheme Y of X such that Y — S is surjective and, hence,
faithfully flat as well as locally of finite presentation. So, what we have claimed
follows from the isomorphism G xg Y =5 X x5 Y by faithfully flat and quasi-
compact descent. In particular, if G is smooth, X is smooth and it can be trivialized
after a surjective étale base change §' —> S because, after performing a suitable base
change of this type, X will have sections by 2.2/14.
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Examples of torsors are easy to describe. Consider a finite Galois extension L/K
of fields. Then Spec L is a (Spec K)-torsor under the constant group Gal(L/K). Or,
consider an invertible sheaf & oxfl a scheme X and remove the zero section from its
associated total space. The resulting scheme is an X-torsor under the multiplicative
group (Gp)x- It is trivial if and only if & is trivial. We want to formulate now the
main result to be proved in this section.

Theorem 1. Let S be a Dedekind scjheme, and let X be a torsor under an S-group scheme

G. Assume that G is smooth, sepgrated, and of finite type over S. Then X is quasi-
projective over S. In particular, G itself is quasi-projective over S.

For the proof we have to con%truct an S-ample invertible sheaf & on X. In order
to do so, we use the theorem of the square.
First we show that, for any tlaffective divisor D on X, the associated invertible

sheaf & := Ox(D)is S-ample if X — supp(D) satisfies certain properties.

Proposition 2. Let Sbe a Dedekind scheme and let G be a smooth S-group scheme with
connected fibres which acts on arjt S-scheme X, where X is smooth and of finite type
over S. Assume there exists an open subscheme U < X such that U is affine over S
and such that U meets all G-orbitsj of points in X; i.e., such that the action of G induces
a surjective morphism G Xs U —> X. Then, for any effective divisor D on X with
support X — U, the invertible sheaf & = Ox(D) is S-ample.

For example, X — U provided with its reduced structure gives rise to such a divisor

D; of. [EGA IV,], 21.12.7.

Proof. In a first step we want to reduce to the case where S is local. So assume &
is an invertible sheaf on X such that, for each s € S, the pull-back L(s) of Z to
X(s) ;= X xg SpecUs,sis ample. Then there exist global sections [, ..., I generating
a certain power & (s)®" such that the open subscheme X (s),, = X (s) where I; gen-
erates Z(s)®" is affine; use [EGA IIJ, 452, or the characterization of ample
invertible sheaves given in Section 6.1. By a limit argument, the [; extend to sections
I of #®" over some neighborht})od §' of s € S and, by [EGA IV,], 8.10.5, we may
assume that the [; generate $®” over §, that the projection X XgS8 — S’ is
separated, and that the open subscheme X}, = X X5 S’ where I, generates & ®n js
affine. Thereby we see that Z is ample over a neighborhood of each point s € § and,
thus, that % is S-ample on X. |

Let us assume now that S is jthe spectrum of a local ring R. Since ampleness can
be checked after faithfully flat and quasi-compact base change, as follows from
[EGA 1V,], 2.7.2, it is enough to treat the case where R is strictly henselian. Using
the fact that G has gcometricaﬂy connected fibres, we see that G operates on the
connected components of X. So we can assume that X is connected. We claim that

it is enough to consider the case %Nhere the structural morphism X — S is surjective.
In fact, X — S is open and, if X — § is not surjective, we replace S by the image
of X. However, doing so, we may loose the property of S being local and strictly
henselian. In this case we have %to go back to the beginning and to start the proof

anew. Therefore, by induction on the dimension of S, we are reduced to the case
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where S is local and strictly henselian, whbre X — § is surjective, and where X ig
connected. Then X has sections by 2.3/5 and, thus, its generic fibre is geometrically
connected by [EGA 1V, ], 4.5.13.1. f

In this situation, we want to establish the assertion of the proposition. Replacing
the divisor D by a multiple of itself, we can assume that the invertible sheaf
& = (Ox(D) satisfies the theorem of the square; see 6.3/1. Then the divisor D, + D,
is linearly equivalent to 2D, where we have written D, for the translate of D under
g- Hence there is a section [ € T'(X, #®2) such that

X, =X — supp(D, + I})gq) =gUng™U.

As the intersection of two affine open sulf)schemes of a noetherian scheme, X, is
quasi-affine. Furthermore, it follows that & is ample, provided we can show that
the open subschemes gU n g™ U cover X if g varies over G(S).

So it remains to verify the latter fact. F 1x a point x € X. Write s for its image in
S and set k = k(s). We claim that there is a dense open subscheme Z, = G, such that

xegU,ng™U;

for each g € Z (k). To see this, we may assu}me that x is a closed point of X,. Then
we apply the base change k — k' to ﬁbrcsj over s, where k' = k(x) is finite over k.
Let W be the inverse of U, ®, k' under the Ijnorphism

G5®kk/—_}Xs®kklj) a'__)axs

and write W™ for its inverse under the group law on G, ®, k’. Then, since U
meets all G-orbits of points in X and sincef G has geometrically connected fibres,
WA W™ is a dense open subscheme of G, ®, k’. Furthermore, the relation
x € g(U; ® k') n g™ (U, ®, k') is equivalent to g~'x e U@ k' and gxe U, ®, k'
Thus x € g(U; ®, k') N g™ (U, ®, k') for all ge(Wn W~1)(k’). Then, using methods
of descent, we find a dense open subscheme of Wn w! descending to a dense open
subscheme Z; of G, such that x € gU, n g U, forall g e Z (k).

