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Proof. It is enough to construct an effective relative Cartier divisor D on X whose
support meets only a single given component X; of X,.. In order to do this, choose
a closed point
xeX;— | X;

i#j
which is regular on X; such a point exists since there are at most finitely many
points where X is not regular. Using the fact that prof Oy . = 2, one can find an
affine open neighborhood U = Spec 4 of x such that there is a non-zero-divisor
f € A®g k which vanishes at x. Lifting f to fe A, this element defines a closed
subscheme A = U which we may interpret as an effective relative Cartier divisor on
U. However, A might not be a closed subscheme of X; it can happen that its
schematic closure A cannot be interpreted as a relative Cartier divisor on X or that
A meets components C; with i # j. So we cannot, in general expect, that A extends
to a relative Cartier divisor on X satisfying the required properties.

But we know that A — Spec R is quasi-ﬁnite So, R being henselian, we can use
2.3/4 in order to obtain an open nelghborhood Ve U of x such that AnV —
Spec R is finite. Then the immersion A N VL, X is finite, and its image is closed in

© X sothatwemayregard An Vasa relatxve Cartier divisor on X. The latter is of the

required type. ‘ O

For the remainder of this section, we want to look at smooth and proper elliptic
curves E c PZ (having a section) over a base scheme S = SpecA where 4 =
C[r,77'] or 4 = Q[7,7*] and where 7 is an indeterminate. So S is a Dedekind
scheme; let K be its field of fractions. For t € C* (resp. ¢t € Q¥), we will write ¢ also
for the closed point in S which corresponds to the ideal (t — t) = A. As usual, for
closed points ¢ € S, the fibre of E over ¢ is denoted by E,.

Proposition 5. Consider the following property of E at closed pointst € S:

(P) There exists a rational point a, € E,|such that none of its multiples na,, n > 0,
(in the sense of the group law on E) lifts to an Os ~valued point of E or, equivalently,
of E®,4 Us,,.

Then, if A= C[t,77 '], and if E is a smooth and proper elliptic curve over
S = Spec A with non-constant j-invariant,|the property (P) is true for all t € C*
Furthermore, if A = Q[t,77'] and if E = PZ is given by the equation

¥z = x3 + 1x2%,

(P) is true for some t € Q%; for example, it holds for all primes p = 5(mod 8), where
p < 1000.

Proof. Let us start with the case 4 = C[t,771]. Fix a closed point ¢t € S and set
R = (@s,,. Then, using the relative version of the Mordell-Weil theorem for function
fields as contained in Lang and Néron [1], we see that the group E(K) is finitely
generated. By the valuative criteria of separatedness and of properness, the latter
group is isomorphic to E(R). Now let I" be the image of E(R) in E,(C) and let T be
the subgroup of E,(C) consisting of all points b, such that a multiple nb, is contained
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in T. Then, since E(R) is countable, the group T is countable. But E,(C) is not
countable. So E(C) — T contains a point 4, as required.

Next let us consider the case where 4 = Q[r,7*]. We claim that E(K) is finite.
In order to justify this, we look for ¢t € Q* at the specialization map

E(K) = E(0s,) — E[(Q)

and use the following facts which we cite without proof:

(a) E,(Q) is finite for infinitely many t € Q*; for example for all primes p with
p =7 or p = 11(mod 16); cf. Silverman [1], Chap. X, 6.2 and 6.2.1.

(b) The specialization map E(K) — E,(Q) is injective for allmost all t € Q*; cf.
Silverman [1], Appendix C, 20.3.

(c) There exist elements t € Q* such that E,(Q) is of rank > 1, for example for
all primes p = 5(mod 8) less than 1000; cf. Silverman [1], Chap. X, 6.3.

It follows from (a) and from (b) that E(K) =~ E(0s,) is finite for all t e Q*.
Choosing t as in (c), one can find a rational point g, € E,(Q) which has infinite order.
But then none of its multiples can admit a lifting to a point of E(0s ). O

Now let E be a smooth and proper elliptic curve over a discrete valuation ring
R such that the special fibre E, contains a rational point g, whose multiples na,
n > 0, (in the sense of the group law on E) do not admit liftings to R-valued points
of E. As we have just seen, examples of such curves do exist. By blowing up g, in E,
one obtains a proper curve X over R which is regular. Its special fibre X, consists
of the strict transform E, of E, and of the inverse imagg of a, which is a projective
line P,; both intersect transversally at a single point.

Lemma 6. The strict transform E, of E, under the blowing-up X — E cannot be
contracted in X. More precisely, there is no R-morphism u: X — Y onto a proper
normal R-curve Y which maps E, onto a point y € Y and which is an isomorphism over

Y—{y}.

Proof. Assume that such a contraction u: X — Y exists. Then Y is regular at all
its points except possibly for y, and the complement of any affine open neighbor-
hood of y yields an effective relative Cartier divisor D on X, whose support meets
P, and is disjoint from E; cf. Corollary 3. Let D, be the generic fibre of D and D’
its schematic closure in E. Then D' is an effective relative Cartier divisor on E; let.
d > 0 beits degree. The support of D' is the projection of D on E; so the closed fibre
Dy, is da,. If e is the unit section of E, the invertible sheaf ¥ = @gx(D’ — de) has degree
0 and, thus, corresponds to an element of Picg z(R); cf. Section 9.2. Now, using the
canonical isomorphism

E—Picdr, x+—0ix—e),

it follows that & corresponds to a point b € E(R). Restricting ourselves to special
fibres, we see that b, = da,. However, this contradicts the choice of g, € E,. O




Chapter 7. Properties of Néron Models

Although the notion of a Néron model is functorial, it cannot be said that Néron
models satisfy the properties, one would expect from a good functor. For example,
Néron models do not, in general, commute with (ramified) based change; also, in
the group scheme case, the behavior with respect to exact sequences can be very
capricious. The situation stabilizes somewhat if one considers Néron models with
semi-abelian reduction.

The purpose of the present chapter is to collect several properties of Néron
models, and to give a number of examples which show that certain other, perhaps
desirable, properties are in general not true. We prove a criterion for a smooth
group scheme to be a Néron model and discuss the behavior of Néron models with
respect to the formation of subgroups as well as with respect to base change and
descent. Then we look at isogenies and Néron models with semi-abelian reduction.
For example, we prove the criterion of Néron-Ogg-Shafarevich for good reduction.
There is also a section dealing with various aspects of exactness properties. The
chapter ends with a supplementary section where we explain the Weil restriction
functor. If one works with respect to a finite and faithfully flat extension of Dedekind
schemes §" — S, this functor respects Néron models. Furthermore, if K and K’ are
the rings of rational functions on S and §', the Weil restriction is used to describe
the behavior of associated Néron models if one descends from a K’-group scheme
X to a K-group scheme Xj.

7.1 A Criterion

Throughout this section we will denote by R a discrete valuation ring, by R
its strict henselization, and by K and K** the corresponding fields of fractions.
Furthermore, k is the residue field of R, and k; its separable algebraic closure. In
the following we will consider R-group schemes G of finite type with a smooth
generic fibre and with the property that each K*#-valued point of G extends to an
R"-vyalued point of G. We are interested in conditions under which G is a Néron
model of its generic fibre G or, more generally, in the way of deriving a Néron
model of G from G.

Theorem 1. Let G be a smooth R-group scheme of finite type or a torsor under a
smooth R-group scheme of finite type. Then the following conditions are equivalent:
(i) Gisa Néron model of its generic fibre Gy.
(ii) G is separated and the canonical map G(R™*) — G(K*") is surjective.
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(iii) The canonical map G(R*™)—s G(K*") is bijective.

Proof. It is enough to consider the case where G is a group scheme. Indeed, if G is
a torsor we may assume by 6.5/3 that R is strictly henselian and, furthermore, that
G is unramified. Then G admits a section over R and we can view G as a group
scheme. ‘

In the following, let us assume that G is a group scheme. The implications
(i)=> (i) =>(iii) are trivial, the second one by the valuative criterion of
separatedness. Moreover, it is easy to see that condition (ii) implies condition (i).
Namely, if G satisfies (ii), it is a weak Néron model of its generic fibre G. Hence
the weak Néron property 3.5/3 and the extension theorem 4.4/1 show that G satisfies
the definition of Néron models.

Turning to the remaining implication (iii) ==> (ii), we have to verify that (iii)
implies the separatedness of G. Using Lemma 2 below, it is only to show that
the unit section &: Spec R — G|is a closed immersion or, what amounts to the
same, that ime is closed in G. Restricting ¢ to generic fibres, we know that g :
Spec K — Gy is a closed immersion. Let F be the schematic image of ¢¢ in G.
Then, pointwise, im ¢ and F coincide on Gy, and we have to show the same for the
special fibre G, of G. So cons1der a point ¢, € F n G,. Working in an affine open
neighborhood U < G of ¢, let A be the ring of global sections on F n U. Then
R c A < K and, thus, R = A since R is a discrete valuation ring. Hence the inclusion
of FNU into G gives rise to a point e € G(R) extending & € G(K). However,
condition (iii) implies e = ¢. So F}consists of only two points, namely, the points of
ime, and it follows that im ¢ is clcjtsed in G. . |

Lemma 2. A group scheme G is separated over a base scheme S if and only if the unit
section ¢ is a closed immersion.

Proof. If G is separated, the diagonal morphism § : G — G xg G is a closed immer-

sion. Then the same is true for
obtained from & by means of the

the unit section ¢: S — G = S xg G, since ¢ is
base changee: S — G.

Conversely, viewing the diagonal in G Xg G as the inverse image of im ¢ with

respect to the morphism

G xsG—>G,

it follows that G is separated if ¢ i

In order to demonstrate how

(gW—g-ht,

s a closed immersion. [}

Theorem 1 can be applied, let us give an example

of an algebraic K-group which, although it is affine, admits a Néron model.

Example 3. Let R be a discrete valuation ring of equal characteristic p > 0, and let

7 be a uniformizing element of R.
is given by the equation

X

Consider the subgroup G of G, z Xy G, g which

+xf +my?=0.

Then G is a smooth R-group scheme of finite type. Furthermore, looking at values
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of solutions of the above equation, one shows easily that the map G(R™) — G(KS")
is surjective. Thus G is a Néron model of its generic fibre Gg. The group Gy is an
example of a so-called K-wound unlpogent group; ie., of a connected unipotent
algebraic K-group which does not contain G, x as a subgroup. Smooth commuy-
tative groups of this kind admit Néron models of finite type, at least in the case where
R is excellent; cf. 10.2/1.

Next consider an R-group scheme G of finite type such that the generic fibre G,
is smooth. If the residue characteristic of R is zero, the special fibre G, is smooth by
Cartier’s theorem, [SGA 3,1, Exp. VI, 1 6.1, so that, if G is flat, it will be smooth
over R. However, since the latter result does not extend to the general case, we want
to describe a procedure which, by means} of the smoothening process, associates a
smooth R-group scheme G’ to G such that the canonical map G'(R*") — G(R™) is
bijective. Let us call a morphism of R-group schemes G’ — G, where G’ is smooth
and of finite type over R, a group smoothemng of G if each R-morphism Z — G
from a smooth R-scheme Z admits a umque factorization through G'. Then, by the
defining universal property, G’ — G is an isomorphism on generic fibres since Gy
is smooth. In particular, if G(R™) —» G(Ks") is bijective, G’ will be a Néron model
of G by Theorem 1. Group smoothenings can be defined in the same way using a
global Dedekind scheme as base. However, their existence can only be guaranteed
in the local case; cf. Theorem 5 below.

Lemma 4. Let G be an R-group scheme of finite type which has a smooth generic
fibre. Denote by F, the Zariski closure in G, of the set of k-valued points in G, which
lift to R™-valued points of G. Then F,, provided with its canonical reduced structure,
is a closed subgroup scheme of G,. Furthermore, let u: Y — G be the dilatation of
F, in G. Using the notation é for the defect of smoothness as in 3.3, we have

d(a’) < max{0,4(a) — 1}
for each R*-valued point a of G and its lifting a’ to Y.

Proof. Since the set of R*-valued points of G forms a group, it is clear that F, is a
subgroup scheme of G,. In order to justify the second assertion, we use Lemma
3.4/1; it is only to show that F, = G, is E-permissible, where E = G(R*). However
this is clear. By construction, F, is geometrically reduced and, hence, smooth over
k, being a group scheme of finite type over a field. Furthermore, using 4.2/2, we
see that the restriction of the sheaf of differentials Qgx to G, is free and, hence,
that the restriction of Q}, to F, is free. Thus the two conditions characterizing
E-permissibility are satisfied. | O

It follows from 3.2/2(d) that the scheme Y of Lemma 4 is an R-group scheme
again and that u: Y — G is a group homomorphlsm So a finite repetition of the
construction leads to an R-group scheme G’ which has generic fibre Gy and defect
of smoothness 0, and thus is smooth at all its R¥-valued points. In partlcular G'is
smooth at the unit section and therefore sm‘ooth everywhere since it is flat. We claim
that the morphism G’ — G is a group smoothening of G. To justify this, consider
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an R-morphism Z — G where Z is a smooth R-scheme. Writing &, for the separable
algebraic closure of k, the set of k-valued points of Z; which lift to R*-yalued points
of Z is schematically dense in Z,; cf. 2.3/5. Thus, we see that, in the situation of
Lemma 4, the special fibre of Z is mapped into F,. Then the desired factorization
of Z — G follows from 3.2/1(b), again. So we have derived the following facts on

group smoothenings.

Theorem 5. Let G be an R-group scheme of finite type with a smooth generic fibre
Gg. Then there exists a group smoothening G' — G of G. Due to its definition, G' is
smooth and of finite type; it is characterized by the property that each R-morphism
Z — G, where Z is smooth over R, factors uniquely through G

Furthermore, if the map G(R**) — G(K*") is surjective and if G is separated, G’

is a Néron model of Gg.

Proof. Only the assertion concerning the Néron model remains to be verified. If
G(R*") — G(K*") is surjective and if G is separated, the same is true for G'(R™) —
G'(K**) and G'. Thus G’ is a Néron model of G by the criterion given in Theorem 1.

O

As an application we want to examine how the Néron model G of a K-group
scheme Gy behaves if we pass from Gy to a subgroup Hy < Gg.

Corollary 6. Let S be a Dedekind scheme with ring of rational functions K. Further-
more, let G be an S-group scheme which is a Néron model of its scheme of generic
fibres Gy, and let Hy be a smooth subgroup of Gg. Then Hy admits a Néron model
H over S; more precisely, one can define H as a group smoothening of the schematic
closure H of Hy in G. The schematic closure H itself is a Néron model of Hy if and
only if it is smooth. In particular, the latter is the case if char k(s) = 0 for all closed
points s € S.

Proof. First, let us show that there exists a group smoothening of H over S. Since
Hy is smooth, its schematic closure H is smooth over a dense open part S’ of S. On
the other hand, we know from Theorem 5 that, for each of the finitely many points
s€ 8 — 8, the group scheme H ®; 05 , admits a group smoothening. Then, similarly
as explained in the proof of 1.4/1, we can glue H ®; Os,forseS— S8 to H x5 §,
thereby obtaining a global group smoothening H of H over S.

It remains to show that H is a Néron model of Hy. To do so, we may assume
that S is local. Consider a smooth S-scheme Z and a K-morphism Z, — Hy. Then,
since Hx = Gy and since G is a Néron model of Gy, this morphism extends uniquely
to an S-morphism Z —» G which, by the definition of H, must factor through H.
Furthermore, we conclude from Theorem 5 that Z — H extends uniquely to an
R-morphism Z — H. The latter is unique as an extension of Zy — Hy. So
H is a Néron model of Gg and the remaining assertions are clear since H is flat
over S. O
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7.2 Base Change and Descent

One cannot expect that, for a faithfully flat extension of discrete valuation rings
R = R/, the base change Spec R’ — Spec R transforms Néron models over R into
Néron models over R’. In Example 7.1/3 of the preceding section we can see that,
after adjoining a p-th root of the uniformizing element = of R to K, the boundedness
of G¢(K*") and, hence, the existence of a Néron model of Gy is lost, since G becomes
isomorphic to the additive group G, . On the other hand, it follows from 1.2/2 and
6.5/3 that Néron models behave well with respect to étale base change. The latter
is true for a more general class of morphisms as we will see in this section (cf. 6.5/5
for a partial result of this type).

Consider a faithfully flat extension R = R’ of discrete valuation rings with fields
of fractions K and K'. As usual we indicate strict henselizations by an exponent “sh”
and we may assume that R*" is a subring of R Recall that R’ is said to have
ramification index 1 over R if a uniformizing element of R gives rise to a uniformizing
element of R’ and if the residue extension of R'/R is separable (cf. 3.6/1).