Now it is easy to see that the open subs chemes gU n g™ U cover X if g varies
over G(S). Namely, we have only to realize that, for each dense open subscheme
Z, = G,ofafibre overa point s € S, there exists a section in G(S) which, by restriction
to G, yields a section of Z_. If s is the closed point of S, this follows from 2.3/5. If s
belongs to the generic fibre of S, we can consider the schematic closure of G, — Z,
in G. Its special fibre is nowhere dense in the special fibre of G so that an argument
as the one given before will finish the proof of Proposition 2. ‘

Later, in 6.6/1, we will use the same idea|of proof again without the restriction
that the base S'is of dimension < 1. In this ca S¢, one can apply the assertion of 5.3/7
in order to end the proof. O

In order to derive the assertion of Theorem 1 from Proposition 2,-we need some
further preparations. Let G° be the identity component of G; ie., G° is the open
subscheme of G which is the union of all identity components of the fibres G, over
points s € S (cf. [EGA 1V,], 15.6.5). Then G? has geometrically connected fibres,
and it acts on X. Therefore we can apply Eroposition 2 if we can find an open
subscheme U <= X such that U is affine over § and such that U meets all G%orbits
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of points in X. As is easily checked on geometric fibres, the latter condition is
equivalent to the fact that U is S-dense in X:

Lemma 3. Let X be a torsor under a smooth S-group scheme G which is of finite type
over S, and consider an open subscheme U < X. Then U meets all G®-orbits of points

in X if and only if U is S-dense in X.

In order to really construct an open subscheme U < X as required in Proposi-
tion 2, we have to derive some information on the existence of affine open sub-

schemes of X.

Lemma 4. Let S = Spec R be an affine scheme which is noetherian, and consider an
S-scheme X of finite type which is normal and separated. Let (x;);. be a finite family
of points of codimension <1 in X. Then there exists an affine open subscheme U < X
containing all points x;.

Proof. We may assume that X is connected with field of rational functions L and,
furthermore, that all x; are of codimension 1. Then the local rings Oy, , are discrete
valuation rings contained in L, and they are pairwise different since X is separated.
So we can use the approximation theorem for inequivalent valuations (cf. Bourbaki
[2], Chap. VL, §7, n°1, Prop. 1) and see that
A:= () O,
iel

is a semi-local ring with local components 0y, x,- We can write A as a direct limit of
R-algebras 4; of finite type. Interpreting the elements of each Aj;asrational functions
on X, we obtain for each j a rational map

u;: X ---> Spec 4;

which is an S-morphism in a neighborhood of each x;. Since X and A; are of finite
type over R, our construction shows that u; is an open immersion at each x; if  is
big enough; cf. [EGA IV, ], 8.10.5. Thus we have reduced the assertion of the lemma
to the case where X is quasi-affine and where it is easily verified. O

Now we are able to prove the assertion of Theorem 1. As explained before, we
have only to construct an S-dense open subscheme U < X which is affine over S.
In order to do this, fix a closed point s € S. Working over an affine neighborhood
§' of sin S and applying Lemma 4, there is an affine open subscheme U’ c X x sS
which contains all generic points of X xg 8" and all generic points of the fibre X.
The complement of U’ in X xg S’ equals the support of finitely many prime divisors
Dy,...,D, of X x5 §'. Removing from § all closed points s’ such that the support
of some D; is contained in X, we may assume that U’ is S'-dense in X x sS.
Proceeding this way with all closed points in S, and using a quasi-compactness
argument, we obtain affine open subschemes U,..., U” of X such that U’is S’-dense
over an affine open part S of S and such that the S cover S. For simplicity, assume
that § is irreducible with generic point & Let D, be an effective divisor on X,

with support
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X ) v

let D be its schematic closure in X, and set U :== X — supp D. Then U is S-dense
in X since all U} are dense in X and since supp D cannot contain components of
closed fibres of X. Furthermore, U is affine over S. Namely, U xg S is contained
in U it differs from the affine scheme U' by the support of a divisor. Therefore the
inclusion U xg S =, Ut is affine, as can be checked locally, and it follows that
U xg S' must be affine itself; cf. [EGA IT], 1.3.4. So we have constructed U as
required in Proposition 2, thereby finishing the proof of Theorem 1. O

6.5 The Descent of Torsors

In this section we want to apply the descent techniques of 6.1 to torsors under group
schemes. So far we have dealt only with the descent of schemes without considering
a group structure or a structure of torsor on them; however, we will see that the
methods of 6.1 apply immediately to the new situation. Namely, consider a faithfully
flat and quasi-compact morphism of schemes p:S' — S as well as an S'-group
scheme G. Asin 6.1, set 8" := §' x5 S, and let p;, p,: 8" — S’ be the projections.
Recall that, in terms of schemes, a descent datum on G' with respect to p consists
of an S"-isomorphism
@:ptG — piC
satisfying the cocycle condition. Using the canonical isomorphisms
pHG xg G) = pEG xg pEG,  i=12,
one obtains from ¢ a descent datum
o x¢:pl(G x5 G')— p3(G' x5 G')
on G’ xg G'. Talking about descent data on group schemes, it is required that the
descent datum ¢ on G' is compatible with the group multiplication m: G' Xs G' —
G'; i.e., that the diagram

+ ! ¢xe 4 '
PG x5 G) — p3(G x5 G)

pi(m) pE(m)

PG —2—  piG

is commutative. Viewing p*G’ as the S"-group scheme obtained from G’ by means

of the base change p;: 8" — S, the condition simply says that the descent datum
@:ptG — p3G

is an isomorphism of S"-group schemes. Then, if the descent is effective, ie., if ¢

descends to an S-scheme G, Theorem 6.1/6 implies readily that the group structure
Aeceends from G' to G and, hence, that G is an S-group scheme.
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The procedure is similar for torsors. Consider an §'-scheme X’ which is a torsor
under an S’-group scheme G'. Let ¢ be a descent datum on G’ which is compatible
with the group multiplication on G’. Then a descent datum ¥ on X' is said to be
compatible with the structure of X" as a torsor under G’ if the action

Gl XS' XI__)X{

is compatible with the descent data ¢ and . If ¢ and ¥ are effective, G’ descends
to an S-group scheme G and X’ to an S-scheme X which is a torsor under G.

In the following, we want to exploit the existence of ample invertible sheaves in
order to treat the descent of torsojrs over discrete valuation rings. Since it is necessary
to study the problems on generic fibres first, our considerations will include the
more or less trivial case where the base consists of a field.