Theorem 1. Let R = R’ and K = K’ be as above and consider a torsor Xy under a

smooth K-group scheme Gy of finite type. Denote by X . the torsor under G obtained
by base change with K.

(i) Assume that Xy, admits a Néron model X' over R'. Then Xy admits a Néron
model X over R, and there is a canonical R'-morphism X ®g R’ — X', called mor-
phism of base change.

(ii) Let R'/R be of ramification index 1. Then X admits a Néron model X over
R if and only if Xy admits a Néron model X’ over R'. If the latter is the case, the
morphism of base change X ®g R' — X' is an isomorphism.

Proof. If Xg. admits a Néron model, X.(K'*") is bounded in Xy.. Using 1.1/5, we
see that X (K'™)is bounded in X. But then X (K**) is bounded in Xy and a Néron
model X of X exists by 6.5/4. Since X ®; R’ is a smooth R’-model of X, the
identity on Xy extends to an R’-morphism X ®y R’ — X' as required in assertion
.

In the situation of assertion (ii) we have only to consider the case where Xy has
‘a Néron model X. Furthermore, since Néron models are compatible with étale base
change, we may assume that R and R’ are strictly henselian. It has to be shown that
X ®g R’ is a Néron model of Xj.. To do this, it is enough to look at the case where
the torsor Xy is unramified. So consider a K'-valued point of Xj.. Interpreting it
as a point ay € Xg(K') and working in an affine open neighborhood of its image in
X, we can find an R-model X of X of finite type such that ag extends to a point
a e X(R'). Due to 3.6/4, we may assume that X is smooth. But then, since X is a
Néron model of X, we have a morphism X — X. Thus each ax € X(K') extends
to a point a e X(R') and, consequently, the canonical map (X ® R')(R") —
(X ®g R)(K') is surjective. So X ®5 R’ is a Néron model of Xy by 7.1/1. |

It will be of interest in 10.1/3 that the argument for showing that X ® R’ is
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2 Néron model of Xg. can be chang ed slightly so that the use of 7.1/1 can be avoided.
Namel}’, look at a discrete valuation ring R” which is of ramification index 1 over
R'. Then R" has ramification index 1 also over R and, if K” is the field of fractions
of R, the above given argument shows that the map X(R") — X(K")is surjectivg
In particular, taking for R” the local ring of a smooth R’-scheme Z' at a generic
point of the special fibre Z;, we see that X ®y R’ satisfies the weak Néron property.
So if Xg- is unramified, we may vie\y X ®g R’ as an R'’-group scheme, which satisfies
the Néron mapping property by tt‘ne extension argument 4.4/1 for morphisms into
group schemes. Thus X ®g R’ is a Néron model of Xx. in this case.

Corollary 2. Over discrete valuationi rings, the formation of Néron models (of torsors
. or group schemes) is compatible with extensions R'/R of ramification index 1. For

example, R’ can be the completion of R.

Giving another application of Theorem 1, we show that the Néron mapping
property can be strengthened.

Proposition 3. Let Xy be a K-torsor under a smooth K-group scheme Gy of finite
type, and assume that a Néron model X of X exists. Let A be an R-algebra of type
R{t} or R[[¢]] (strictly convergent or formal power series in a system of variables
t = (t1,..-,1,)) where R is complete. Then each K-morphism

Ug : Spec(4 ®g K) — X

extends uniquely to an R-morphism|u : Spec A — X.

4 Proof. Let n be the generic point of the special fibre Spec(A ®p k) of Spec A. Then
A, is a discrete valuation ring which is of ramification index 1 over R. Writing
F for the field of fractions of A,,l, we see that uy gives rise to an F-morphism
Spec F — Xy ®x F. Applying Theorem 1, this morphism extends to an A,-mor-
phism Spec 4, — X ®g 4, and, hence, to an R-rational map u: Spec 4 ---> X. In
particular, the special fibre X, is no# empty and, thus, X cannot be a ramified torsor.
We claim that » is a morphism. Then u extends uy, and it is unique since X is

separated. i
If X(R) # &, we may view X as: an R-group scheme, and one can conclude from

Remark 4.4/3 that the R-rational map u is a morphism. In the general case, we
choose a discrete valuation ring R’ which is finite and étale over R and which satisfies

the property that X (R') # &. The latter is possible since the torsor X is unramified.
Set A’ = R'{t} or A' = R'[{t]] de;‘)ending on the type of power series we consider

for 4; note that R’ is complete. Then it follows from the above special case that the
composition of morphisms ’

Spec(4’ ®x K) > Spec(4 ®x K) —> Xx »

where pr is the canonical projectidn, extends to an R-morphism u’: Spec 4’ — X.
In other words, the compositioni of the projection Spec A’ — Spec A with the
R-rational map u: Spec A---+ X is a morphism. But then, by 2.5/5, u is defined

everywhere and, thus, is a morphism. O
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Using the technique of Weil restriction to be explained in Section 7.6, one cap
describe in a precise way how, in the situation of Theorem 1 (i) and under the
assumption that the extension of discrete| valuation rings R = R’ is finite, a Nérop
model X of X can be constructed from ja Néron model X' of Xg., at least in the
case of group schemes.

Proposition 4. Let S' — S be a flat and finite morphism of Dedekind schemes with
rings of rational functions K and K'. Let Gg be a smooth K-group scheme of finite
type and denote by Gy. the K'-group scheme obtained from Gy by base change. Assume
that the Néron model G' of Gy exists over S'. Then the Néron model G of Gy exists
over S and can be constructed as a group smoothening of the schematic closure of G,
in the Weil restriction R 5(G').

Proof. Using 7.6/6, we see that the Weil restriction ERS',S(G’) exists as a scheme and
that it is a Néron model of its scheme cf generic fibres, i.e. of Ry x(Gk)- Thus
considering the canonical closed i 1mmer51on

1:Gg—> i}?K'/K(G'K') s

the assertion follows from 7.1/6. O

7.3 Isogenies

We want to investigate under what corixditions an isogeny Gy — Gy between
smooth and connected K-group schemes extends to an isogeny between associated

Néron models. In order to attack this pr‘oblem, we begin by recalling some well-

known facts about homomorphisms betw‘een group schemes over a field k.

Lemma 1. Let f: G — G’ be a homomorphism of group schemes which are smooth
and of finite type over a field k. Assume that dim G = dim G'. Then the following
conditions are equivalent:
(2) fis flat.
(b) f(G°) = G'° where G° and G'° denote identity components of G and G'.
(c) ker fis finite.
(d) f is quasi-finite.
(e) fis finite.

A commutative group scheme G which is smooth and of finite type over a field
k is called semi-abelian if its identity component G° is an extension of an abelian

variety by a (not necessarily deployed) affine torus. The latter fact can be checked
over the algebraic closure k of k. Indeed, one knows from Chevalley’s theorem 9.2/1
that Gy is uniquely an extension of an abelian variety by a connected affine group
Hy. Then Hy decomposes into the produc{:t of a torus part and a unipotent part,
where the torus part is already defined over k; cf. [SGA 3,1, Exp. XIV, 1.1. So we

see that G is semi-abelian if and only if the unipotent part of Hg is trivial. Over a
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eneral base scheme S, an S-group scheme G is called semi-abelian if it is smooth
" over S and if all its fibres are semi-abelian in the sense explained above.

- Lemma 2. Let G be a commutative S-group scheme which is smooth and of finite type
over an arbitrary base scheme S. Let | be a positive integer.
: (a) Suppose that G is semi-abelian. Then the l-multiplicationlg: G — Gis quasi-
fzmte and flat.
(b) Suppose that char k(s) does not divide | for all s € S. Then the I-multiplication
I;:G—Gis étale.
Proof. In order to verify the flatness of I in the situation (a) or (b), we can use the
characterization of flatness in terms of fibres 2.4/2. So we may assume that S consists
of a field k. Then, since l; is surjective on abelian varieties and on tori, and in the
situation (b), also on unipotent groups, it follows from the structure of commutative
smooth and connected group schemes over k that G° < im ;. By Lemma 1 we see
that l; is quasi-finite and flat.
In the situation of assertion (b) we have just seen that [; is flat. So we may
use the criterion 2.4/8. Thus, just as before, we can assume that S consists of a
field k. Then we can consider the Lie algebra Lie(G) and the endomorphism
Lie(lg) : Lie(G) — Lie(G) induced on it by I;. Since Lie(l;;) is just the multiplication
by ! and since [ is not divisible by char k, we see that it is bijective. So I;: G — G
is étale by 2.2/10. ‘ : O

For an S-group scheme G as in Lemma 2, we write ;G for the kernel of the
[-multiplication I; : G — G. If char k(s) does not divide [ for all s € S, we deduce
from Lemma 2 that ,G, being the fibre of I; over the unit section, is étale over S,
whereas in the situation of Lemma 2 (a) we only know that ,G is quasi-finite and
flat over S.

In general, an S-group scheme H of finite type which is quasi-finite over S is
not finite over S unless S consists of a ficld. However, if S is the spectrum of a
henselian discrete valuation ring R and if H is quasi-finite and separated, one can
consider its finite part H'. The latter is the open and closed subscheme of H
consisting of the special fibre H, and of all points of the generic fibre Hy which
specialize into points of H,. Namely, applying 2.3/4, one shows that H is the disjoint
sum of two open and closed subschemes H' and H”, where H’ is finite over S and
where the special fibre of H” is empty. The finite part H' of H is an open subgroup
scheme of H.

Proposition 3. Let R be a discrete valuation ring and let | be a positive integer such
that the residue characteristic of R does not divide I. Then, for any smooth commutative
R-group scheme G of finite type, the canonical map ,G(R*") — ,G(k,) is bijective,
where R is a strict henselization of R and where k, is the residue field of R*".

Proof. We may assume that R is strictly henselian. Since ,G is étale over R by Lemma
2, its finite part is a disjoint union of copies of S = Spec R; cf. 2.3/1. O




180 7. Properties of Néron Modes

Definition 4. Let f: G — G’ be a homomorphism of commutative group schemes of
finite type over an arbitrary base scheme S. Then f is called an isogeny if, for each
s € §, the homomorphism f;: G;— G, is an isogeny in the classical sense; i.., if fis
Sfinite and surjective on identity components. )

Examples of isogenies are provided by I-multiplications on commutative group
schemes G where [ and G have to be chosen as required in Lemma 2 (a) or (b). In
the situation of the definition, each f; has a degree deg f,, which can be defined ag
the rank of the finite k(s)-group scheme ker f,. Recalling some facts on commutative
finite group schemes H over a field k, we mention that H is étale if chark = 0 (by
Cartier’s theorem) or, more generally, if char k does not divide the rank of H. If
is connected, its rank is a power of char k. Furthermore, the l-multiplication
lg: H— H is the zero-homomorphism if / is a multiple of the rank of H.

We need a well-known result relating isogenies over fields to -multiplications.

Lemma 5. Let f: G — G’ be an isogeny between smooth and connected commutative
group schemes of finite type over a field k. Assume either that char k does not divide
deg f or that G is semi-abelian. Then there is an isogeny g: G — G such that
go f=Il;wherel = degf.

Proof. Setting | = deg f, we see that ker f < ker I;. Then, f being flat and surjective,
we have G' = G/ker f and, thus, homomorphisms

G-L 6 — Glkerl, .

Since the l-multiplication I : G — G is finite by Lemma 2, and since I; factors
through G/ker I;, the existence of g is clear. O

Now, working over a discrete valuation ring R and its field of fractions K, we
can deal with the question of whether a homomorphism between R-group schemes
is an isogeny as soon as it is an isogeny on generic fibres.

Proposition 6. Let Gy and Gy be smooth commutative and connected K-group
schemes of finite type admitting Néron models G and G’ over R. Consider an isogeny
Jx: Gx —> Gy and assume either that the residue characteristic of R does not divide
deg fx or that G is semi-abelian. Then fy extends to an isogeny f: G — G', and there
is anisogeny g: G' — G such that g o f = l; for | = deg f.

Proof. Using Lemma 5, there is an isogeny g : Gy — Gy satisfying gg o fx = lg,
for [ = deg f. Due to the Néron mapping property, fx and g extend to homomor-
phisms f: G — G’ and g : G' — G such that g o f = ;. Then, by our assumptions
on | = deg fx or on G, we see from Lemma 2 that I; is an isogeny, and it follows
easily that f and g are isogenies. O

Corollary 7. Let fy : Gy —> Gk be an isogeny of abelian varieties with Néron models
G and G'. Then G is semi-abelian if and only if G' is semi-abelian.
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- Proof. By the Néron mapping property, the isogeny f extends to a homomorphism

. G — G'.Xf G is semi-abelian, f is an isogeny by Proposition 6 and, consequently,

' is semi-abelian. Using an isogeny g : Gx — Gy, one shows in the same way that

G is semi-abelian if G’ is semi-abelian. O

7.4 Semi-Abelian Reduction

Let G be a smooth group scheme of finite type over a Dedekind scheme S which,

for simplicity, we will assume to
(resp. semi-abelian reduction) at a

be connected. We say that G has abelian reduction
closed point s € § if the identity component G is

an abelian variety (resp. an extension of an abelian variety by an affine torus). In
particular, if G is a Néron model of its generic fibre Gy, where K is the field of
fractions of S, we will say that G has abelian (resp. semi-abelian) reduction at s € S
if the corresponding fact is true for G. The latter amounts to the same as saying that
the local Néron model G xg Spec Us , of G at s € S has abelian (resp. semi-abelian)
reduction.

If Ay is an abelian variety over K, then Ay is said to have potential abelian
reduction (resp. potential semi-abelian reduction) at a closed point s € § if there is a
finite Galois extension L of K such that A, has abelian (resp. semi-abelian) reduction
at all points over s. To be precise, we thereby mean that the Néron model 4’ of 4,
over the normalization S’ of S in| L has abelian (resp. semi-abelian) reduction at all
closed points ' € §' lying over s. Instead of abelian reduction, we will also talk
about good reduction. Let us begin by mentioning the fundamental theorem on the
potential semi-abelian reduction of abelian varieties.

Theorem 1. Each abelian variety| Ay over K has potential semi-abelian reduction at
all closed points of S.

The easiest way to obtain this result is via the potential semi-stable reduction
of curves, as proved by Artin and Winters [1], a topic which is beyond the scope
of the present book. So we will restrict ourselves to briefly indicating how the
assertion of the theorem can be deduced from the corresponding results on
curves.

Since abelian varieties have good reduction almost everywhere, see 1.4/3, the
problem is a local one, and we may assume that S consists of a discrete valuation
ring R. One starts with the case \%vhere Ay is the Jacobian Jy = Picg,x of a smooth
and proper K-curve Cg. Then the theorem on the potential semi-stable reduction
of curves asserts that, replacing K by a finite separable extension if necessary, we
can extend Cg into a proper flat R-curve C whose geometric fibres have at most
ordinary double points as singularities; cf. 9.2/7. For such a curve it is shown in
9.4/1 that the relative Jacobian Eicg,s is a smooth and separated R-group scheme
having semi-abelian reduction. Since Pics is an S-model of Jg, it follows from
Proposition 3 below or from the rbore general discussion of the relationship between
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Néron models and the relative Picard functor in 9.5/4 or 9.7/2 that Picg is the
identity component of the Néron model of J. Thus Ji has semi-abelian reduction,

If Ay is a general abelian variety, one knows, see Serre [1], Chap. VII, § 2, n°13,
that there is an exact sequence of abelian varieties

0_’A/K_'7JK"—’AK—)O

where Jy is a product of Jacobians. Using the fact that J has potential semi-abelian
reduction, it follows from the lemma below that Ay has potential semi-abelian

reduction also. 0

Lemma 2. Let 0 — Ag — Ax — Ax — 0 be an exact sequence of abelian varieties
over K. Then Ag has semi-abelian (resp. abelian) reduction if and only if Ay and A}
have semi-abelian (resp. abelian) reduction,

Proof. Due to Poincaré’s complete reduc}ibih'ty theorem, see Mumford [3], Chap.
IV, §19, Thm. 1, there is an abelian sub\‘iariety A in A K such that the canonical
map Ay x Ax — Ay and, thus, also the composition Ay — Ay — A are iso-
genies. So we see that A is isogenous to Ay x Ay and it follows from 7.3/7 that 4,
has semi-abelian reduction if and only if the same is true for Ay and A%. An

application of 7.3/6 settles the case of abehan reduction. O

For the remainder of this section, let qs assume that the base scheme S consists

of a discrete valuation ring R with field of friactions K. We want to discuss properties
of Néron models with abelian or seml-abehan reduction and to give criteria for the

existence of Néron models with abehan or semi-abelian reduction over the given
field K.

Proposition 3. Let A be an abelian variety iwith Néron model A and let G be a smooth
and separated R-group scheme which is an R-model of Ay. Assume that G has
semi-abelian reduction. Then the canonical| morphism G — A is an open immersion;

it is an isomorphism on identity component:f:.

Proof. We can assume that R is strictly hensehan Furthermore, it is enough to show

that G° — 4%isan isomorphism. So assume that G = G°. Let | be a positive integer
which is not divisible by the characteristic of the residue field k of R. Considering
the kernels ;G and ;4 of I-multiplications on G and A, we have a canonical commuta-

tive diagram
(G(K) —=— A(K)
14

1G(R) ——— A(R)

Gl) ——— A0
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where ,G(R) — ;G(K) is injective since G is separated and where all other vertical
maps are bijective; the upper one on the right-hand side because 4 is a Néron model
of Ag and the lower ones by 7.3/3. So the middle horizontal map is injective, and
the same is true for the lower horizontal one. Now, using the facts that G has
semi-abelian reduction and that k is separably closed, it follows that the points in
G(k) which have finite order not divisible by char k are topologically dense in each
connected subgroup of G,. Therefore G, —» A? has a finite kernel. In particular,
G — A° is quasi-finite and, thus, surjective by reasons of dimension. But then
7Zariski’s Main Theorem 2.3/2’ shows that G — A° is an isomorphism. O

Corollary 4. If an abelian variety Ay has semi-abelian reduction, then the formation
of the identity component of the Néron model of Ay is compatible with faithfully flat
extensions of discrete valuation rings R'/R.

We have seen above that points of finite order play an important role when
dealing with Néron models of abelian varieties. We want to use them in order to
give a criterion for the existence of abelian or semi-abelian reductions over the given
field K. As before, R will be a discrete valuation ring with field of fractions K and
with residue field k. Let K be a separable algebraic closure of K and consider rings
R c R" < R = R, « K, where R" is a henselization of R, where R*" is a strict
henselization of R, and where R; is the localization of the integral closure of R in
K, at a maximal ideal lying over the maximal ideal of R*". As usual K" and K*
denote the fields of fractions of R" and of R™". Then the inertia group of the maximal
ideal of R, coincides with the Galois group Gal(K,/K*"); cf. 2.3/11. Fixing the above
situation, we will call I := Gal(K,/K**) “the” inertia group of Gal(K,/K).

Theorem 5. Let Ay be an abelian variety over K with Néron model A over R, and let
1 be a prime different from char k. Then the following conditions are equivalent:

(a) Ag has abelzan reduction; i.e., the identity component AJ is an abelian variety
over k.

(b) A is an abelian scheme over R.

(c) For eachv = 0 the inertia group I of Gal(K,/K) acts trivially on ,Ag(K,), the
set of K -valued points of the kernel of the I*-multiplication I} : Ay — Ay. In other
words, the canonical map ,Ag(K™") — ,A((K,) is bijective.

(d) The Tate module T(AK) hm AK(KS) is unramified over R; i.e., the inertia
group I of Gal(K,/K) operates trzvzally on Tj(Ag). '

Proof. We begin by showing that conditions (a) and (b) are equivalent. If A is an
abelian variety, we can conclude from [EGA 1V,], 15.7.10, that A° is proper over
R and, thus, is an abelian scheme over R. But then 4° is a Néron model of its generic
fibre by 1.2/8; thus, A = A°. This verifies the implication (a) = (b); the converse
is trivial.

The equivalence of (c) and (d) is clear. In order to verify the remaining implica-
tions, consider the canonical maps

() WAK) > JAKT) & ART) = LAlk,)
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where k, is the residue field of R™ and where the map on the right-hand side is
bijective by 7.3/3. If 4 is an abelian scheme over R, the cardinality of both sets
~AK,) and ,A(k,) is I¥2" where n is the dimension of A4; cf. Mumford [3], p. 64.
Therefore, all maps in () are bijective and we see that (b) implies (c).
Conversely, assume that all maps in () are bijective. Then the cardinality of
Ak is I 2n for each v > 0, and it follows from the structure of commutative
group schemes of finite type (over an algebraically closed or perfect field k) that
the identity component A? is an abelian variety. So we see that condition (c) implies
condition (a). O

The equivalence of (a) and (d) in the above theorem is called the criterion of
Néron-Ogg-Shafarevich for good reduction. To apply it, one may work over a
strictly henselian base ring R. Then Ay has abelian reduction if and only if all
I*-torsion points of Ay are rational over K. The criterion can be generalized
to the semi-abelian reduction case; see [SGA 7,], Exp. IX, 3.5. We include this
generalization here without proof.

Theorem 6. Let Ay be an abelian variety over K, and let | be a prime different from

char k. Then the following conditions are equivalent:

(a) A has semi-abelian reduction over R.

(b) There is a submodule T' = T := T)(Ax(K,)) which is stable under the action
of the inertia group I of Gal(K,/K) such that I acts trivially on T' and on T/T".

7.5 Exactness Properties

In the following let S be a Dedekind scheme with ring of rational functions K. Except
for the purposes of Proposition 1 below, we will only be concerned with the case
where S consists of a discrete valuation ring R. Let G be a smooth K-group scheme
of finite type, and let Xy be a torsor under Gg. Then the Néron model X of Xy, if
it exists, may be viewed as a direct image 1, X, with respect to the canonical
inclusion 1: Spec K — S. More precisely, X represents this direct image if one
restricts to smooth schemes over S. This consideration suggests that the Néron
model might behave reasonably well with respect to left exactness. However we will
see that, except for quite special cases, there will be a defect of exactness, the
defect of right exactness being much more serious than the one of left exactness. We
will give some examples at the end of this section, after we have presented the general
results. Let us begin with an assertion concerning the existence of Néron models.

Proposition 1. Let S be a Dedekind scheme with ring of rational functions K and let
(*) 0— Gy — Gg— Gy —0

be an exact sequence of smooth K-group schemes of finite type (not necessarily
commutative).
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(a) If Gk admits a Néron model over S, the same is true for Gy, but not necessarily

or Gk
(b) If Gx and Gg admit N éron models over S, the same is true for Gy.

Proof. If G admits a Néron model then Gy admits a Néron model by 7.1/6. To
justify the second part of assertlon (a), we give an example showmg that the existence
of a Néron model for G, does not imply the same for Gy. Assume that S consists
of a discrete valuation ring of ecﬁual characteristic p > 0 and, as in Example 7.1/3,
let Gg be the subgroup of G, | xx G, x given by the equation x + x? + =y? = 0,
where = is a uniformizing elemexllt of R. Then Gy admits a Néron model over S and
the projection of G, x Xx G, x onto its second factor gives rise to a smooth group

epimorphism Gy — G, g. Wﬂting Gy, for its kernel, we have a short exact sequence
|
0— G&——»Gx—vﬁax—>0

of smooth K-group schemes of ﬁmte type. The middle term admits a Néron model
whereas the group G, g on nght—hand side does not. The example is quite typical;
the reason that a Néron model fqr Gy does not imply the existence of a Néron model
for Gg, comes mainly from the fa;ct that the quotient of a K-wound unipotent group
is not necessarily K-wound again

Next, to prove assertion (b), e‘tssume that Gy and Gg admit Néron models G’ and
G” over S, where S is an arbitrary Dedekind scheme again. First, if the given exact

sequence (*) extends to an exact ;sequence of smooth S-group schemes of finite type
0—>iG'—>G—> G'—0,
we claim that G is automatlcally a Néron model of Gy by the criterion given in

7.1/1. Namely, in order to venfy this, we may assume that S consists of a strictly
henselian discrete valuation rmg R. Then it is enough to show that the canonical

map G(R) — G(K) is bijective. However, this follows easily from the commutative
diagram

0 —— G'(R) > G(R) G'(R) ——— 0

0 —— G'(K) G(K) » G"(K)

by realizing that the first row is exact due to the fact that the smoothness of G — G”
implies the surjectivity of G(R) ——-» G"(R); cf. 2.2/14..

In the general case we can app]y a limit argument ([EGA IV,], 8.8.2), and
thereby extend () to an exact seduence of smooth group schemes of finite type over
a dense open subscheme S’ of S. Consequently, there is a Néron model of G, over
§'. Then, using 1.4/1, it is enougﬁ to construct the local Néron models of Gy at the
finitely many remaining points of S — §'. So, in the proof of assertion (b), we are.
reduced to the case where S cc}msists of a discrete valuation ring R. Since this
problem does not seem to be accessible by elementary methods, we have to make
use of a later criterion characterizing the existence of Néron models in terms of the
structure of algebraic groups; cf.i 10.2/1. It says that a smooth K-group scheme of
finite type like Gy admits a Néron model if and only if, after the base change
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K — K" the group Gy does not contain subgroups of type G, or G,,; here K* is
the field of fractions of R**, the strict henselization of the completion of R. Using
this criterion, it is easily verified that Gx admits a Néron model over R if the same
is true for Gy and Gg. 0O

Next, consider an exact sequence
0— Gy —> Gy—> Gxg—0
and assume that the corresponding Néron models G', G, and G exist so that, due
to the universal mapping property, there is an associated complex

0—G—HG—G —0.

We want to examine under what conditioxils parts of the latter sequence are exact.
To do this, it is enough to look at the local case. So, in the following, the base S

will consist of a discrete valuation ring R w1th field of fractions K and with residue
field k. 1

Proposition 2. If chark = 0, the closed imrjnersion Gy — G gives rise to a closed

_immersion G' — G of associated Néron mo‘dels

Proof. Denote by H the schematic closure of Gy in G. Then G' — G factors through
Hc G and we know from 7.1/6 that the induced morphism G'— H is an

1somorphxsm O

Next, let us look at abelian varieties.

Proposition 3. Consider an exact sequence of abelian varieties
0—>A}(——*AK§—>A§'{—>0

and the corresponding complex of Néron médels

) 0—s A/ — A A" —0.

Let By be an abelian subvariety of Ag such that Ay — Ak induces an isogeny
g : By — Aj; let n = degug.

(@) If chark does not divide n, then A +— A is a closed immersion, A — A" is
smooth with kernel A’, and the cokernel of Ak — Aj is killed by multiplication with
n. If, in addition, A has abelian reduction, ('f') is exact.

(b) If A has semi-abelian reduction, the : sequence (1) is exact up to isogeny; i.e., it
is isogenous to an exact sequence of commutative S-group schemes.

Proof. The isogeny uy : By — Ax gives risé to an isogeny vy : Ay Xx By — A of
degree n. So there is an isogeny wy: AK——> Al X g By such that wy o vy is multi-
plication by n. Let B be the Néron model of By. Then ug, vy, and wy extend to
R-morphisms u: B— A", v: A’ xg B—> A,and w: 4 — A’ xy Bsuchthatwowv
is multiplication by n on A" xg B. Assummg the condition of (a), the multiplication
by n is an étale isogeny on A’ x B, and u, v, and w are easily checked to be étale
isogenies, too. Then H := w™!(4')isa smoqth closed subgroup scheme of 4 which
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satisfies H? = AY. It follows that the schematic closure of Ay in H or 4 is an open
subgroup scheme of H and, thus, is smooth over R. So, by 7.1/6, it coincides with
the Néron model A’ of Ay and we see that A" — A is a closed immersion: The
remaining assertions of (a) follow by using the étale isogeny u. One shows that
A — A" is flat, has kernel A" and, hence, is smooth. Furthermore, if A has abelian
reduction, the same is true for A” by 7.4/2 so that A — A" is surjective.

Assertion (b) follows from the fact that v: A’ xg B~ 4 and u: B— A" are
isogenies; use 7.3/6 and 7.3/7. ]

Theorem 4. Let 0 — Ay —> Ay — Ax —> 0 be an exact sequence of abelian varie-
ties and consider the associated sequence of Néron models 0 — A'— A — A" — 0.
Assume that the following condition is satisfied:

(*) R has mixed characteristic and the ramification index e = v(p) satisfies
e < p— 1, where p is the residue characteristic of R and where v is the valuation
on R, which is normalized by the condmon that v assumes the value 1 at uniformizing
elements of R.

Then the following assertions hold:

() If A’ has semi-abelian reduction, A" —> A is a closed immersion.

(ii) If A has semi-abelian reduction, the sequence ) — A" — A — A" is exact.

(iii) If A has abelian reduction, the sequence 0 — A’ —» A — A" — 0 is exact
and consists of abelian R-schemes.

Proof. Let us first see how assertions (ii) and (iii) can be deduced from assertion (i).
If A has semi-abelian or abelian reduction, the same is true for A’ and A" by 7.4/2.
So A’ — A is a closed immersion by (i), and we can consider the quotient A/A4’; it
exists in the category of algebraic spaces, cf. 8.3/9. Furthermore, 4/A4" is smooth and
separated and, thus, a scheme by 6.6/3. Now look at the canonical morphism
A/A’ — A" which is an isomorphism on generic fibres. Since A has semi-abelian
reduction, the same is true for 4/4’, and it follows from 7.4/3 that A/A' — A" is an
open immersion. So assertion (ii) is clear. Finally, if A has abelian reduction, the
same is true for 4/4’. So the latter is an abelian scheme by 7.4/5 and, thus, must
coincide with the Néron model A” of Ag. Thereby we obtain assertion (iii).

It remains to verify assertion (i) under the assumption of condition (x). As a key
ingredient for the proof of this fact, we will need the following result on finite group
schemes; cf. Raynaud [7], 3.3.6.

Lemma 5. Let R be a discrete valuation ring satisfying condition () of Theorem 4.
Let v:G'—> G be a morphism of R-group schemes which are finite, flat, and
commutative. Then, if vy : Gy — Gy is an isomorphism, v is an isomorphism.

The lemma implies a criterion for finite and flat R-group schemes to be étale.
To state it in its simplest form, recall that a group scheme over a base scheme S is
called constant if it is of the type Hg with an abstract group H.

Corollary 6. Assume that R is as in condition (x) of Theorem 4 and that, in addition,
it is strictly henselian. Furthermore, consider a finite, flat, and commutative R-group
scheme G whose generic fibre is constant. Then G is constant.
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Proof of Corollary 6. Let G'— G be a group smoothening of G (see 7.1). Then G’
coincides with its finite part and, thus, is finite over R since G is finite over R,

Therefore G' — G is an isomorphism by the lemma. Using the fact that G’ is étale .

over R and that R is strictly henselian, G is constant. O

Now let us indicate how to obtain assertion (i) of Theorem 4 under the assump-
tion of condition (). Since Néron models are preserved when R is replaced by its
strict henselization or by its completion, we may assume that R is strictly henselian
and complete.

We begin by showing that u: A’ — A4 is a monomorphism; i.e., that N := keru
is trivial. For this purpose it is enough to show that the special fibre N, of N is
trivial. If not, there is a prime [, not necessarily different from chark, such that
1Ay N N, is non-trivial; as usual, ;4" is the kernel of the I-multiplication on A’. Since
A’ has semi-abelian reduction, ;4’ is quasi-finite and flat over R; cf. 7.3/2. Now, R
being henselian, we can consider the finite part G’ of ,4’; see 7.3. It is enough to
show that u is a monomorphism on G'. Let G be the schematic image of G’ under
u and consider the morphism u': G' — G given by u. Then u’ is an isomorphism
on generic fibres and thus, by the lemma, an isomorphism on G'. In particular, u’
is a monomorphism, and it follows that u is a monomorphism.

If A’ has abelian reduction, it is an abelian scheme by 7.4/5 and, thus, proper
over R. So it follows that u is proper. But then, being a monomorphism, it must be
a closed immersion. This ends the proof in the special case where A’ has abelian
reduction.

In the general case, some work remains to be done since there ex1st monomor-
phisms which are not immersions; cf. [SGA 3,1, Exp. VIIL, 7 and Exp. XVI, 1. Let
B be the schematic image of u: A’ — A; it is a closed subgroup scheme of 4 which
is flat over R. We will show that B or, what is enough, that B° is smooth. Then, due
to the Néron mapping property, the morphism A’ — B admits an inverse and u is
a closed immersion. In order to do so, we denote by an index n reductions modulo
n", where 7 is a uniformizing element of R. Since u is a monomorphism, it is a closed
immersion modulo zn" for all n > 0; cf. [SGA 3], Exp. VI;, 1.4.2. So we can consider
the exact sequence of R,-schemes

O——’A;lo_—)Bl?_’Qn_)O
where the quotient Q,, = BP/A/° exists as an R-scheme by [SGA 3,], Exp. VI,, Thm.
3.2, and is flat by [SGA 3,], Exp. VI, Thm. 9.2. Furthermore, Q, is connected and,

by reasons of dimension, finite over R,. Taking inductive limits for n going to
infinity, we obtain an exact sequence of formal group schemes over R

0—A—B—Q—0

where Q is an R-scheme which is finite, flat, and connected. Let g be a power of p
such that Q is annihilated by the g-multiplication on Q. Since A’ is p-divisible, the
above sequence restricts to an exact sequence

0—>q21\'—>qB\—->Q—>O

on the kernels of g-multiplications; the latter are finite flat R-group schemes by 7.3/2.
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Furthermore, ;A' and ,B can be interpreted as the finite parts of the quasi-finite flat
R-group schemes ,4'° and ,B°.