Theorem 1. Let R — R’ be a faithfully flat extension of discrete valuation rings (resp.
of fields). Let G' be an R’-group scheme which is smooth, separated, and of finite type
over R', and let X" be an R'-torsorjunder G'. F urthermore, assume that there are descent
data with respect to R— R’ on G’ and X’ such that these data are compatible
with the group structure on G' and with the action of G' on X'. Then G’ descends
to an R-group scheme G, and X descends to an R-torsor X under G. Furthermore,
by the properties of descent, G and X are smooth, separated, and of finite type
over R.

Before we give the proof, let us discuss some applications of the theorem. First

we go back to Section 5, where
schemes to birational group law

we have studied the problem of associating group
s; cf. 5.1/5. In 5.2/3, which applies to strict birational

group laws, we had worked out a solution for the case where the base consists of a
strictly henselian local ring R which is noetherian and normal. Now, using descent,
we can show that 5.2/3 remains true if we work over a discrete valuation ring or
over a field, without assuming hat the latter is strictly henselian. Thereby we will

fill the gap which was left in th;e proof of 5.1/5; we refer to Section 6.6 for a more
rigorous approach to the problem.

Corollary 2. Let R be a discrete valuationring or a field, and let m be a strict birational
group law on an R-scheme U which is separated, smooth, faithfully flat, and of finite
type over R. Then there exists an open immersion U = G with R-dense image into
a smooth and separated S-group} scheme G such that the group law on G restricts to

m on U. The group scheme G is :unique up to canonical isomorphism.

Proof. Write R’ for a strict henselization of R. Then, applying the base change
R — R’ to our situation, we obtain a strict birational group law m’ on the
R'-scheme U’ = U ®g R'. It has a unique solution by 5.2/3; i.e., there is an open
immersion U’ =, G’ into an R’-group scheme G, just as we have claimed for U
and m.

In order to prove the corollary, it is enough to extend the canonical descent
datum on U’ to a descent datulﬂ on G’ which is compatible with the group structure
on G'. Then Theorem 1 can be applied. As usual, set R” = R ®; R’ and write p;,
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p,, for the projections from Spec R” to Spec
consists of the canonical isomorphism
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R’. The canonical descent datum on U

ptU = p3U’ .
Working over the base R, we see immediately from the uniqueness assertion in
5.1/3 that this isomorphism extends to an isomorphism of R”-group schemes
PIG % ptG .

A similar argument shows that the isomorphism satisfies the cocycle condition; so

we have a descent datum on G’ as required.

O

As a second application, we want to discuss the existence of Néron models for
torsors in the local case. Since, over strictly henselian valuation rings, torsors under
smooth group schemes are trivial, the problem is a question of descent.

Corollary 3. Let R = R’ = R*™" be discrete

R, Furthermore, let Xy be a K-torsor unde
type, and assume that, after the base change
Gy and X' of Xy. over R'. Then G’ (resp.

valuation rings, where R is a strict
note the fields of fractions of R, R’ and
r a smooth K-group scheme Gy of finite
K — K, there are Néron models G' of
X') descends to a Néron model G of Gy

(resp. X of Xg) over R. Furthermore, if the torsor X,  Is unramified, i.e., if Xx(K™) # &,
the structure of Xy as a torsor under Gy extends uniquely to a structure of X as a
torsor under G.

Postponing the proof for a moment, let us first explain why X might not be a
torsor under G. The universal mapping pro perty of Néron models implies that the
action of Gx on Xy extends uniquely to an action of G on X giving rise to an
isomorphism

GXRX—)X XRXs (g:x)'—_)(gx’x)'

" However, in general, X will not be a torsor under G, since the structural morphism

X — Spec R might not be surjective; i.e., itican happen that the special fibre of X
is empty. Due to 2.3/5, the latter is the case if and only if X (R™) is empty or, by the
Néron mapping property, if and only if X K(}K"') is empty. The torsor Xy is called

ramified if X (K™) = &, and unramified if Xx(K**) # 5. Combining the assertion
of 1.3/1 with the preceding corollary, we canj say:

Corollary 4. Let R, K, K™ be as before, and let X, x be a K-torsor under a smooth
K-group scheme Gy of finite type. Then the féllowing conditions are equivalent:

(@) X admits a Néron model over R.

(b) Xx(K™) is bounded in X,.

(¢) Xy is ramified or Gi(K*") is bounded in Gy.
Proof of Corollary 3. As far as the Néron m odel of Xy is concerned, the assertion
is trivial if X has empty special fibre and thus coincides with X.. So assume that
the latter is not the case and, hence, that X ’ is a torsor under G'. We claim it is
enough to verify that the canonical descent data on Gy and X extend to descent
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data on G' and X". Namely, the extensions are unique since both G’ and X" are flat
~ and separated over R'. By the same reason, we obtain the compatibility of the
~ descent data with the group structure of G’ and the structure of X" as a torsor under
G'. Then Theorem 1 is applicable, and it follows that the pair (G', X’) descends to a
pair (G, X) over R. That G and X satisfy the universal mapping property of Néron
models is a consequence of 6.1/6 (a) and, again, of the fact that G’ and X" are flat
and separated over R'. So, as claimed, it is enough to construct extensions of the
canonical descent data on Gg. and Xj.. Next, observe that G’ and X’ are of finite
type over R'. Since R’ = R™, we see by a limit argument that G’ and X’ (as well as
the group structure of G’ and the structure of X’ as a torsor under G’') are already
defined over an étale extension of R. So it is enough to consider the case where R’
is étale over R. ’

Now write R”:= R'®g R’ and let p,:SpecR” —» SpecR’, i = 1, 2, be the
projections. Then, since the formation of Néron models is compatible with étale
base change (cf. 1.2/2), we see that p¥(X’) is a Néron model of p¥(Xx) over Spec R".
Thus, by the Néron mapping property, the canonical descent datum :

o PY (X)) — pE(Xx)

extends to an isomorphism
¢:p1(X") — p3(X")

which, in fact, constitutes a descent datum on X’. In the same way, the canonical
descent datum on Gy. is extended to a descent datum on G. O,

Remark 5. The assertion of Corollary 3 remains valid if, instead of a pair R = R’
where R’ is contained in a strict henselization of R, one considers a pair of discrete
valuation rings R < R’ such that a uniformizing element of R gives rise to a
uniformizing element of R’ and such that the residue extension of R'/R is trivial.
For example, R’ can be the maximal-adic completion of R (actually, it is only neces-
sary to require that R’ is of ramification index 1 over R; see 7.2/1). Namely, reviewing
the proof of Corollary 3, the first part, which reduces the assertion to the problem
of extending descent data from Gy, to G’ (resp. X, k- to X'), remains valid. That the
required extensions of descent data exist is a consequence of Lemma 6.2/D.3.