Applying Grothendieck’s orthogonality theorem [SGA 7,], Exp. IX, Prop. 5.6,
we see that the generic fibre of [the quotient 4 /qA’ is constant. Since A" and B
coincide on generic fibres, it follows that the generic fibres of B/qA’ and, thus, of Q0
are constant. But then Q is constant by Corollary 6 and, being connected, it must
be trivial. So A’ is isomorphic to B and, consequently, B® is smooth which remained
to be shown. O

In the remainder of this sectl‘on, we want to discuss the defect of exactness of
Néron models by looking at some special examples.

Example 7. Let R be a complete dlscrete valuation ring with normalized valuation
y. Let g be a non-zero element of R with v(q) > 0 and consider the Tate elliptic
curves Ex = G, x/a* and Ey = (‘5,,, «/(g"% where [ is a positive integer not divisible

by char K. Since the l—multlphcatlon on Ey factors through EY, it gives rise to an
exact sequence ‘

0——»(1;K—>EK———>E’K——>0,

where Gy is a finite group sch1eme of order I, contained in the kernel of the

I-multiplication on E; the latter is of order I%. Let
0 —> G—E-—E —0

be the associated sequence of Nf':>r0n models. We want to show that there can be
a defect of exactness at G, at E or at E', depending on ! and on the residue

characteristic of R.

Defect of exactness at G. Assume that R is of mixed characteristic, that [ = p =
char k, and that all p-torsion pomts of Ey are rational over K. The latter condition
implies that the ramification 1ndex e is at least p — 1; cf. Serre [4], Chap. IV, §4,
Prop. 17. Then Gg ~ (Z/pZ)x and\ ~ (Z/pZ)g. Furthermore, the kernel of E — E’
is the group p,, » of p-th roots of unity, and the morphism from G into the kernel
of E — E’ coincides with a morphlsm (Z/pZ)gr — np,gsending 1 toa primitive p-th
root of unity of R. However, the latter is not a monomorphism since p = char k. In
particular, G — E is not a monomorphism. -

Defect of exactness at E. Keeping the situation we have developed above, we see
that G cannot be mapped surjectively onto the kernel of E — E'since the morphism
(Z/pZ)g — n,, ¢ is not surjective.

Defect of exactness at E'. The group of connected components of the special fibre
of E has order v(q) whereas that of E’ has order I v(g). So, without restrictions on
the residue characteristic of R, the morphism E — E’ cannot be surjective for

arbitrary [ > 1. 3 [
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Next we want to show that the assertion of Theorem 4 can be false if we do not 7.6 Weil Restriction

require condition (x) of this theorem.

The main purpose of this section is to discuss a criterion for the existence of Weil
restrictions and to study the behavior of Néron models with respect to Weil
restrictions.

Let h:S"— § be a morphism of schemes. Then, for any S’-scheme X', the
contravariant functor

Ry s(X7) : (Sch/S)° — (Sets) ,

is deﬁped on the category (Sch/S) of S-schemes. If it is representable, the corre-
sppndmg §-scheme, again denoted by Ry, 5(X"), is called the Weil restriction of X'
with respect to h. Thus, the latter is characterized by a functorial isomorphism

Example 8 (Serre). We will construct a morphism v: A’ — A of abelian schemes
over R which is not a monomorphism, but which has the property that vy:
Al — Ay is a closed immersion. The valuation ring R is supposed to have mixed
characteristic. So if p = char k, we have to a]ssume e:=v(p) = p — 1 by Theorem 4.
In the following we assume that R contains all p-th roots of unity so that e is a
multiple of p — 1 by Serre [4], Chap. IV, § 4,§Prop. 17. Now, similarly as in Example
7, consider a morphism u : (Z/pZ)g — I, sexﬁding 1 to a primitive p-th root of unity.
““““ Let E be an elliptic curve over R (i.e., an abelian scheme with elliptic curves as fibres)
which contains p, as a subscheme. Then u e)j(tends to a morphism u : (Z/pZ)g — E,
which is a closed immersion on generic fibres, but which is not a monomorphism.

T+ Homg(T x5 5,X'),

Let E’ be a second elliptic curve over R whi
example, a Serre-Tate-lifting of an elliptic
subscheme). Then consider the co-cartesian

-h contains (Z/pZ)g as a subscheme (for
curve over k containing (Z/pZ), as a
diagram

@/p2)y —— E

|

’

E ___”___> F

where F’ is the quotient of E x E’ with res
action is free, F’ is an abelian scheme over R

pect to the action of (Z/pZ)g. Since the
Furthermore, uj is a closed immersion,

but ' itself cannot be a monomorphism since u is not a monomorphism. O

Finaily, we want to show that the condition on the semi-abelian reduction of 4’

in Theorem 4 cannot be cancelled.

Example 9. Consider discrete valuation riings R c R where R=7Zg and R' =
Z,[a] with abeing a primitive p-th root of unity; p is a prime different from 2. Let

u'+ E'—>» F’ be a morphism of abelian R'-schemes of the type constructed in

Example 8; ie., such that v’ is not a moanorphism, but such that it is a closed
immersion on generic fibres. Then apply the technique of Weil restriction of R’ over
R to u’ (cf. Section 7.6) and consider the induced morphism ul: E! — F. It follows
from 7.6/6 that E' and F' are Néron models of their generic fibres, and from

7.6/2 that u! is a closed immersion on generic fibres. We claim that u! is not a
monomorphism. Indeed, the image of the r}nap Lie(u’): Lie (E') — Lie (F’) cannot
be locally a direct factor in Lie(F'). The same is true for the Weil restriction of
Lie(u'), and the latter is canonically identified with Lie (u'): Lie(E') — Lie(F?).
So u!: E! —» F! cannot be a closed immersion and, thus, not a monomorphism.

Since v(p) = 1 < p — 1, where v is the no

rmalized valuation on R, we see from

Theorem 4 that E! cannot have semi-abelian reduction. |

Homg(T, Ry,5(X")) = Homg(T x5 5, X')

of functors in T where T varies over all S-schemes. There are several elementary
properties of the functor Ry.5(X’) and, hence, of Weil restrictions, which follow
immediately from the definition. We will derive some of them once we have men-
tioned the adjunction formula in Lemma 1 below.

Imposing an appropriate condition on h such as being finite and locally free
(which we mean as a synonym for being finite, flat, and of finite presentation), the
existence of the Weil restriction of the affine n-space A} is trivial (cf. the beginning
of 'the proof of Theorem 4). Then, in order to treat more general schemes, it is
necessary to study the behavior of Weil restrictions with respect to open or closed
immersions. In order not to worry about the representability of the functor Ry 5(X")
too much, we will work entirely within the context of functors from schemes to sets.
In particular, we will make no difference between an S-scheme X and its associated
functor Homyg(-, X); in the same way we will proceed with S’-schemes.

It is convenient to define the functor Ry, 5(X’) not only for §'-schemes X”, but,.
more generally, for arbitrary contravariant functors from the category (Sch/S’) of
S’-schemes to the category of sets. So consider a functor

F’:(Sch/S’)° — (Sets) .
Then its direct image with respect to h: S’ — S consists of the functor
h,F’:(Sch/S)° — (Sets) , v T+ F(T x5 5) .
Using 4.1/1, we see easily that the functor i
(Sch/S) — (Sch/S’) ,

plays the role of an adjoint of h,; namely, the so-called adjunction formula is valid.

T—T xg8,

Lemma 1. For any S-scheme T and any functor F':(Sch/S’)° — (Sets), there is a
canonical bijection

Homg(T, h, F') =~ Homg/(T x4 S', F")

which is functorial in T and in F'.
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As an application of the above formula, we want to derive some elementary
properties of Weil restrictions. Let X’ be an §'-scheme. Then the identity on Ry, s(X")
gives rise to a functorial morphism

Ry s(X) x5 8" —> X'

if Ry s(X’) exists as an S-scheme. Likewise, if X is an S-scheme, the identity on
X xg §' defines a functorial morphism

X — Res(X x5 8.

On the other hand, each functorial morphism F' — G’ between contravariant
functors from (Sch/S’) to (Sets) induces a functorial morphism hF' — h, G Fur-
thermore, h, commutes with fibred products, and it follows that h,F' is a group
functor if the same is true for F'. In particular, the Weil restriction of a group scheme
is, if it exists as a scheme, a group scheme again. Also it is easy to see that the notion
of Weil restriction is compatible with base change; ie.,if T— Sisa morphism of
base change, and if we write T' := 8" X5 T, then, for any S’-scheme X', there is a
canonical isomorphism

mT’/T(XI xs T') =~ ‘Rs'/s(X’) xs T

of functors on (Sch/T).
In the following we need the terminology of relative representability of functors;

cf. Grothendieck [1], Sect. 3. Let
F, G:(Sch/S)° — (Sets)

be contravariant functors, and let u : F — G be a functorial morphism. Then, for
each functorial morphism T — G, where T is an arbitrary S-scheme, the fibred
product Fy = F x T may be viewed as a functor from (Sch/T)° to (Sets). One says
that F is relatively representable over G via u if, for each T — G, the projection
Fp — T is a morphism in (Sch/S); ie., if each Fy is representable by a T-scheme.
Many notions on morphisms between schemes can easily be adapted to the context
of relative representability. For example, u is called an open immersion, or a closed
immersion, or a morphism of finite type, etc., if the corresponding property is true
for each morphism of schemes uy : Fr — T, obtained from u: F — G by the “base
change” T — G.

Proposition 2. Let u': F'— G' be a morphism between functors from (Sch/S")° to
(Sets).

(i) Assume that u’ is an open immersion and that h: S’ — S is proper. Then the
associated morphism h,(u'): h F' —> h, G’ is an open immersion.

(ii) Assume that u' is a closed immersion and that h: S’ — S is finite and locally
free or, more generally, proper, flat, and of finite presentation. Then hy(u'): h, F' —
h, G’ is a closed immersion.

Proof. Let us write F = h,F' and G = h,G',andlet T— G be a morphism, where
T is an arbitrary S-scheme. Setting T':= T x5 §', we claim that T — G factors
canonically through h, T Indeed, we have a canonical morphism T — h, T

7.6 Weil Restriction .

Furthermore, T — G corresponhs to a morphism T'— G’ and, hence, to a
morphism h, T’ — h, G’ = G. That the composition with T — h, T" yields T —
G is easily verified with the help (i)f 4.1/1. Consequently, we can view Fp as being
obtained from F,_r. by means of the base change T — h, T", afact to be used below.

Furthermore, since h, commutes with fibred products, there are isomorphisms
hyFr.>=F xgh,T'=~F, 1.,
and we can look at the canonical commutative diagram

Fp  —— T

Fpp — h,T' .

In order to prove assertion (i), it has to be shown that the morphism in the middle
row, which is obtained from the one in the lower row by the base change T — h, T,
is an open immersion of schemes. We know already that the upper row is an open
immersion of schemes; let U’ be the image of Fy.in T", and set V' :=T' — U’. Then
V'is closed in T’ and, since T’ —»; T is proper, its image V in T is closed again. Set
U := T — V.Interpreting Fr as the; fibred product of F;_r.and T over b, T', we have

Fr = Homg (- Xg SV’ U') X Homg(- x 55", T") Homyg(+, T) .

Thus, if Z is an arbitrary S—schemej F(Z) consists of all S-morphisms Z — T where

" Z x5 8" — T’ factors through U'; i.e., of those S-morphisms Z — T which factor

through U. Hence Fy is representjed by the open subscheme U of T and assertion
(i) follows.

Next, let us verify assertion (i‘l) for the case where 4 is finite and locally free.
Similarly as before, let V" be the cl?sed subscheme of T" which is given by the closed
immersion Fj. — T’. Then we have to find a closed subscheme V of T such that,

given any S-morphism Z — T, It; factors through V if and only if Z x5 §' — T"
factors through V’. The problem i§ local on S, T, and Z, so we may assume that all
three schemes are affine, say with Fings of global sections R, 4, and C. Let R — R’
be the homomorphism between rings of global sections on S and §'. We may assume

R’ is a free R-module of rank n. I%et ey, ..., e, be a basis of R’ over R; then these
elements give rise to a basis of A @ R’ over R. Furthermore, let a' = A ®g R’ be

the ideal corresponding to V7, andj fix generators a;, i € I, of a’. There are equations

I n
' | .
ai =y cge, iel,
=1
i

with coefficients c;; € A. These co;eﬁicients generate an ideal a = 4, and we claim

that the associated closed subsqheme V < T is as required. Namely, consider
the homomorphism o: A — C which is associated to Z— T as well as the
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homomorphism ¢’ : 4 @z R — C @z R’ agssociated to Z xg 8 — T". Since
kero’ = (kero) @z R’ = @D (kero)-e;,
Ll

we see that o’ < ker ¢’ if and only if a < ker g, i.e., that Z’ is mapped into V' if and
only if Z is mapped into V. So it follows th‘at V represents the functor Fr.

If, more generally, h is proper, flat, and of finite presentation, one uses techniques
from the construction of Hilbert schemes as in [FGA], n°221, Sect. 3, in order to
show that there is a largest closed subscheme V of T such that an S-morphism
Z — T factors through V if and only if, aftér base change with h: §' — S, it factors

through V' < T". (]

A functor F:(Sch/S)° — (Sets) is callied a sheaf with respect to the Zariski
topology (see 8.1) if, for each S-scheme T and for each covering {T;} of T, the sequence

Homg(T, F) — || Homg(T;, F) =3 [] Homg(T; n T;, F)
i i,j
is exact. Of course, if F is a scheme, F is a sheaf in this sense.

Proposition 3. If F' : (Sch/S)° — (Sets) is a sheaf with respect to the Zariski topology,
then the same is true for F := h F'.

Proof. Since, for any S-scheme T, we have
Homy(T, F) = Homg (T x5 S',F'),

the assertion is obvious. ' 0

We want to apply the above results to the case where F’ consists of an §’-scheme
X', and give a criterion of Grothendieck for the representability of X := h, X' =
Rg.5(X’) by an S-scheme. Then, if X is representable, it defines the Weil restriction

of X'.

Theorem 4. Let h: S' — S be a morphism of| schemes which is finite and locally free,
and let X' be an S'-scheme. Assume that, for each s € S and each finite set of points
P = X' ®s k(s), there is an affine open subscheme U’ of X' containing P. Then
heX' = Ry, 5(X") is representable by an S-Scheme X and, thus, the Weil restriction of

X exists.

Proof. We may assume that S and, hence, S’ are affine, say with rings of global
sections R and R’ and that R’ is a free R-module, say with generators ey, ..., e,. Let
us first show that h, X" is representable if X" is affine. So assume X" is aﬁine and
view it as a closed subscheme of some scheme Spec R'[t], where ¢ is a (finite or
infinite) system of indeterminates. Applymg Proposition 2, it is only necessary to
consider the case where X’ = Spec R'[£]. Consider n copies of the system ¢ and write

ty, ..., t, for these systems. Then, for any R-}algebra A, there is a bijection

Hompg (R'[t], A ® R) — Homg(R[ty,...,1,1, 4) ,
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which is functorial in A4. In order to define this map, consider an R’-homomorphism
¢ : R'[t]— A @ R'. The latter is determined by the image ¢'(¢) of t in 4 ® R'.
Using the direct sum decomposition

A®RR'=@(A®RR)*?:,

we can write

a'(t) =zj:

with systems o(t),...,0(t,) of elements in A, and we can think of ¢ as of a
homomorphism ¢ : R[ty,...,t,] — A. Then it is easily seen that ¢’ — ¢ defines
the desired bijection. Consequently, in this case the functor h, X’ is representable
by the S-scheme Spec R[¢y,...,t,], and it follows that the Weil restriction Ry, 5(X")
exists.

Next, let us consider the case where X' is not necessarily affine. Let {U; };.; be
the system of all affine open subschemes of X". Then, by what we have just seen,
each h, U] is representable by an (affine) scheme U;, and the open immersion
U = X' gives rise to a morphism U;— h, X’ which is an open immersion by
Proposition 2. Viewing the U; as open subschemes of X, we have canonical gluing
data for them, and these data give rise to gluing data for the U;. So, gluing the U,
we obtain an S-scheme Y. Since X is a sheaf with respect to the Zariski topology,
the same is true for h, X’ (see Proposition 3) and there is a functorial morphism
Y — h, X'. The latter is an open immersion by Proposition 2.

In order to show that Y — h, X' is an equivalence of functors, it is enough
to show that each functorial morphism a: T — h, X', where T is an arbitrary

~ S-scheme, factors uniquely through Y or, what amounts to the same, that the latter

is the case locally in a neighborhood of each point z € T. Let (z;) be the finite
family of points in T xg §' lying over z. Furthermore, let a’: T x5 8" — X' be the
morphism corresponding to g, and set x; = a’(z;). By our assumption, there is an
affine open subscheme U’ = X’ containing all points x;. We know already that h, U’
is representable by an S-scheme U and that the canonical morphism U — h, X" is
an open immersion; the latter factors through Y by the definition of Y. Replacing
T by a suitable open subscheme containing z, we may assume that a’: 7" — X'
factors through U’. Then a: T —> h, X' factors through U and, hence, through Y.
The factorization is unique due to the fact that ¥ —s h, X" is an open immersion.

O

We want to mention some general properties of Weil restrictions, assuming that
we are in the situation of Theorem 4.

Proposition 5. Let S’ — S be a morphism of schemes which is finite and locally free,
and let X' be an S'-scheme. Assume that the Weil restriction X = Ry 5(X’) exists as
an S-scheme, and consider the following properties for relative schemes:

(a) quasi-compact.

(b) separated,
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(c) locally of finite type,

(d) locally of finite presentation,

(e) finite presentation,

(f) proper,

(@) flat,

(b) smooth.
Then the above properties carry over from X' to X under the following additional
assumptions:

property (a) if S is locally noetherian or if S’ — S is étale,

properties (b), (c), (d), (¢), and (h) without any further assumptions, and

properties (f) and (g) if ' — S is étale.

Proof. Let us begin with properties which carry over from X’ to X without any
afiditional assumptions, say with property (b). Since the Weil restriction of the
diagonal morphism X' — X’ x5 X' yields the diagonal morphism X — X xg X
and since the Weil restriction respects closed immersions by Proposition 2, we see
that X is separated if X' is separated.

Next, let us look at properties (c) and (d). That they carry over from X' to X
follows from the construction of Weil restrictions in the affine case. Namely, if X"
is a closed subscheme of the affine n-space A%, and if S’ — § is a finite and free
morphism of affine schemes, say of degree d, then it follows from Proposition 2 that
X is a closed subscheme of R, 5(A%) ~ AF where m = nd. So X is locally of finite
type if the same is true for X'. Furthermore, the proof of Proposition 2 shows that
the ideal defining X as a closed subscheme of A¥ is finitely generated if the same is
true for X’ as a closed subscheme of A%. So it follows that X is locally of finite
presentation if the same is true for X’. The latter result can also be obtained by
functorial arguments using the characterization [EGA 1V,], 8.14.2, of morphisms
which are locally of finite presentation.

If X" satisfies property (e), we can view it as an S-scheme of finite presentation.
Using a limit argument, we may assume that S is noetherian. Then X is locally of
finite presentation, since property (d) carries over from X’ to X, and quasi-compact
over § since, as we will see below, also property (a) carries over from X’ to X if the
base $ is noetherian. But then X is of finite presentation over S.

Finally, the characterization of smoothness in terms of the lifting property 2.2/6
shows by functorial reasons that X satisfies property (h) if X* does.

Now assume that 8’ —» S is étale and finite. In order to show that X satisfies
properties (a), (f), or (g) if X does, we may work locally on S, say in a neighborhood
of a point s € S. Furthermore, Weil restrictions commute with base change on S. So
we may replace S by an étale neighborhood of s. But then, since locally up to étale
base change étale morphisms are open immersions, see 2.3/8, we are reduced to the
case where S’ consists of a finite disjoint sum | [ S; of copies S; of S and where S’ — §
is the canonical map. Then, in terms of fibred products over S,

Res(X') = ]_[ Rsys(X' Xg §;) H X' Xg S,

and it is trivial that X satisfies properties (a), (), or (g) if X" does.
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It remains to show that, under appropriate conditions, property (a) carries over
from X’ to X, a fact which is already known if §' — § is étale. We claim that it is
also true for radicial morphisms. To verify this, it is enough to prove that, for §
radicial over S, the Weil res}triction Ry, s transforms any affine open covering (Uj)
of X’ into an affine open covering (Rss(Uj)) of X. Looking at fibres over S, we
may assume that S is the spectrum of a field K. Then S’ consists of a finite-
dimensional local K-algebra K' whose residue field is purely inseparable over K.
Now let (Uf) be an affine orj)en covering of X". To see that the sets Ry x(U;) really
cover X, consider a geometric point SpecE — X where E is a field over K.
Then the scheme Spec(E ®‘K K') consists of a single point and the corresponding
morphism Spec(E ®g K') —L» X’ must factor through a member of the open cover-
ing (Uj) of X". Consequently, Spec E — X factors through a member of the family
(Rx(U;)) which justifies our claim.

Now assume that the base S is locally noctherian. In order to show that X
satisfies property (a)if X" doés, we may assume that S is noetherian. We will conclude
by using a noetherian argurTnent and a stratification of S. Let n be a generic point
of S. Restricting ourselves to} aneighborhood of 77, we can assume that §is irreducible
and, since quasi-compactness can be tested after killing nilpotent elements of
structure sheaves, that S isl reduced. Furthermore, we can assume that S and §'
are affine, say S = SpecR and S’ = Spec R'. The fibre S, is the spectrum of the
finite-dimensional K—algebr!a K' = R’ @ K where K = k() = Q(R). Let L be the
maximal étale K—subalgebréi between K and K'. It is obtained as follows. Decom-
pose K’ into a finite direct product [1K: of local K-algebras K; and, for each
i, choose a maximal separ}able extension field L; between K and Kj. Then the
residue field of K is purely inseparable over L; and we have L = [TL:. Set T:=
Spec(R’ n L) so that §' — S factors through T. Over the generic point #, the finite
morphism T — S is étale. Thus, using the openness of the étale locus, we know
that T — S is étale over aﬁ open neighborhood of 1. Restricting to this neighbor-
hood, we may assume that 1}" — Sis étale everywhere. Furthermore, foreacha e K',
there is an integer n such t‘hat a" belongs to L. This property carries over to the
fibres of S’ —» T so that the latter morphism is radicial. Since X = Rys(Rsr(X")),
we see by what we have prloved above for étale and for radicial morphisms that,
working over a neighborho}od of #, the scheme X is quasi-compact if X" is.

The argument just givep shows that the original morphism X — S is quasi-

compact over a dense open subset of S if X" is quasi-compact over S§'. Looking

at the complement S; of this set and viewing it as a scheme with respect to the

canonical reduced structu}re, we can perform the base change S;—S. It

follows in the same way that X x3S8; — S, is quasi-compact over a dense
open subset of §;. Contiﬁuing this way, the procedure will stop after finitely
many steps due to the noctherian hypothesis. Thus, finally, it is seen that X is

quasi-compact over S. 0

We want to add, again ijn the situation of Theorem 4, that, for any S-scheme X,
the canonical morphism X — Rs,s(X x5 S') is a closed immersion, provided X
and, thus, Ry s(X x5 S) ar{e separated. This follows by means of descent from the

fact that the composition of canonical morphisms
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X x5 8 — Res(X sz)xSS'—vasS’

is the identity on X xg §'. |
Finally, let us state how Néron models behave with respect to Weil restrictions.

Proposition 6. Let S’ — S be a finite and ﬂat morphism of Dedekind schemes. Let
Spec K and Spec K’ denote the schemes of generic points of S and S'. Furthermore,

consider a torsor X' (under a smooth S’-group scheme G') which is a Néron model -

of the scheme of generic fibres X' x g Spec K" Then the Weil restriction X = Ry, 5(X")
exists as an S-scheme and is a Néron model of the scheme of generic fibres
X xgSpecK.

Proof. Using the quasi-projectivity of torsors over Dedekind schemes (cf. 6.4/1), the
existence of X = Ry, 5(X") as an S-scheme ﬂollows from Theorem 4. Furthermore,
it follows from Proposition 5 that X is separated, of finite type, and smooth.
Finally, that X satisfies the Néron mapping property is a formal consequence of the
definition of Weil restrictions, namely of the equation

Homg(Z, X) = Homy.(Z x5 S, X’).

Chapter 8. The Picard Functor

Following Grothendieck’s treatment [FGA], we introduce the relative Picard func-
tor Picy;s and treat the notion of the rigidified relative Picard functor. The main
purpose of this chapter is the presentation of various results on the representability
of Picy;s. We explain Grothendieck’s theorem on the representability of Picys by
a scheme and point out improvements due to Mumford [2] as well as those due to
Altman and Kleiman [1]. In Section 8.3, we discuss the main steps of M. Artin’s
approach [5] to the representability of Picy,s by an algebraic space; for details, the
reader is referred to his paper. At the end of the chapter, there is a collection of some
results on smoothness as well as on finiteness properties of Picys, as can be found

in [SGA 6].

8.1 Basics on the Relative Picard Functor

For any scheme X, we denote by Pic(X) = H!(X, 0%) the group of isomorphism
classes of invertible sheaves on X. It is called the absolute Picard group of X. Fixing

. a base scheme S and an S-scheme X, we can consider the contravariant functor

Py /s : (Sch/S)° — (Sets) , T+ Pic(X x5 T),

from the category (Sch/S) of S-schemes to the category of sets, which factors through
the category of commutative groups. Using the procedure of sheafification, we want
to associate a functor with Py,s which, under certain conditions, is representable;
namely, the so-called relative Picard functor.

To begin with, let us discuss a necessary condition for a functor F : (Sch/S)? —s
(Sets) to be representable. Let M be a class of morphisms in (Sch/S) which is stable
under composition and under fibred products and which contains all isomorphisms.
Then F is called a sheaf with respect to M or an M-sheaf if, for any family of
S-schemes (T;);. ;, the canonical morphism

FUIT)—TIF®
is an isomorphism and if, for all morphisms T" — T in I, the sequence
F(T)— F(T') 33 F(T")

isexact (where T” = T' x, T’ and where the double arrows on the right are induced
by the two projections from T” onto T’). For example, we can consider the class
M = My, of all morphisms in (Sch/S) of type [ [ T; — T, where the maps T; —> T
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are open immersions and where {T;}; ., is an open covering of T. If F is a sheaf with
respect to My,,, it is said that F is a sheaf with respect to the Zariski topology. To
give an equivalent condition, one can require that, for all open coverings {T;};; of
T, the canonical sequence

F(T)— [[ FM) =] F(T; %1 T)

is exact.

There are further topologies of more general type; cf. [SGA 3], Exp. IV, 6.3.1.
We mention the fpgc-topology, the fppf-topology, and the étale topology. If top is
any of the abbreviations

fpqc (= faithfully flat and quasi-compact),
fppf (= faithfully flat and of finite presentation), or

ét (= étale surjective),

we write M, for the class of all morphisms in (Sch/S) which are of type top and
say that a functor F : (Sch/S)° — (Sets) is a sheaf with respect to the top-topology
(or, simply, with respect to top), if it is a sheaf with respect to both M, and M.

Proposition 1. Let F be a representable contravariant functor from (Sch/S) to (Sets).
Then F is a sheaf with respect to fpqc and, hence, with respect to fppf, ét, and Zar.

Proof. If F is represented by an S-scheme X, we bave F(T) = Homg(T, X). Since
morphisms to X can be defined locally, it follows for any open covering {L}of T
that the canonical sequence

Homg(T; X) — [ ] Homg(T;, X) = [ | Homs(T; X1 T;, X)

i,j

is exact. So F is a sheaf with respect to the Zariski topology.
Furthermore, for any S-morphism T’ — T which is fpqc, the canonical

sequence
Homyg(T, X) — Homg(T', X) = Homs(T", X)
is exact; namely, it is isomorphic to the sequence
Hom (T, X;) — Hom(T’, X7) = Hom.(T", X1)

which, by descent theory, is exact, as shown in the proof of 6.1/6. Thus F is a sheaf
with respect to fpqc. _ O

Returning to the functor
Pys:(Sch/S)° — (Sets), T+ Pic(X x5 T),

it is easily seen that, in general, Pys is not a sheaf, even with respect to the Zariski
topology. As a consequence, we cannot expect its representability. Indeed, if Pys
were a sheaf with respect to the Zariski topology, a line bundle on X x5 T would
be trivial as soon as it trivializes over (the pull-back of) an open covering of T.
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However, this is not the case. S%) if we want to deal with a functor from which
representability can be expected, we have to sheafify Py;s; this can be done by using
standard methods from sheaf theory.

In order to explain the prociedure of sheafification, let us, again, consider a
functor F : (Sch/S)° —» (Sets) and a class 9% of morphisms in (Sch/S) which is stable
under composition and under ﬁbrled products and which contains all isomorphisms.
To give a sheafification of F (within the context of sheaves with respect to 9%) means
to construct a morphism F — F| into a sheaf F T such that each morphism from F
into an arbitrary sheaf G (alwaysi with respect to M) admits a unique factorization
through FT. The construction of F 1 js straightforward. Let T — T be a morphism
in M and denote by H(T'/T, F)j the subset of F(T’) consisting of all elements &
which are characterized by the following property: if £, and ¢, are the “pull-backs”
of ¢ with respect to the two projections from T" = T’ x1 T' onto T, there is a
morphism T —s T” in M suchi that the images of &; and &£, with respect to
F(T")— F(T) coincide in F(T). If T varies over (Sch/S), the sets H°(T'/T, F) form
an inductive system. Provided EIR is not “too big”, the direct limit of this system
exists, and we can set |

FT(T) = I;HPI-_IO(T'/TZ F).

It is verified without difficulties t}hat F' is a sheaf with respect to 0t and that the
canonical morphism F — F t defines F' as a sheafification of F.

The direct limits which have l;)een used to define the sheaf FT exist if we take for
I any of the classes Mz, 9)1;:1,% or My, Whereas in the case M = Wigpq SOmME
precautionary measures, like wo#king in a fixed universe, are necessary. However,
since the class My, is quite big, it may happen that sheafifications with respect to
Me,qc depend on the choice of the universe. It is for this reason that, when working
with sheafifications, we will gene:rally use the class M, instead of Meyqc-

Now, in order to construct a jsheaﬁﬁcation Qf the functor
Pyys: (Soh/S)° —> (Sets), T+ Pic(X x5 T),

say with respect to the fppf-topolbgy, one first sheafifies Py;s with respect to Meppe-
The resulting sheaf P; might not be a sheaf with respect to Mz, since morphisms
in M, are not necessarily quasi-}compact and, thus, not necessarily fppf. However,
if T is affine, any morphism | | T,— T in My, which corresponds to a finite open
covering {T;} of T by basic open}subschemes T, T s fppf. Hence P, is already an
fppf-sheaf on affine schemes. Tllxerefore we can sheafify P, with respect to Mz,
without destroying sheaf properties with respect to M,,c on affine schemes. It
follows that the resulting functo}r is a sheaf with respect to the fppf-topology; it is
the fppf-sheaf associated to Pxjs. Since Py;s is a group functor, the associated
fppf-sheaf can be viewed as a group functor, too. In the same way, one can proceed

\
with any other of the topologies introduced above.

Definition 2. The fppf-sheaf assojciated to the functor
Pys: (Schy/S)° — (Sets), T+ Pic(X x5 T),
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is called the relative Picard functor of X over S; it is denoted by Picys. For any
S-scheme T, we call Picy5(T) the relative Picard group of X xg T over T.

Using the structural morphism f: X — § as well as the notion of higher direct
images of f, we can define the relative Picard functor also by the formula

Picys(T) = H(T|R'£,(G,))

which has to be read with respect to the fppf-topology; note that G,, is the sheaf
which associates to each scheme Z the group of units I'(Z, 0F), We will see below
that the restriction to the fppf-topology in place of the fpgc-topology is not too
serious since we are mainly interested in the|case where f: X — S is proper and
fppf.