It remains to give the proof of Theorem 1. For the applications in Corollaries 2
to 4 which have just been discussed, the theorem is not needed in its full generality.
Namely, in the first case (Corollary 2), we know that

(a) there exists an R'-dense open subscheme U’ < X', stable under the descent
datum of X', such that the descent is effective on U,

whereas in the second case (Corollaries 3 and 4) we know that
(b) K, the field of fractions of R, is algebraic over K, the field of fractions of R.

Both properties can simplify the proof substantially. In order to demonstrate
this, we will first establish the theorem under the additional assumption (a), and
then under (b). Finally, we will indicate how to reduce the general case to the
situation (a). Also we want to mention that we have only to work out the descent
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for the torsor X’, because G’ can be handled in the same way by viewing it as
trivial torsor under itself.

As a first step we show that, independently of conditions (a) or (b), the descent
we have to perform is always effective on generic fibres. So consider the extension
K — K’ of the fields of fractions of R — R’. Since X}. is of finite type over K,
we may use a limit argument and thereby replace K’ by a K-subalgebra C of finite
type. Then the quotient C/m by some maximal ideal m < C is a finite extension of
K. If [C/m:K] =1, the morphism SpecC — SpecK has a section, and the
descent with respect to it is effective by 6.1/5. If [C/m : K] > 1, the same argument
applies to Spec(C ®g C/m)— Spec C/m so that we may replace K’ by C/m.
Thereby we are reduced to the case where [K': K] < oo, and we may assume that
K’ is quasi-Galois, or since the descent is trivial for radicial extensions, that K’ ig
Galois over K. Then the descent on X%. is a Galois descent (see Example 6.2/B) and,
in order to show it is effective, it is enough to know that finitely many given points
of X}. are always contained in an affine open subscheme of Xj.. That the latter
condition is fulfilled can be seen either from the quasi-projectivity of Xi. (use 6.4/1)
or, in a more elementary way, by using standard translation arguments. So the
descent is effective, and X}. descends to a K-scheme X. This settles the assertion of
Theorem 1 for the case where R and R’ are fields.

Next, let us assume that condition (a) is satisfied. Then U’ descends to an
R-scheme U, where Uy is open in Xg. Applying Lemma 6.4/4 to U, we can find an
R-dense affine open subscheme of U, and hence, by pulling it back to U’, an
R'-dense affine open subscheme of U’ which is stable under the descent datum on
X'.In other words, we can assume that U’ is affine. We claim one can find an effective
divisor D’ on X’ with support X’ — U’ such that D’ is stable under the descent datum
on X'. Denoting the descent datum on X’ by ¢ : pf X' — p3 X', the latter means
that p¥D’ corresponds to p%D’ under the isomorphism ¢. In order to obtain such
a divisor IV, choose an effective divisor Dy on X with support Xy — Uy (cf. [EGA
IV,], 21.12.7), and define D’ as the schematic closure of the pull-back of Dy to Xj..
By the properties of the schematic closure, the descent datum on X' extends to a
descent datum on the pair (X', %) where &' := Ox(D’). Considering the action of
the identity component of G’ on X', we conclude from 6.4/2 and 6.4/3 that 2" is
ample. Hence, 6.1/7 shows that the descent is effective on X'. This settles the
assertion of Theorem 1 if condition (a) is given.

Now let us assume that condition (b) is satisfied. We want to reduce to condition
(a). Applying Lemma 6.4/4, there is an R'-dense affine open subscheme Q' < X".
In particular, Fy := X — Qf is nowhere dense in X. and, since K’ is algebraic
over K, its image Fy in X, is nowhere dense. Set Uy := Xy — F. Then Uy :=
Ux ® K’ is a dense open subscheme of Q.. Subtracting from X " the schematic
closure of X — Uy we arrive at an R'-dense open subscheme U’ of X' whose generic
fibre is Ug.. Furthermore, by construction, U’ is stable under the descent datum on
X', and it is quasi-affine since U’ = Q'. The latter inclusion is verified by using the
fact that X' — (¥ is the support of a divisor and that, since Q' is R'-dense in X', the
schematic closure of X} — Q. in X’ coincides with X' — Q. In particular, the
descent is effective on U’ by 6.1/6, and we have thus reduced assumption (b) to
assumption (a).
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In order to prove Theorem 1 in its general version, some preparations are necessary. Consider a
h and separated scheme X of finite type over a discrete valuation ring R. Let K be the field

due field of R. Writing A4 := I'(X, 0), we have a canonical

u:X — SpecA

base change. For each f € 4, we denote by A4, the localization

u;: X, — Spec 4,

the morphism obtained from u by the base change Spec A, — Spec 4.
In this situation, u is of finite type sir‘lce X is of finite type over R. Furthermore, Spec 4 is flat over
X. Since the formation of global sections on X commutes with

flat base change, there are canonical isomorphisms

= A®g K 2T (X, 0)
A, = T(X}, 0) .

= A®r k & r(Xk,(ka) .

special fibre X, if and only if » € ©4, where = is a uniformizing

ove and assume that the generic fibre X is affine. Then ug:
X, # O, there exists an element f € A such that X, n X, # &
morphism.

assume X, # . Using the separatedness of X, we can apply
ne open subscheme U < X. Since u: X — Spec A4 is an iso-

€ Ay, wemay assume f€ 4, such that (X)x < Uy. Furthermore,
1 — nA. Then consider the schematic closure of Xg — (X;)x in

ince U is R-dense and affine in X, its complement X — U is of
2.7, and we see that it equals the schematic closure of Xx — Uy
inclusions

X — (Xp)x » Xg — Uy

X—X,2X-U.

affine. Interpreting A, as the ring of global sections on X, the
orphism. Consequently, since f does not vanish identically on

]

It should be realized that, in the situation of Lemma 6, we cannot expect to find a global section fe 4
such that u, : X, — Spec A4, is an isomorphism and X, is R-dense in X. For example, consider an

fibre consists of two projective lines Py and P,. Assume that C

admits an R-valued point meeting P,, but not Py. Removing this point from C, we obtain an R-scheme
X whose generic fibre is affine and whose special fibre consists of two components, one of them P;.
Since each global section of Oy must be constant on P,, we see that any subscheme X, = X, as in Lemma
6, must be disjoint from P;. So X, cannot be R-dense in this case.

Returning to the proof of Theorem 1, it is enough to construct an open subscheme U’ < X' asrequired

will forget about the special situation given in Theorem 1 and

assume only that X is a smooth and sep: arated R'-scheme of finite type with a descent datum on it, which
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is effective on the generic fibre Xj.. In particular, we may apply the above considerations to X' as
scheme over R’ (and to suitable open subschemes of it). First we reduce to the case where the generic
fibre of X" is affine; then Lemma 6 is applicable. Let K — K’ be the extension of fields of fractiong
corresponding to R — R’. We know already that} the generic fibre X} descends to a K-scheme X,
Choose an affine dense open subscheme Uy = X and consider its pull-back Uy to X.. Then X, — Uz
is thin in X§., and its schematic closure is R'-thin 1q X' If we remove it from X', we obtain an R'-dense
open subscheme whose generic fibre is affine and wl;lich is stable under the descent datum on X'. We cap
replace X' by this subscheme and thereby assume that the generic fibre of X" is affine.

Now set A’ = I'(X", Oy.) and consider the canoﬁical morphism u’: X’ — Spec A". Then the descent
datum on X' yields a descent datum on Spec 4’ sjuch that the morphism ' is compatible with these
descent data. Let U’ be the open subscheme of X' consisting of all points of X’ where u is quasi-finite,
We claim that | :

(i) the generic fibre of U’ coincides with X}, and the special fibre of U’ is non-empty,

(ii) U’ is stable under the descent datum of X", and

(iii) U’ is quasi-affine; in particular, the descent datum is effective on U'.

Namely, property (i) is a consequence of Lemma 6, whereas property (ii) follows from the fact that, for
a morphism of finite type, quasi-finiteness at a certain point can be tested after surjective base change
such as provided by the projections Spec R’ x z Spec R" =3 Spec R'. In order to justify the latter claim,
observe that quasi-finiteness can be tested on fibres. So it is enough to consider a field as base and a
field extension as base change. In this situation, a dimension argument gives the desired assertion. Finally,
property (iii) follows from Zariski’s Main Theorem (in the version 2.3/2'); it implies that u’ : X' — Spec 4’
restricts to an open immersion on U'. So U’ is quasi-affine, and the descent is effective on U’ by 6.1/4.

If U’ is R’-dense in X', we have obtained an open subscheme of X’ as required in condition (a). If U’
is not R’-dense in X', remove from X" all components of the special fibre which meet U’. The resulting
open subscheme of X', call it X}, is again stable under the descent datum. So, concluding as before, X}
contains an open subscheme U] satisfying conditions (i) to (iii). Continuing this way, we can work up the
finitely many components of X, and thereby obtain finitely many open subschemes U’, Uj,..., U, < X'
satisfying conditions (i) to (iii). Then the union of these subschemes is R'-dense in X' and, hence, gives

rise to an open subscheme of X" as required in condition (a), thereby finishing the proof of Theorem 1.
O

6.6 Applications to Birational Group Laws

In this section, we want to sharpen M. Artin’s result on the construction of group
laws from birational group laws, which is|explained in [SGA 3], Exp. XVIIL. Let
S be a scheme, and consider an S-birational group law m on a smooth S-scheme X.
It is shown in [SGA 3,1, Exp. XVIII, that, if m is strict in the sense of 5.2/1, there
exists a solution X in the category of algebraic spaces such that X contains X as
an S-dense open subspace; for the notion of algebraic spaces see Section 8.3. We
will admit this result. However, if the bagse S is normal, it could also have been
obtained by the construction technique of Section 5.3. The latter method yields even
more, namely that X is a scheme for the} étale topology of S. Using the descent
techniques of Section 6.5, we want to shox}v that X is already a scheme. So, we will
mainly be concerned with the representability of a smooth group object in the

category of algebraic spaces.

Theorem 1. Let S be a scheme, and let m be an S-birational group law on a smooth
and separated S-scheme X which is faithfully flat and of finite presentation over §.
Then there exists a smooth and separated S-group scheme X of finite presentation
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* with a group law m, together with an S-dense open subscheme X' < X and an open

immersion X' < X having S-dense image such that m restricts to m on X'
The group scheme X is unique up to canonical isomorphism. If the S-birational
group law m is strict, the assertion is true with X' replaced by X.

Proof. Due to the uniqueness assertion 5.1/3, we may assume that § is affine and,
using limit arguments, that S is noetherian. If the S-birational law is strict, it follows
from the result of M. Artin that there exists a solution X of the strict law in the
category of algebraic spaces containing X as an S-dense open subspace of X. As
we will see by the theorem below, the solution is represented by a scheme. Thereby,
Theorem 1 will be proved for the case where the S-birational group law is strict.
Now we want to treat the general case accepting the assertion of Theorem 1 for
strict S-birational laws.

Let U be the largest open subscheme of § such that the S-birational group law
has a solution over U; here and in the following, solutions are meant in the category
of schemes. If U # S choose the generic point s of an irreducible component of
§ — U. Since we consider only S-schemes of finite presentation, it suffices to verify
that there exists a solution after the base change Spec(Us ;) — S. So we may assume
that S is a local scheme, and that s is the closed point of S; then U = § — {s}.