Sometimes it is useful to have an explicit description of elements of relative
Picard groups. So consider an element ¢ € Picy,5(S) and assume for simplicity that
S is affine or, more generally, quasi-compact. Otherwise one has to work locally
with respect to an open affine covering of S. [Then, in the quasi-compact case, & is
represented by a line bundle &' € Pic(X Xg S’)‘ where S’ is fppf over S. Furthermore,
there must be an  fppf-morphism §—s"= S’ xgs 8’ such that the pull-back of &
with respect to § — " — S’ is the same \for both projections from §” to §.
Conversely, each ¢ € Pic(X xg S') satlsfymgh‘.he latter condition gives rise to an
element ¢ € Picys(S). Two such elements & € Pic(X xg S;), i = 1, 2, with S} fppf
over § represent the same element ﬁePch,S(S) if and only if there ex18ts an
fppf-morphism § — S} xg
pull-back of &,. Also it should be noted that c‘lue to the sheaf property of Picy,g, an
element ¢ € Picys(S) is trivial if it is induced by the pull-back to X of a line

bundle on S. The converse is not true, in gene‘ral

Proposition 3. Assume that f: X — S is proper and of finite presentation. Consider
an element ¢ € Pch/s(S) which is induced by a ‘hne bundle & on X. Then & is trivial
if and only if there is an open covering {S;} of S such that & trivializes over X Xg S;
for each i. |

Proof. The if-part of the assertion follows from the sheaf properties of Picys. So it
remains to justify the only-if-part. The direct image f,(0x) is a quasi-coherent

Os-algebra. Assuming S to be affine and 1nterpretmg f:X— S as a limit of

morphlsms of finite type between noetherian schemes we can use the Stein factoriza-

tion X - T2 § of [, where g satisfies g*((‘Px) 01 and where h, being a limit
of finite morphisms, is integral. Furthermore, since the fibres of g are the connected

components of the fibres of f, it follows that the‘ fibres of h are set-theoretically finite.
Now assume that .# gives rise to the trivial eler‘nent ¢ € Picy5(S). We claim that the
canonical homomorphism g*(g,.( %)) — £ i 1s an isomorphism. Using descent, this
fact can be tested after base change with an fppf morphism. For example, we can
assume that, after such a base change, .%¥ becomes trivial. Since the formation of
g4(#) commutes with flat base change, the above isomorphism has only to be
established for the trivial bundle %. But thcn\the claim follows from the fact that

94(0x) = 01. So we see that & is the pull- baclg of the line bundle g, (%) on T. The
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latter is locally trivial over T. Since h: T — S is integeral and, thus, a closed map,
and since its fibres are set-theoretically finite, it fo]lows that g, (%) is locally trivial
also over S. Hence . is locally trivial over §. [

We assume in the following that f:X -— S is quasi-compact and quasi-
separated. Then the Leray spectral sequence associated to f and G, (see [SGA 4],
Exp. V, § 3) gives the exact sequence )

0— H'(S, f(Gy)) — H'(X, G,,) — Picys(S) — H*(S, f4(Gn)) — H*(X, G,,)

where the cohomology groups are meant with respect to the fppf-topology. Since
the descent with respect to fpgc-morphisms turns line bundles into line bundles, it
follows that the group H'(X, G,,) is the same for the fpqc-, the fppf-, the étale,
and even for the Zariski topology. So we may use the Zariski topology and see
H'(X,G,,) = Pic(X). Thus the obstruction of representing an element of Picy,s(S)
by an element of Pic(X) is given by an element in H*(S, f,.(G,,)) which becomes zero
in H*(X,G,,). Just as in the case of H*(X,G,,), one shows that H'(S, f,.(G,,)) is
independent of the topologies mentioned above if f,(0x) = 05 or, by means of the
Stein factorization, if f is proper. In particular, we have H(S, f,(G,,)) = Pic(S) if
£03) = 0

In order to determine the cohomology group H?*(X,G,,), one can use the étale
topology instead of the fppf-topology; cf. Grothendieck [3], pp. 171-183. The same
is true for the cohomology group H2(S, f,(G,,)) if f.(0x) = 0Os or, without this
assumption, if f is proper. Namely, by means of the Stein factorization, it is possible
to reduce to the case where f,(0y) = Os. So, for example, if fis proper, the above
exact sequence shows that the relative Picard functor Picy,s can be constructed by
using the étale topology in place of the fppf-topology. In particular, the formula

Picys(T) = HY(T, R f,(G,))
remains valid if, on the right-hand side the fppf-topology is replaced by the étale
topology.

The cohomology group H?*(X, G,,)} is called the (cohomological) Brauer group
of X. In particular, if we assume f,(0y) = 05, the obstructions of representing
elements in Picy,s(S) by line bundles on X are given by elements of the Brauer group
Br(S) which become zero in the Brauer group Br(X). All obstructions of this type
disappear if the map H2(S, G,,) — H?*(X, G,,) is injective; for example,if f: X — S
has a section or if the Brauer group Br(S) vanishes_itself. For an affine scheme
S = Spec R, the group Br(S) is zero in each of the following situations:

(a) R is a separably closed field.

(b) R is the field of fractions of a henselian discrete valuation ring with algebra-
ically closed residue field; cf. Grothendieck [3], Thm. 1.1, or Milne [1], Chap. III,
2.22.

(c) R is a strictly henselian valuation ring; cf. Grothendieck [3], Prop. 2.1, or
Milne [1], Chap. IV, 1.7 and 2.12.

The equation f,(0x) = Os is compatible with flat base change. We say that
f+(Ox) = Og holds universally if the equation is true after any base change over S.
Using this terminology, we want to summarize the above considerations.
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Proposition 4. Let f : X — S be quasi-compact and quasi-separated and assume that
f satisfies f,(Ox) = Os (resp. that f,(Ox) = Os holds universally). Then, for each
S-scheme T which is flat over S (resp. for each S-scheme T), the canonical sequence

0 — Pic(T) — Pic(X x5 T) — Picy;s(T) — Br(T) — Br(X x5 T)
is exact. If, in addition, f admits a section, the sequence
0 — Pic(T) — Pic(X xg T) — Picy;s(T) — 0

is exact.

In particular, in the latter case, we can identify the relative Picard functor Picy s
in the usual way with the functor

(Sch/S)°® — (Sets) , T+ Pic(X x5 T)/Pic(T) .

If the existence of a global section is replaced by the condition that f: X — S has
local sections, one can still say that the formula

PiCX/S(T) = HO('I; le*(Gm))

remains valid if one considers the Zariski topology on the right-hand side.

In order to see, in the above situation, that the relative Picard functor Picys is
a sheaf even with respect to the fpgc-topology and in order to prepare the discussion
of rigidificators, we want to look at the situation from another point of view. We
assume that f,(0x) = 05 holds universally and that f admits a section ¢: S — X.
For any line bundle % on X, let us call an isomorphism « : 05 > ¢*(£) a rigidifica-
tion of #. Furthermore, the pair (£, «) will be referred to as a line bundle which is
rigidified along the section & Then we can look at the functor (P, &) : (Sch/S)°® —
(Sets) which associates to each S-scheme T the set (P, g)(T) of isomorphism classes
of line bundles on X; = X xg T which are rigidified along the section e7.: T —> X7
The functor (P, ¢) has the advantage that it is automatically a sheaf with respect to
the Zariski topology. Namely, using the fact that f,(0x) = Os is true universally,
one shows easily that rigidified line bundles do not admit non-trivial automor-
phisms; hence the terminology of rigidifications is justified. Furthermore, it follows
from descent theory that (P, ¢) is a sheaf even with respect to the fpgc-topology.
Namely, consider a sequence

(P,&)(T) — (P, &)(T") = (P, &)(T") ,

where T' —> T is an fpqc-morphism and where T” = T’ Xy T'. The map on the
left-hand side is injective by 6.1/4. To show the exactness of the sequence, fix an
element (&, «') € (P, &)(T") whose images in (P,&)(T") coincide. Then we have an
isomorphism p*.%’ -~ p%%’ between the two pull-backs of £’ to T" which is
compatible with rigidifications. Hence this isomorphism is automatically a descent
datum, and the descent is effective by 6.1/4. Thus the above sequence is exact, and
(P,¢) is a sheaf with respect to fpqc. For each line bundle % on X, the bundle
£ ® [*(*(#£ ™)) has a rigidification. Therefore we have

(P,&)(T) = Pic(X7)/Pic(T)
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for all S-schemes T. Since (P, ¢) is a sheaf with respect to the fpgc-topology and,
thus, with respect to the fppf-topol(j)gy, it is canonically isomorphic to the relative
Picard functor Picy. Thereby we see once more that the second assertion of
Proposition 4 is true. ‘

Using the above argument, it can easily be shown that the relative Picard functor
Picy;s which has been defined within the framework of the fppf-topology is even a
sheaf with respect to the fpgc-topology, provided f: X — S is fppf and satisfies
f..(Ox) = Os universally. Namely, w¢ may perform a base change with X over S and
thereby assume that f has a séction. Then, by considering rigidifications, it follows
that Picys is a sheaf with respect to fpqc.

If the assumptions that the equatlion f+(0x) = Ogholds universally and that there

is a section g:8 — X are not sz{tisﬁed, it is sometimes useful to introduce a
generalization of the notion of rigidifications so that, similarly as above, one can

deal with rigidified line bundles. ‘

Definition 5. Let f: X — S be proi;er, flat, and of finite presentation. Then a sub-

scheme Y < X, which is finite, ﬂa‘t, and of finite presentation over S, is called a

rigidificator of f or, more precisely, Eof the relative Picard functor Picys if

(Sch/S)° —» (Sets), T+ I'(Xr,0y,) »
is a subfunctor of the functor ;
(Sch/S)° —» (Sets),  T+—T(¥y,0y,);

ie, if the map T(Xr, mxr)—»r(%yr, Oy.), which is derived from the inclusion
Yy = Xr, is injective for all S-schemes T.

If £,.(Ox) = 05 holds universallf/, it is immediately clear that, for each section

"g:5 — X of f, the closed subschenjle &(S) < X is a rigidificator .of f. Furthermore,

let us mention without proof two non-trivial examples where rigidifications exist;
cf. Raynaud [6], Prop. 2.2.3. ‘

Proposition 6. Let f: X — S be as %in Definition 5.
(a) If the fibres of f do not have embedded components, [ admits a rigidificator
locally over S with respect to the étale topology.

(b) If S is the spectrum of a discrete valuation ring, f has a rigidificator.

Let Y be a rigidificator of f: )q — 8. Then an invertible sheaf on X which is
rigidified along Y is defined as a pair (%, ), where & is an invertible sheaf on X,
and where « is an isomorphism (Dyf %, &y Rigidified line bundles do not admit
non-trivial automorphisms. Thcref(;)re the functor

(Picys» Y): (Sch/S)° —> (Sets) ,

which associates to an arbitrary S-scheme 7 the set of isomorphism classes of line
bundles on X which are rigidiﬁed‘along Y;, is a sheaf with respect to the Zariski
topology and, by descent theory, even with respect to the fpqc-topology. Further-
more, (Picys, Y) is canonically a gr}oup functor.
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In order to relate the functor (Picys, Y) tb the relative Picard functor Picys, it
is necessary to look at rigidificators from an{other point of view. However, before
we can do this, we have to discuss a basic result on the direct image of Oy-modules
which are locally of finite presentation; by the latter we mean (quasi-coherent)
0,-modules which, locally, are isomorphic to the cokernel of a homomorphism of
type 0% — 0% Furthermore, we need the| concept of cohomological flatness.
Assume that f:X — S is proper and of ﬁnite presentation, and consider an
Ox-module & of locally finite presentation, v:vhich is flat over S. Then & is said to
be cohomologically flat over S in dimension 0 if the formation of the direct image

f+(%) commutes with base change. If the condition is true for & = Oy, we say that
f itself is cohomologically flat in dimension 0. The latter is the case if f is flat and

if the geometric fibres of f are reduced; cf. [EbA 111,1, 7.8.6.

Theorem 7. Let f : X — S be a proper morphi.ism which is finitely presented. Further-
more, let F be an Oy-module of locally finite presentation which is S-flat. Then there
exists an Og-module 2 of locally finite presentation, unique up to canonical isomor-

phism, such that there is an isomorphism of fw}wtors

ST ®o, M) > Home (2, M) ,

which is functorial for all quasi-coherent (Os-jmodules . In particular, there is an
isomorphism of functors
T(X, F ®g, M) > Homg (2 M) .

The Og-module 2 is locally free if and only zf ZF is cohomologically flat over S in
dimension 0. In the latter case, 2 and f,(F) are dual to each other and, in particular,
Jo(F) is locally free. |

We will not repeat the proof of the theorem from [EGA 111, ], 7.7.6. But to give
some idea, we want to show how the ass‘ertions follow from the theorem on
cohomology and base change as contained 11:1 Mumford 3], Chap. II, § 5. We may
assume that § is affine, say S = Spec A. Then the theorem on cohomology and base

change says there is a finite complex
K:0—K LK —K2—s ... — K"—0
of finitely generated projective A-modules (w# may assume of free A-modules, after
restriction of S) as well as an isomorphism of functors
H'(X,F @, M)~ H'(K' ®;, M), p=0,

on the category of A-modules M. (Using Miumford’s version of the base change,
one has remove the noetherian hypothesis by a limit argument; furthermore, the
above functors have to be considered on the category of all 4-modules M and not
just on the category of all A-algebras B.) Dualizing the map ¢ : K° — K* gives an
exact sequence .
0 «— coker ¢* «— (K°)* &—(K1)*,
and we claim there is a functorial isomorphism

(*) H°(K” ®, M) = ker(¢ ® M) -~ Hom 4(coker ¢*, M)
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of functors in M. Namely, applying the functor Hom 4(-, M), which is left-exact, to
the preceding exact sequence yields the exact sequence

0 —> Hom 4(coker ¢*, M) — Hom 4((K°)*, M) — Hom ((K')*, M) .
Then we compare it with the exact sequence
0—ker(p® M) — K°®, M 2L, K1 @, M .

The canonical homomorphisms K’ ®, M — Hom,((K")*, M), i = 1, 2, are iso-
morphisms since K°® and K are free, and there is an isomorphism

HO(K' ®,4 M) = Hom 4(coker ¢*, M) ,

which is functorial in M. Hence the existence of the functorial isomorphism (x) is
proved. Writing Q = coker ¢* and using the theorem on cohomology and base
change, the resulting functorial isomorphism

H(X, % ®4 M) = Hom,(Q, M)

implies the main assertion of our theorem. Since the tensor product is right-exact
and since Hom is left-exact, the isomorphism () shows that & is cohomologically
flat over S in dimension 0 if and only if Q = coker ¢* is a projective, i.e., locally free
A-module. If the latter is the case, ker ¢ is locally free since it is the dual of coker p*.

O

If f: X — S is proper, finitely presented, and flat, the assertion of the above
theorem holds for the Oy-module & = Oy. Restricting the resulting functorial
isomorphism

ST Qg M) =5 Homg (2, M)
to quasi-coherent Og-modules of type .# = O which are obtained from morphisms
T — S, one ends up with functorial isomorphisms
(X7, 0x,) = Homg (2, 01) > Homs(T, V)

where V denotes the S-scheme corresponding to the symmetric Os-algebra Sy 0 (2)
of 2. Dropping the middle term, we get a functorial isomorphism between functors
on the category of all S-schemes T The scheme V is also referred to as the total
space of the module 2. We say that V is lqcally free if this is true for 2 as an
Os-module. The latter is equivalent to the fact that ¥ is smooth over S. So we can
state the following result. -

Corollary 8. Let f: X — S be proper, finitely presented, and flat, and let 2 be the
Os-module associated to f,(U) in the sense of Theorem 1. Then the functor

(Sch/S)® — (Sets) , T+ TI'(Xy,0x,)
is represented by the total space V of 9. Furthermore, V is locally free if and only if

f is cohomologically flat in dimension 0.

If, in addition to the above assumptions, f is finite, it is automatically cohomo-
logically flat in dimension 0. In particular, the functor of global sections of a
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rigidificator is always represented by the total space of a module which is locally
free. Using the assertion of the corollary, we can give a further characterization of
rigidificators.

Proposition 9. Let f: X — S be proper, finitely presented, and flat, and consider a
subscheme Y < X which is finite, flat, and of finite presentation over S. Let V (resp.
Vy) be the S-scheme, which, as in Corollary 8, represents the functor of global sections
on X (resp. Y). Then the following conditions are equivalent:

(a) Y is a rigidificator of f.

(b) The morphism Vy —> Vy, which is induced by the inclusion Y =, X, is a closed
immersion.

Proof. Let 2 (resp. 2') denote the Os-module which is obtained by means of Theorem
7 from f:X — 8 (resp. Y —> S). Then, for all S-schemes T such that O isa
quasi-coherent Og-module, the inclusion Y =, X gives rise to a sequence

*) 0 — Hom,(2, 0r) —> Homg,(2,0y) .