Assume first that, for each component X of X, there exists a section o; of X
over § crossing the given component. Let X(g;) be the union of all components of
the fibres of X meeting the section o;; due to [EGA IV,], 15.6.5, X(s,) is an open
subscheme of X. Denote by X, the union of the X (c;); note that X,, might not be
S-dense in X. Then m induces an S-birational group law m, on X,. Moreover, due
to the construction, the components of the fibres of X are geometrically irreducible.
Now one can proceed as in the proof of 5.2/2. The set Z (in the proof of 5.2/2) will
provide an S-dense open subscheme X, of X, such that m, induces a strict law mg

on X;. Namely, set

Q= U (O piZn(X(o;) x5 X(O'j))))

13

where p; : X xg X — X is the first projection. Then Q, is S-dense open in X, 0, and
Z N (Qy X5 X,)is Q-dense in Q; X5 X,. Defining Q, in a similar way by using the
second projection, the intersection Q; N Q, defines an S-dense open subscheme X5
of X. As in 5.2/2, one shows that the restriction mj, of m to X}, is strict. As we have
said above, there is a solution )g{) of the strict law mg which contains X}, as an
S-dense open subscheme. Since X xg U is an open subscheme of the solution X, v
of the restriction of m to U, one can glue X}, and X, along X} x5 U in order to get
a solution of m.

In the general case, one performs first an étale surjective extension S* —» § of
the base in order to get enough sections of X. So one obtains a solution X* of the
S*-birational group law m x5 S*. Now consider the S*-birational map

11X Xg S* s X¥

The canonical descent datum extends to a descent datum on X* by the uniqueness
of solutions; cf. 5.1/3. Furthermore, there exists a largest open subscheme X* of
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X xg S*, where the map 1 is defined and where 1 is an open immersion; use the
separatedness of X x5 S* and of X* as well as the birationality of 1. Since the domain
of definition is compatible with flat base change (cf. 2.5/6), the formation of the
largest open subscheme where 1 is defined and where 1 is an open immersion is
compatible with flat base change. So X* is stable under the descent datum and,
hence, there exists an open subscheme X' of X which is S-dense in X such that
X' xg S* = X* Then it is easy to see that the S-birational law m on X restricts to

a strict law on X". O

In order to complete the proof of the preceding theorem, it remains to show the
following result on the representability of algebraic spaces with group action.

Theorem 2. Let S be a locally noetherian scheme and let G be a group object in the
category of algebraic spaces over S. Assume that G is smooth over S and that G has
connected fibres over S. Let X be a smooth algebraic space over S and let

6:Gxg X—X

be a group action on X. Let Y be an open subspace of X. Then the image GY of G Xg Y
in X is an open subspace of X. If GY equals X, the following assertions hold:

(a) If Y is separated (resp. of finite type) over S, the same is true for X.

(b) If Y is a scheme, then X is a scheme.

(©) If S is affine and if Y is quasi-affine, any finite set of points of X is contained
in an affine open subset of X.

(d) If S is normal and if Y is affine over S, any effective Weil divisor of X with
support X — Y is a Cartier divisor, and is S-ample. In particular, X is quasi-projective

over S.

Corollary 3. Let S be a Dedekind scheme, and let G be a group object in the category
of algebraic spaces over S. Assume that G is separated, smooth, and of finite type over

S. Then G is a scheme.

Proof of Corollary 3. Let Y be the open subspace of G consisting of all points which
admit a scheme-like neighborhood. Due to Raynaud [6], Lemme 3.3.2, Y contains
all the generic points of the fibres of G over S. Hence, Y is S-dense in G. So Theorem

2 yields that G is a scheme. O

Proof of Theorem 2. The group action o is the composition of the maps
Gxs X -2, 6 xg X —2 X
where p; is the projection onto the i-th factor, i = 1, 2. The first map is an iso-
morphism, and the second one is smooth, since G is smooth over S. Hence, the map
o is open, and the image GY is an open subspace of X.
(a) In order to prove the separatedness of X, we can use the valuative criterion.

So, we may assume that S consists of a discrete valuation ring R with field of -

fractions K and residue field k. Then we have to show that any two R-valued points
X;, %, € X(R) which coincide on the generic fibre are equal. Let X;, X, be the induced
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. closed points. Since the sets
U={7eGxsk g'5eY x5k},
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%

i=12,

* are open and non-empty, they are dense in G xg k. Due to the smoothness of G

over S, there exist an étale surjective base extension R — R’and a sectiong € G(R’)

inducing a point of U, N U,. Thus X; € gY and, hence, x; € gY fori = 1, 2. Since Y

is separated over S, we see that x
In order to show that X is of £

= X,.
inite type over S if Y is, it suffices to verify that X

is quasi-compact if § is affine. Since the map

:jr:G Xxg Y — X

. . y I . . .
is surjective, the assertion follows from the fact that G is quasi-compact, as can easily

be deduced from Lemma 5.1/4.

(d) We may assume that § is affine. Due to assertion (a), X is of finite presenta-

tion and separated over S. Let D be an effective Weil divisor with support X-Y

Due to the theorem of Ramanujam-Samuel [EGA 1V,], 21.14.3, D is a relative
Cartier divisor. Namely, as can bc}a seen by an étale localization on X, this theorem
carries over to the case of algebraic spaces. Next we want to show that & = 0x(D)
is S-ample. To do this, we need th(}: fact that £ ®" satisfies the theorem of the square

for large integers n if the generic fibres of X over S are geometrically irreducible, cf.
Section 6.3. Namely, after étale lo‘calization of the base, X can be covered by open
subspaces of type X, where [ var!ies over the global sections of #®". The X; are
affine as intersections of translat}es of Y; cf. the proof of 6.4/2 or Raynaud [4],
Thm. V.3.10, p. 88. In order to verify that & ®n satisfies the theorem of the square
for large integers n, one proceeds %as follows:

Similarly as in the proof of 6.3/2, one reduces to the case where S consists of a
field. Then G is a scheme; cf. Section 8.3. We claim that X is a scheme, too. Let U
be the set consisting of all points of X admitting a scheme-like neighborhood. Using

finite Galois descent, one easily shows that U is invariant under G, since any finite

set of points of U is contained in

an affine open subscheme of U. In our case, due

to the assumption X = GY, one has U = X. So, X is a scheme, and the assertion

follows from Raynaud [4], Thm.
Finally, since Y — S is affine

IV 3.3(d),p. 72.
. the reduced subscheme with support X — Y is

a Weil divisor by [EGA IV, ], 21.12.7, and thus an S-ample Cartier divisor. There-
fore X — § is quasi-projective.

(c) First, let us show assertion (c) under the additional assumption that S is .
normal. Let X,,..., X, be finitely many points of X, and letsy,...,s, be their images
in S. Since Y is quasi-affine, there exists an affine open subscheme Y* of Y which
gives rise to a dense open subscheme of the fibres ¥, ,..., ¥, . Then the points
Xy,...,X, are contained in the image X* of G x5 Y* under 0. We may replace X by
X*, and so we may assume that Y is affine. In this case, the assertion follows from
assertion (d). Namely, X admits a relatively ample line bundle, since X — Y with
its reduced structure gives rise to a Weil divisor; cf. [EGA Iv,], 21.12.7. So, X is
quasi-projective over S, and hence X satisfies assertion (c).

Now let us consider the genejral case. Using limit arguments, we may assume

that S is of finite type over the ring of integers Z. Let S be the normalization of S,
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and set ¥ = X x5 8 and G = G x5 §. Then X is a scheme by what we have just
proved, and any finite set of points of )T is contained in an affine open subscheme
of X. Furthermore, X' = X x sSisa sdheme after étale surjective base extension
§"— 8, since there are finitely many sections of G such that X can be covered
by the translates of Y under these sections, as follows from 5.3/7; see also 6.4/2. In
order to show the effectivity of the canoﬁical descent datum on X’ we make use of
the following result which is contained irixRaynaud [3], Cor. 3.8 and Thm. 4.2:

Let S be alocally noetherian scheme, let S' — S be a faithfully flat quasi-compact
morphism of schemes, and let § — S be a finite surjective morphism of schemes. Let
X be a sheaf for the fppf-topology of S (¢f. Section 8.1). Assume that X' = X x4 §'
is represented by an S'-scheme which is lécally of finite presentation, and that X =
X xg S is represented by an S-scheme. Then

(i) X is represented by an S-scheme of finite presentation if and only if, for each
point % of X, there exists an affine open subscheme of X which contains all points of
X giving rise to the same point of X as %.

(i) If X satisfies the property that any finite set of points of X is contained in an
open affine subscheme, so does X.

Thus we see that X is a scheme, and any finite set of points of X is contained in
an affine open subscheme of X, since X has this property.
Assertion (b) follows from (c). O

6.7 An Example of Non-Effective Descent

Let R be a discrete valuation ring with field of fractions K and residue field k. In
the present section we will consider relatfivc curves over R; ie., flat R-schemes X
whose fibres are of pure dimension 1. We %ssume that, in addition, X is normal and
proper over R and that the generic fibre X is connected. Then X is regular (in fact,
smooth over K if char K = 0), and the set of singular points x of X (ie., of those
points where the local ring 0y , is not reéular) is a finite subset of the special fibre
X;;see [EGA 1V, ], 5.8.6, and [EGA IV, ], 6.12.6. The example we want to present
is based on the fact that, after replacing the base R by a henselization R", irreducible
components of X, can be contracted in X whereas, over a non-henselian ring R,
such a procedure is not always possible.

To construct an R-curve with a non-effective descent datum on it, set 4 =
C[r,t7'], where t is an indeterminate, and start out from a smooth and proper
elliptic curve E over S = Spec A which has: non-constant j-invariant. Alternatively,
we can consider the ring A = Q[r,7 '] and the elliptic curve with constant

j-invariant E < PZ which is given by the ejquation
Y2z =x3 4 wxz?.

Replacing A by the local ring R = 0 , at ajclosed pointte Sif A = C[z,771] (resp.
at a suitable closed point ¢ € § corresponding to a maximal ideal (z — {) = 4 with

te Q¥if A = Q[r,77']), we will show in Proposition 5 that there exists a rational
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point g, € E, such that none of the multiples ra; with r > 0 admits a lifting to an
R-valued point of E. Blowing up a, in E yields a proper curve X over R which is
regular. Its special fibre X, consists of two components, the strict transform £ of
E,and the inverse image of g, which is a projective line P,; both intersect transversal-
ly at a single point.

In this situation we will see in Lemma 6 that one cannot contract the component
E,in X;i.e., there does not exist an R-morphismu : X —s Y of proper normal curves
over R which is an isomorphism over Y— {y} and which satisfies E, = u™(y).
However, if we pass from R to a henselization R* and consider the curve X’ —
X ®g R" over R, the special fibre of X remains unchanged, and we will be able to
conclude from Proposition 4 below that E, can be contracted in X". .

Letu': X' — Y’ be such a contraction. There are canonical descent data on X’
and on Y’ with respect to R — R*; namely on X', since it is obtained from X by
means of the base change R — R", and on Y since ' is an isomorphism on generic
fibres and since each descent datum on the generic fibre of Y’ extends uniquely to
a descent datum on Y’ by 6.2/D3. Furthermore, u’ is compatible with these data.
So if the descent datum on Y’ were effective, u': X' —s ¥” would descend to an
R-morphism u: X — Y, where Y is a proper normal curve by [EGA 1v,], 2.7.1
and 6.5.4. Since u’ coincides with u on special fibres, the latter morphism would be
a contraction of E, in X. However such a contraction cannot exist by Lemma 6
and, consequently, the descent datum on Y’ cannot be effective.

Now, after we have given the description of the curve Y’ and the non-effective
descent datum on it, let us fill in the results mentioned above which are needed to
make the example work. We begin with the explanation of contractions; see also
M. Artin [1], [2]. So consider an arbitrary discrete valuation ring R and an R-curve
X where, as we have said at the beginning of this section, X is assumed to be proper
and normal and to have a connected generic fibre. Let (X});cr be the family of
irreducible components of the special fibre X,, providing them with the canonical

" reduced structure. For a strict subset J I, a contraction of the components X,

j€J,in X consists of an R-morphism u: X —» ¥ of proper normal curves over R
such that

(a) for each j e J, the image u(X;) consists of a single point yie Y, and

(b) u defines an isomorphism X — ()., X; = ¥Y— Ujeslns}-
Then u is automatically proper since X is proper over R and since Y is separated
over R. Furthermore, using the Stein factorization [EGA, ITI 1], 4.3.1, it is easily seen
that u depends uniquely on the subset J < I and that the fibres of u are connected.
In order to give a criterion for the existence of contractions, we use the notion of
effective relative Cartier divisors; cf. Section 8.2, in particular 8.2/6.