The latter is exact for all T if and only if Yis a rigidificator of f. Now the sequence
(*) corresponds to a sequence

(+%) 2 —2—0

of Ox-modules which is exact if and only if (x) is exact for all 7. On the other hand,
(#+) yields a sequence between associated symmetric (s-algebras

(#k%) Fymp (L) —> Lymo (D) — 0
which is exact if and only if it is exact in degree 1, i.e., if and only if (+#) is exact.
This verifies the assertion of the proposition. O

As before, let f: X — S be proper, finitely presented, and flat, and let V'be the
S-scheme representing the functor T+ I'(Xy, O, ) of global sections on X. Then
V may be viewed as a functor to the category of rings and thus is a ring scheme.
We claim:

Lemma 10. The subfunctor of units T+— I'(Xr, 0%,) is represented by an open
subscheme V* < V. In particular, V* is a group scheme.

Proof. The assertion is clear if f is cohomologically flat in dimension 0. Namely,
then V is locally free and we can use a norm argument. In the general case, one
views V and V* as functors and shows that the injection V* —, V is relatively
representable by open immersions. In order to do this, consider an S-scheme T and
a T-valued point g: T — V as well as the associated cartesian diagram

VEx, T <, T

I

V* c L, V.
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Then g corresponds to a global section in the structure sheaf of X x5 T. Let U’ be
the maximal open subset of X xg T where g is invertible. Since f is proper, the
complement of U’ projects onto a closed subset F of T. Therefore its complement

U:= T — Fis an open subschem;c of T, and it is easily verified that V* x,, T— T
is represented by the open immel"sion Uc, T. O

The canonical map 05 — f*(@x) defines a morphism G, — ¥ which is a closed
immersion as can be seen by using arguments as in the proof of Proposition 9.
Restricting to the subschemes of units yields an immersion of group schemes

G,, — V* which is a closed immersion again. It is easily seen that £, (Ox) = Us holds

universally if and only if the map G, — V or, equivalently, the map G,, — V*is

an isomorphism.

Finally, let Y be a rigidificator of f : X — S and, as in Proposition 9, let Vy and

¥, denote the schemes representing the functors of global sections on X and on Y.

Then the closed immersion Vy < V; gives rise to an immersion V¢ < V¥, and

there is a canonical map V¥ — tPicx/S, Y) to the Picard functor (Picys, Y) of line
bundles which are rigidified along Y. Namely, fixing an S-scheme 7, a global
invertible section a on Y xg T is mapped to the pair (Oy,,«) where the iso-
morphism & : Ox,yy, > Ox,yy, is the multiplication by a. Adding the canonical map
(Pics, Y) — Picys, one obtains the sequence

0— V§F = V¥ — (Picys, Y) — Picy;s — 0.

Proposition 11. The preceding sequence is exact in terms of sheaves with respect to
the étale topology.

The proof is straightforward; see Raynaud [6],2.1.2 and 2.4.1. It is shown in the
same article that (Pics, Y) is representable by an algebraic space; cf. our discussion
of the representability of Picard functors in 8.3. Thus, even if Picy,s is not represent-
able (by a scheme or by an algebraic space), but if there exists a rigidificator Y, there
is a representable object which closely dominates the relative Picard functor.

8.2 Representability by a Scheme

There are two types of results concerning the representability of the relative Picard
functor Picy/s; namely, results on the representability by schemes and results on the
representability by algebraic spaces. If one wants Picy,s to be a scheme, one has to
ask strong cornditions for the structural morphism f : X — S whereas, if one allows
to work more generally within tﬂe context of algebraic spaces, one can obtain the
representability of Picys by an a;lgebraic space under conditions which are not so
restrictive and quite natural to ask.

In the present section, we w%ll give an outline of Grothendieck’s method for
representing Picy,s by a scheme and, in the next section, we will roughly explain the
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idea of M. Artin’s approach for representing| Picy,s by an algebraic space. Let us
start by stating the main results on the representability of Picys by a scheme.

Theorem 1 (Grothendieck [FGA], n°232, Thm. 3.1). Let f:X — S be projective
and finitely presented. Assume that f is flat, and that the geometric fibres of f are
reduced and irreducible. Then Picys is representable by a separated S-scheme which

is locally of finite presentation over S.

The proof of Theorem 1 consists mainly of methods from projective geometry.
If one replaces the condition “projective” by “proper”, these methods are not
applicable for a general base S. Furthermore, the assumption on the fibres of fis
an inevitable technical condition without which the proof cannot work. It is the
very reason for getting representability by a scheme and for the fact that the
representing S-scheme is separated.

To illustrate this point, let us look at an example of Mumford. He considered a
projective flat family of geometrically reduced curves where Picy,s does not exist as
a scheme. Namely let S = Spec R[[¢]], and let X be the S-subscheme of P given
by the equation X? + X7 = tX3. One may view X as a conic which geometrically

degenerates into two projective lines. The speFial fibre over the closed point of S is
irreducible whereas, after the base change with §' = Spec C[[£]], it decomposes

into two lines which are conjugated under the Galois group Z7/27 of S’ over S. We
claim that the Picard functor Picy.s is a scheme. Indeed, it is a disjoint umnion of
subschemes representing the subfunctors Picg. s, d € Z, of Picy,s- which are given
by line bundles of total degree d. Furthermor:e, each Pic}s is obtained by gluing
copies of S’ along the generic point; namely by gluing copies S, , with a, b€ Z and
a + b = d where the decompositions d = a + b correspond to the possibilities of
degenerations of a line bundle of degree d on the generic fibre into a line bundle
with partial degrees a and b on the compone}nts of the special fibre. In particular,
Picy /s is not separated and there are orbits of the Galois action on Picy.,s» which

N \ -
are not contained in an open affine subscheme. So, the descent datum given by the

Galois action cannot be effective, and hence Picys is not representable by a scheme

over S. A closer look at this example shows tPat the very reason for this is the fact
that the irreducible components of the fibres ?f f are not geometrically irreducible.
The same can be read from the following generalization of Grothendieck’s result:

Theorem 2 (Mumford, unpublished). Let f: X — S be flat, projective, and finitely
presented with geometrically reduced fibres. Aissume that the irreducible components
of the fibres of f are geometrically irreducible. Then Picys is representable by
a (not necessarily separated) S-scheme whi;ch is locally of finite presentation

over S.

If the base scheme S is a field, one can pro]ve the representability of Picys under
weaker assumptions than those mentioned in Theorem 1. This was first done by

Grothendieck for the projective case; cf. [FGA;\], n°232, Sect. 6. Later on Murre and
Oort treated the proper case. |
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Theorem 3 (Murre [1] and Oort [1]). Let X be a proper scheme over a field k. Then
Picyy, is representable by a scheme which is locally of finite type over k.

The theorem of Murre can also be deduced from the results on the represent-
ability of Picy,s by an algebraic space; cf. Section 8.3. Namely, a group object in the
category of algebraic spaces over a field is representable by a scheme.

Finally, we want to introduce the notion of universal line bundles which is quite
convenient to work with when Picy s is representable. We assume that the structural
morphism f: X —> S has a section ¢ and that f, Oy = s holds universally. In this
case Picy;s is isomorphic to the functor

(P, ) : (Sch/S)° —> (Sets)

which associates to each S-scheme S’ the set of isomorphism classes of line bundles
on X' = X xS which are rigidified along the induced section & = ¢ ® idg.; cf.
Section 8.1. If Picy;s is a scheme, it also represents the functor (P, ). So the identity
on Picy,s gives rise to a line bundle 2 on X x5 Picy,s which is canonically rigidified
along the induced section. 2 is called the universal line bundle for (X/S, ¢). That this
terminology is justified can be seen if we write down explicitly the condition of (P, ¢)
being representable:

Proposition 4. Let f: X — S be finitely presented and flat, and let ¢ be a section of
f. Assume that f,, Oy = Os holds universally. If Picy,s is representable by a scheme,
the universal line bundle 2 for (X/S, €) has the following property:

For any S-scheme §', and for any line bundle ' on X' = X x5S’ which is
rigidified along the induced section &, there exists a unique morphism g : §' — Picys
such that %', as a rigidified line bundle, is isomorphic to the pull-back of 2 under
the morphism idy x g.

Note that f, 0y = 0 holds universally under the assumptions of Theorem 1; cf.
[EGAIII,], 7.8.6.

Next we turn to the proof of Theorem 1. Since the relative Picard functor is a
sheaf for the Zariski topology, its representability is a local problem on S. So we
may assume that X is a closed subscheme of the projective space [P5. In order to
state what the proof yields in this special case, we have to introduce some further
notions. ‘ '

Following Altmann and Kleiman [1], a morphism of schemes f: X — S is
called strongly projective (resp. strongly quasi-projective) if it is finitely presented and
if there exists a locally free sheaf & on S of constant finite rank such that X is
S-isomorphic to a closed subscheme (resp. subscheme) of P(£). Let Ox(1) be the
canonical (relatively) very ample line bundle on X. For any polynomial ® € Q[t],
one introduces the subfunctor Pic§;s of Picy,s which is induced by the line bundles
with Hilbert polynomial @ (with respect to @x(1)) on the fibres of X over S; cf.
[EGA 111, ], 2.5.3 for the definition of Hilbert polynomials. Then one can state the
following stronger version of Theorem 1, which clearly suggests that Grothen-
dieck’s result deals with a problem inside the category of (quasi-) projective
S-schemes.
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Theorem 5. Let f : X —> S be strongly projective, and let S be quasi-compact. Assume |

that f is flat, and that the geometric fibres of f are reduced and irreducible. Then, for
every ® € Q[t], the functor Picys is representable by a strongly quasi-projective
S-scheme. Furthermore, Picys is represented by the disjoint union of all Pic%s,
where @ ranges over Q[ t].

In the following we want to sketch the main steps of the proof of Theorem 5; in
particular, we want to point out where the specific assumptions of the theorem are
employed. The proof itself decomposes into three parts:

I) The notion of relative Cartier divisors gives rise to a functor

Divy,s : (Sch/S)° — (Sets) ,

which associates to an S-scheme S’ the set of all relative Cartier divisors of the
S’-scheme X' := X Xg §". There is a canonical morphism

Divy,s — Picys

which is relatively representable. We will show a slightly weaker version of the latter
statement which is enough for our purposes.

1I) We will show that the functor Divys is representable by an S-scheme. More
precisely, we introduce Hilbert polynomials with respect to the fixed very ample
line bundle @x(1), and we look at the subfunctor Div§s which consists of all relative
Cartier divisors with Hilbert polynomial ®. Then we will show that Div}g is an
open subfunctor of Divy,s and that DIVX/S is a strongly quasi-projective S-scheme.
Furthermore, Divy,s is the disjoint union of all schiemes Div,s, where @ ranges over
Q[t]. This part is the hardest of the whole proof, since the representability of the
Hilbert functor is involved.

ITT) For suitable polynomials @, the functor Picys is a quotient (as a sheaf for
the fppf-topology) of an open subscheme of Divy,s with respect to a proper smooth
equivalence relation. We will show that such a quotient is representable by a scheme.
Hence, PicYs is representable in such a spemal case. For general @, there exists an
integer ng, such that the translate of Pics by the element associated to Ux(ng) is of
the type as treated in the special case. So Picys is representable again. More
precisely, we will see that it is representable by a strongly quasi-projective S-scheme.
Furthermore, Pic}s is an open and closed subfunctor of Picys, so Picys is repre-
sented by the disjoint union of all schemes Pic%,s where ® ranges over Q[t].

Let us start with part I. An effective Cartier divisor on a scheme X is a closed
subscheme D of X such that its defining sheaf of ideals .# is an invertible @x-module;
ie., for each x e X, the ideal .7, is generated by a regular element of Ox. We denote
by 0x(D) the associated line bundle

0x(D) = S = Homg, (I, 0) »

and by 5, € T'(X, Ox(D)) the global section associated to the inclusion # —; Oy. We
refer to s, as the canonical section of Ox(D). It corresponds to the canonical
inclusion Oy — Ox(D). Thus, an effective Cartier divisor gives rise to a pair (&, s)
consisting of a line bundle % and a global section s € I'(X, %) which induces a
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régular element s, on each stalk \%,, x € X; i.e, the map i,: O, — %, sending the
unit element 1, of O, to s, is injective. Two pairs (&,s) and (&', s') are called
equivalent if there exists an isombrphism ¢ ¥ — &' such that ¢(s) and s’ differ
by a factor which is a global section of @%. Associating to a pair (%, s) the subscheme
D of X which is defined by the sheaf of ideals %~ viewed as a subsheaf of Oy via
the morphism i, ® £, we Obtailll a bijection between the set of all effective Cartier
divisors on X and the set of all equivalence classes of pairs (&£, s), where & is a line
bundle on X, and where s is a global section of . inducing a regular element on
each stalk of .. We denote by F(X ZL)* the subset of I'(X, %) consisting of all
global sections of . which mduce regular elements on each stalk %, x € X. Thus
the set of effective Cartier divisors D on X inducing the same line bundle ¥
corresponds bijectively to the set I'(X, £)*/T'(X, 0F).

Now let f: X — S be locally of finite presentation. An effective relative Cartier
divisor on X over S is an effective Cartier divisor D on X which is flat over S. Further
characterizations of effective relative Cartier divisors are given by the following

lemma.

Lemma 6. Let .# be a quasi-coherent sheaf of ideals of Oy which is locally of finite
presentation, and let D be the closed subscheme of X defined by #. Let x be a point
of D, and set s = f(x). Then the following conditions are equivalent:
(i) # is invertible at x (i.e., %, is generated by a regular element), and D is flat
over S at x.
(ii) X and D are flat over S at x, and the restriction D, of D onto the fibre X,
over s is an effective Cartier divisor on X, at x.
(i) X is flat over S at x, and \ 9, is generated by an element f, which induces a

regular element on X at x.

Proof. To show the assertion (i)=>(ii), let A be a local section of .# which
generates ... Then h is a regular element of 0y ., and the multiplication by & gives
rise to an exact sequence

0— 0Oy — O, — Oy ,—0.
After tensoring with the residue ficld k(s) of s over 05 ,, we obtain the sequence

0—0Ox_x—Ox_.—> Op .—0.

Due to the flatness of D over S, this sequence is exact. Thus, h gives rise to a regular
element of 0y _, and, hence, D, is a1§1 effective Cartier divisor on X;. In order to show
that X is flat over § at x, we may use a limit argument ([EGA IV,], 8.5.5 and
11.5.5.2) and thereby assume that S is locally noetherian. Looking at the long exact

Tor-sequence, the flatness of D ylelds
h- Torf“(@x,;x, k(s)) = Tor*(0x,» k(s))

|
for n = 1. Since S ist locally noeth;en'an and since X is locally of finite type over S,
the modules Torlss(Oy.,, k(s)) are finitely generated over Oy .. But then Naka-
yama’s lemma implies Tor‘”s (O, k(s)) = 0 for n 2 1, because x € D. Hence X is

flat over S at x by Bourbaki [2], Qhap III, § 5, n°2, Thm. 1.
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The assertion (ii) =>(iii) follows from ﬁakayama’s lemma, and the remain-
ing implication (iii) => (i) is a consequence of [EGA IV, ], 11.3.7. |

It is clear from condition (i) that the notion of effective relative Cartier divisors
is stable under any base change S’ — S. Thus, there is a functor
Divyys: (Sch/S)° — (Sets) , S Div(X'/S")

where Div(X’/S’) denotes the set of all effective relative Cartier divisors of X’ =
X xg S over §'. Associating to an effective relative Cartier divisor D the line bundle
04(D), we obtain the canonical morphism

Divy;s — Picys , D+ 0yx(D) .

As a first step towards the representability of Picy,s, one proves that this morphism
is relatively representable. Recall, this means|that for each morphism T — Picyg

from an S-scheme T to Picy,s, the morphism

Divys Xpicy; T— T

obtained from Divys — Picy;s by the base éhange T — Picys is a morphism of

schemes. However, we will show the latter onl‘y under the assumption that the map
T — Picy;s, as an element of Picys(T), is given by a line bundle on X xg T. This
is enough for our application, because in part III we will apply it to the case where
T = Divy,s and where the map T— Picys is the canonical one. On the other
hand, each map T — Picys corresponds to; a line bundle on X xg Tif f has a
section; cf. 8.1/4. So in this case we will really get the relative representability of

Divy,s — Picys.

Proposition 7. Let f: X —» S be as in Theorem 5, and let T be an S-scheme. Let &
be a line bundle on Xy =X xg3 T, and denot:e by T —> Picy,s the morphism cor-
responding to £. Then there exists an Op-module %, which is locally of finite
presentation, such that Divys Xpic,,, T is re;?resented by the projective T-scheme
P(F).

Furthermore, there is a canonical way to choose & . If & is cohomologically flat

in dimension zero, then f (£) and & are locall?y free, and F is isomorphic to the dual

of f:(Z).