Theorem 1. Let X be a proper normal R-curve with connected generic fibre Xy, let
(X:)ie1 be the family of irreducible components of the special fibre X,, and consider
a non-trivial effective relative Cartier divisor D on X. Let J be the set of all indices
J € I such that supp(D) n X; = (. Then the canonical morphism

u: X — Y:= Proj < Dra, CUX(mD)))
m=0
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is a contraction of the components X, j € J, and Y is a proper normal R-curve which
is projective.

Before we give a proof, let us look at properties of Y which follow from its
definition as a projective spectrum of a graded ring.

Lemma 2. Let X be a proper scheme over anoetherianring R and let & be an invertible
sheaf on X such that, for some n > 0, the sheaf & ®n js generated by its global sections.
Then, for

A= m@o X, e,

the scheme Y = Proj(A) is projective over R and the canonical morphismu:X — Y
has connected fibres. If, in addition, X is normal, Y is normal also.

Proof. Applying [EGA 111, ], 3.3.1, we see that the ring A is of finite type over R.
Thus Y = Proj(A) is projective over R; cf. [EGA II], 4.4.1.
For any section [ e I'(X, & ®#), the morphism u gives rise to an isomorphism

Ay 5 T(X,04) -

So u,(0x) = Oy and, since u is proper, it follows from [EGA II1,], 4.3.2, that the
fibres of u are connected. Finally, if X is normal, the ring I'(X), 0x) is seen to be
integrally closed in its total ring of fractions. This implies that Y is normal. O

Now we come to the proof of Theorem 1. Set & := Ox(D). We claim that &#®"
is generated by its global sections if n is large enough. Then Y will be projective and
normal by the preceding lemma. In order to justify the claim, it is enough to find
global sections generating & ®n at the points of supp(D); the constant 1, as a global
section of O, will generate & ®n glsewhere. So consider the exact sequence of
Ox-modules

0— Oy(—D)— Oy — Op— 0.
Taking the tensor product with %" yields the exact sequence
0—0 @O _, PO __, 0 ® L —0,
and we can use the following part of the associated cohomology sequence:
(+) H°(X, 2% — HX,0,® £®)— H'(X, Py, HY(X,¥®")—0.

Note that H(X, 0, ® £®") = 0 since D defines a closed subscheme of X which
is affine; the latter is due to the fact that D is quasi-finite, proper and, hence, finite
over R.

Next, consider the restriction Dg of D to the generic fibre X. Then Dy has a
positive degree on Xy since D is effective and non-trivial, and we see that Dy is ample
since X is irreducible. Therefore H 1(Xg, £®") = 0 for n big enough, and it follows
that H'(X, £®")is an R-torsion module of finite length since it is of finite type. The
exact sequence (+) implies that the length is decreasing for ascending n. Hence the
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fength will become stationary andj, for n big enough, the map

HA(X, 281 — H'(X, %)
is an isomorphism. But then
HO(X, %) — H(X, 0p ® £°")

is surjective. Thereby we see that #®" is generated by its global sections at the
points of supp(D) and, hence, at afll points of X, as claimed.

It remains to show thatu: X — Yisa contraction of the components X;,j € J.
Fix such a component X;. Then, since X; is proper, each global section of Oy(nD)
induces a constant function on XJ‘, ie., an element of the finite extension I'(Xj, @xj)
of k. Therefore the image u(X}) consists of a single point y; € Y. Next look at a
component X; withie I —J. Fix a point x € X; N supp(D) and, for some n € N big
enough, choose a global section }l of Ox(nD) such that | generates Ox(nD) over a
neighborhood U of x. Then 1/1 Ijnay be viewed as a section in Oy over Y, or (by
means of the pull-back under u) as a section in @y over X;. By its construction, 1/
vanishes on U nsupp(D) and is non-zero on U — supp(D). Therefore the image
u(X;) cannot consist of a single p}oint so that u must be quasi-finite on X;. Finally,
using the facts that the fibres of u: X — Y are connected and that Y is normal (see
Lemma 2), one concludes with the help of Zariski’s Main Theorem 2.3/2 that u is

a contraction of the components %XJ-, jed.

Corollary 3. Let X be a proper normal R-curve with connected irreducible generic
fibre X and let X;,i€ 1, be the irzreducible components of the special fibre X,. Let J
be a strict subset of I. Then the following conditions are equivalent:

(a) There exists a contractior;l X —> Y of the components Xj, j € J, where Y is
projective over R.

(b) There exists a contractioﬁ X — Y of the components X, j € J, and there is
a non-empty R-dense affine open subset V < Y such that the images of the X; as well
as all singular points of Y are contained in V.

(c) There exists an effective rélative Cartier divisor D on X with the property that

supp(D)n X; = & foralljeJ arlld supp(D)n X, # & forallie I —J.

Proof. The implication (a) =>(ﬁ>) is clear since the set of singular points of Yis
a finite subset of the special ﬁbré Y, and since Y is projective over R. To show the
implication (b)==(c), choose an R-dense affine open subscheme V < Y which
contains the images of the compbnents X;, jeJ,as well as all singular points of Y.
Then Y — V gives rise to a relfative Cartier divisor on Y whose inverse under
X —» Yis a divisor on X as required in condition (c). Finally, the implication
() => (a) follows from Theorem 1. |

Proposition 4. In the situation of Corollary 3, assume that the valuation ring R is
henselian. Then there exists an effective relative Cartier divisor D on X as required in
condition (c) of Corollary 3. In ﬁarticular, any strict subset of the set of irreducible
components of X, can be contracted in X.