Proof. We may assume T = S. The fibred product Divy,s X picys S 18 isomorphic to
the functor D : (Sch/S)° —> (Sets) which associates to an S-scheme S’ the set of all
relative Cartier divisors D’ on X'/S’ such that 0y.(D') and &' give rise to the same
element in Picys(S'), where %’ denotes the p;ull-back of & to X'. By Propositiop
8.1/3 the latter condition is equivalent to the fact that 0.(D') and %" are isomorphic

locally over S'. Hence, as we have shown during our general discussion of Cartier

divisors, there is a bijection
(S, (£ Z)*/f+(0%)) — D=(S)

where f* is obtained from f by the base change §' — S, and where (f, £")* denotes
the subsheaf of (f;.#") consisting of all sections which induce regular elements on
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every fibre X of f. Thus, we have a bijection
IS, (f4 £)*/05) — D&(S)

which is compatible with base change. Since f is proper and flat, there exists an
Os-module & of locally finite presentation such that there is an isomorphism

() Jo & — Homo(F, s)

which is compatible with any base change S’ — S; see Theorem 8.1/7. Furthermore,
& is canonically determined by .#. Since the geometric fibres of f are reduced and
irreducible, the local sections of (f,.£)* coincide with the local sections of f,.%
which do not induce the zero section on any fibre X,. Interpreting them as local
homomorphisms & — @5 via (*x) and applying Nakayama’s lemma, they cor-
respond to those local homomorphisms & —» @5 which are surjective. Thus, the
sections of (f,, £)*/0§ correspond bijectively to the set of quasi-coherent quotients
of # which are invertible, and hence to the sections of the projective bundle P(F);
cf. [EGA 1I], 4.2.3. Since all maps under consideration are compatible with base
change, % is as required. The last statement of the proposition has already been
mentioned in 8.1/7. O

Thereby we have finished part I. Next, we discuss part II. The representabil-
ity of Divy,s will be derived from the representability of the Hilbert functor. The
latter is defined as follows. For any S-scheme X denote by Hilb(X/S) the set of
all closed subschemes D of X which are proper, finitely presented, and flat over S.
Then

Hilby,s : (Sch/S)° —» (Sets), 8" — Hilb(X x4 §'/S")

is a functor, the so-called Hilbert functor of X over S. We see from Lemma 6 that
Divy,s is an open subfunctor of Hilby, if X is proper, finitely presented, and flat
over S. Thus the representability of Divys follows from the representability of
Hilby 5. We want to mention that, for the representability of Hilby,s by a scheme, it
is essential that X is quasi-projective over S. Namely, there is an example by
Hironaka of a proper and smooth manifold of dimension 3 over a field on which
the group Z/27 acts freely. But the quotient with respect to this action does not
exist in the category of schemes; cf. Hironaka [1]. One shows that, in this situation,
the Hilbert functor cannot be represented by a scheme; namely, the equivalence
relation given by the group action constitutes a closed subscheme R of X x5 X
which is proper and flat with respect to the second projection. Thus R gives rise to
an element g € Hilby,5(X) and, if Hilby,s; were representable as a scheme, the image
of the morphism X — Hilby,s given by g would serve as a quotient of X under the
group action.

For showing the representability of Hilbys, it is convenient to look at a more
general situation. Given an Ox-module & which is locally of finite presentation, one
introduces the functor

Quot gz x5, : (Sch/S)° —> (Sets)

which associates to an S-scheme S’ the set of quotients 4" of the pull-back &' of #
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to X' = X x5S where &' is required to be locally of finite presentation over Oy.,
to be flat over ', and to have proper support over S'. The key result on the
representability of the functor Quot s x5, is the following theorem of Grothendieck
(cf. [FGA], n°221, Thm. 3.1); the strengthening from the projective to the strongly
projective case is due to Altman and Kleiman [1], Thm. 2.6.

Theorem 8. Let f: X —> S be strongly quasi-projective, and let # be an Ox-module
which is locally of finite presentation. Fix a (relatively) very ample line bundle 0x(1)
associated to an embedding of X into a projective bundle over S. Assume that & is
" isomorphic to a quotient of an Ox-module of the form f*# ® Ux(v) for some v e Z,
where B is a locally free Os-module with a constant finite rank. Then Quot g ;s is
represented by a separated S-scheme which is a disjoint union of strongly quasi-
projective S-schemes.

If, in addition, fis proper, then Quot g s, is a disjoint union of strongly projective
S-schemes.

Note that, for # = Oy, the functors Quot g x5 and Hilby;s coincide. Further-
more, Divys is a quasi-compact open subfunctor of Hilbys if X is proper, finitely
presented, and flat over §. Thus, if Hilby,s is represented by a disjoint union
of strongly quasi-projective S-schemes, 50 is Divy;s.

When a very ample line bundle 0x(1) is fixed, Quot g xs) can be covered in a
canonical way by open subfunctors which will correspond to quasi-compact open
subschemes of Quot g xs, (resp. of Hilbys). Namely, for any Oy-module ¢ which
is locally of finite presentation and has proper support, and for any point s € S, one
has the Hilbert polynomial x(%,)(t); its value at any ne Z is given by the Euler-
Poincaré characteristic

2Gm) = 2’ (— 1)'dimy H'(X,, ()

of %(n) over the fibre X, where we have written %(n) for the restriction of  ® Ox(n)
to X,. The Hilbert polynomial has rational coefficients; cf. [EGA III;], 2.5.3.
Furthermore, when ¢ is flat over S, it is locally constant as a function of s € S; cf.
[EGA II1,], 7.9.11. So, for a polynomial @ € Q[¢], let Quot{y x5, be the subfunctor
of Quot /x5 consisting of all quotients with a fixed Hilbert polynomial ®. In
the same way, one introduces the subfunctor Hilbgs of Hilbys. It is clear that
Quot{z, x5 constitutes an open and closed subfunctor of Quot g x5 and that the
subfunctors Quotfy x5, cover Quot g x;s) if ® ranges over Q[t]. Thus, it suffices to
prove the following theorem.

Theorem 8'. Let X be S-isomorphic to a finitely presented subscheme of P(&) where
& is a locally free Og-module of constant finite rank. Denote by f: X — S the
structural morphism and by Ox(1) the canonical (relatively) very ample line bundle on
X. Let F be isomorphic to a quotient of (f*%) ® Ox(v) where ve Z and where % is
a locally free sheaf on S of constant finite rank, and assume that & is locally of finite
presentation. Furthermore, fix a polynomial ® e Q[t]. Then, there exists an integer
my, satisfying the following property:
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For each m= m,, the map ‘
|
Quot{z/xis) — Gr‘assq,(m)(ﬂ ® Sy myim(6)) 5

which associates to an element 9’ € Quot&/x,s,(S’) the direct image f,(¥'(m)), con-
stitutes a functor which is relatively répresentable by a quasi-compact immersion. In
particular, Quot(y xs, is representable by a strongly quasi-projective S-scheme.

If, in addition, X is a closed subsc}‘leme of P(&), the immersion of above is closed
and Quotl xs, is strongly projective over S.

For a locally free Og-module & %and a non-negative integer r, we denote by
Grass, (%) the contravariant functor \from (Sch/S) to (Sets) which associates to an
S-scheme S’ the set of locally free quotients of £ ® 0. of rank r. Then Grass,(£)
is representable by a closed subschenjw of P(2), where 9 is the r-th exterior power
of &; cf. Grothendieck [2], § 2. Since V\:/C have not restricted ourselves to polynomials
@ e Q[¢] which take values ®(m) in the non-negative integers for large integers m,
we define Grass, (%) by the empty fuqctor if r € @ — N. Note that Quots s, is the
empty functor if the polynomial @ does not take values ®(m) in the non-negative
integers for large integers m. ‘

For & = (U, one has Quotf_ ,X/Sl, = Hilbs. If X is proper and flat over S, we
know that Divy,s is an open subfunctor of Hilbys. So we denote by Div§,s the

induced subfunctor of Hilb},s. Thus, gTheorem 8’ implies the following corollary.

Corollary 9. Let f: X — S be strongly projective (resp. strongly quasi-projective),
and let ® € Q[£]. Then Hilb% s is representable by a strongly projective (resp. strongly
quasi-grojective) S-scheme.

If}/in addition, X is proper and flat over S, then Divy s isrepresentable by a strongly
quasi-projective S-scheme.

Now let us give an outline of the proof of Theorem 8'. First one reduces to the
case where X is the projective space; P(&) associated to a locally free sheaf & of
constant rank e + 1 on S, and where & is isomorphic to f*#(v) := (f *2) ® Ox(v)
for some locally free sheef # on S which has constant rank b over S. Namely,
Quot?},x,s) is a locally closed (resp. closed) subfunctor of Quotl+guype@ys) of finite
presentation. In the latter case, therelis a canonical isomorphism

for me Z; cf. [EGA IIL, ], 2.1.15. We assume this situation from now on. Then a

key point is the following observation of Mumford which simplifies the original
proof of Grothendieck; cf. Mumford [2], Lecture 14.

Proposition 10. There exists a constant m,, depending on the integers e, b, v and on
the coefficients of ®, such that the following property is satisfied:

Let §' be an S-scheme, and let 9' € Quoty xs)(S'). Denote by 3 the kernel of the
canonical map F' —%'. Then, for all m = m,, the Oy.-module #'(m) is generated
by the local sections of f.(#"(m)), and Rf,(o#'(m) vanishes for i z 1. The same is
true for F'(m) and 9G'(m). |
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A detailed proof of this proposition can be found in [SGA 6], Exp. XIIL § 1, for
the case where S’ defines a geometric point of S. The general case follows then by
the theory of cohomology and base change; ¢f. Mumford [3], § 5.

Going back to the proof of Theorem 8, keep the notation of Proposition 10.
Then, for m = m, and for each S-scheme S, the canonical map

Je(F (m) — 1, .:(?’(M))

is surjective. Since R'f,%'(m) vanishes for ; m =m, and i > 1, the direct image
S+(&'(m) is a locally free Os-module of rank CD(m) due to [EGA 111, ], 7.9.9. Thus,
we get the canonical morphism

Quot{y)xs) —> Grassom(f3(F (M)

associating to a flat quotient ¢ of #’ on X’ the direct image f, (%' (m)). Moreover,
one can reconstruct the subsheaf #” of &' from the canonical surjective map

JulF (m) — fy(&'(m)) .

Thus, one can view Quotl x5 as a subfunctor of the GraBmannian functor
Grassg((# ® Fym,.n(€)) which associates to an S-scheme S the set of all locally
free quotients of f;(#'(m)) of rank ®(m). It remains to see that the monomorphism

Quot( = 1x)5) — Grassq,(,,,) B @ Lyt sml8))

is representable by a quasi-compact immersion. So denote by G the S-scheme
Grassq,(,,,)(% ® Ly, m(6)) and by 2 the un‘1versal quotient of B @ Lymnt,i.(8).
The latter is a quotient (as an @Og-module) of the pull-back (Z ® Fyr,.m(8))e of
B R Lyom,.m(€) to G, which is locally free of rank ®(m). Let Z; be the pull-back
of # on Xz = X X5 G, and let f;: X5 — G be the map obtained from f by the

base change G — S. By using the canonical isomorphism
(B ® Fymysm())s— (fe)*(efe(m))

we obtain a canonical map ‘

(f6)x(Fs(m) - —" 2.

The kernel of this map generates a subshcaf H#o(m) of Fz(m). Denote by 4 the

Oy -module H#5(m) ® Oy (—m) and by % the quotient F;/#%. By reducing to a
noetherian base scheme S, one shows that thc‘re exists a (unique) subscheme Z of G
such that a morphism T — G factors through Z if and only if the pull-back %; of
%, on X xg T is flat over Tand has Hilbert polynom1a1 ® on the fibres over T; cf.
[FGA], n°221, Sect. 3. Furthermore, the mclusmn Z =, G is finitely presented.
Hence, Quot(g,—,x,s) is represented by Z Wthh is strongly qua51-pr01ect1ve over S.
Finally, Z is strongly projective because the valuatlve criterion is satisfied by [EGA

IV,], 2.8.1. O

Thereby we have finished part IL Fmally we come to part III. We begin by

recalling some definitions on equivalence rclat‘lons in categories. Let C be a category
such that direct products X; x X, and fibred products X; xy X, exist in C. A
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C-equivalence relation on an object X of Cis a representable subfunctor Rof X x X
such that, for each object T of C, the subset

R(T) < X(T) x X(T)

is the graph of an equivalence relation on X (T). Denote by p; : R — X the projec-
tion onto the i-th factor, i = 1, 2. A categorical quotient of X with respect to the
equivalence relation R is a pair (Z,u) consisting of an object Z of C and a morphism
u: X — Z satisfying up, = up, such that, for any morphism v: X — Y satisfying
vp; = vp,, there exists a unique morphism 7 : Z — Y such that v = pu. If it exists,
it is uniquely determined, and we will usually denote it by X/R. Furthermore, due
to the definition of a fibred product, there is a canonical morphism

IIR— X xyp X .

Ris called an effective equivalence relation on X if the categorical quotient X/R exists
and if the canonical morphism i is an isomorphism. In this case, X/R is called an
effective quotient. Quite often, the canonical morphism i is not an isomorphism,; this
means that the equlvalcncc relation given by the fibred product X xy,;x X over the
categorical quotient X/R, is usually larger than the given relation R.

In the following, we consider the category of S-schemes. Then one can look at
quotients also from the sheaf-theoretical point of view. Due to Proposition 8.1/1,
any S-scheme X is a sheaf with respect to the fppf-topology (or the fpgc-topology).
So, one can ask for the quotient of X with respect to R in the category of sheaves
for the fppf-topology. Using the procedure of sheafification, one easily shows that
such a quotient exists and that it is effective. Let us denote it by (X/R). Furthermore
let us assume that the categorical quotient (in the category of S-schemes) X /R exists.
So, viewing X and X/R as sheaves for the fppf-topology, one obtains canonical
morphisms

X —(X/R)— X/R.
If (X/R) is represented by a scheme, (X/R) is the effective quotient of X with respect

to R (for the category of S-schemes), and the canonical morphism (X/R) — X, /R
is an isomorphism.

Example 11. Let f: X — Y be an fppf-morphism of S-schemes. Denote by R(f)
the subscheme X xy X of X Xg X. Then R(f) is an effective equivalence relation on
X and (Y, f) is the effective quotient of X with respect to R(f) in the category of
S-schemes as well as in the category of sheaves for the fppf-topology. '

Proof. Since f is an fppf-fnorphism Y is the quotient (in the category of sheaves
for the fppf-topology) of X with respect to R(f). Hence the assertion follows from
what has been said before. |

For any property P applicable to morphisms, an equivalence relation R on an
S-scheme X is said to satisfy the property P if P holds for the projections p;: R — X.
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We need the following general theorem on the existence of effective quotients with
respect to proper flat equivalence relations.

Theorem 12. Let f: X — S be strongly quasi-projective, and let R be a proper flat
equivalence relation on X which is finitely presented. Assume that the fibres of the
projection p, : R — X have only a finite number of Hilbert polynomials with respect
to an embedding of X into P(&), where & is a locally free Os-module of constant finite
rank. Then R is effective, the quotient map q: X — X/R is strongly projective and
faithfully flat, and X/R is strongly quasi-projective over S.

In particular, X /R is the effective quotient of X with respect to R in the category
of sheaves for the fppf-topology.

The proof is easily done by using the existence of the Hilbert scheme; cf. Altman
and Kleiman [1], §2. Namely, set H = | | Hilb§,s where @ ranges over the finitely
many Hilbert polynomials of p,; then H exists as a scheme and is strongly quasi-
projective over S; cf. Corollary 9. Let D be the universal subscheme of X x5 H. The
projection p: D — H is proper, flat, and finitely presented, and the equivalence
relation R is a subscheme of X x¢ X which is proper, flat, and finitely presented
with respect to the second projection p,. So, using the universal property of the
Hilbert scheme, there is a unique morphism g : X — H such that

R =(idy x g)*D .

Now the idea is to realize the quotient as the image of g.
For an S-scheme T and for points x,, x, € X(T), write x, ~ x, whenever
(x1,x,) € R(T). Then one shows

(*) Xy ~ Xy <> gXy = gx, <> (xq,9%,) € D(T) .

Namely, set R; = (idy, x;)*R for i = 1, 2. Due to the definition of Hilbys, we have
gx; = gx, if and only if for all T-schemes T, the set R;(T") coincides with R,(T")
viewing both as subsets of (X xg T)(T"). Since R is an equivalence relation, the
latter is equivalent to (x,,id;) € R,(T) and hence to x, ~ x,. Thus, the first equiv-
alence is clear. Due to the definition of g, the condition (x,,gx,) € D(T) is equiv-
alent to (x,x,) € R(T). Then the second equivalence is also clear.

Now, denote by T, the graph of g: X — H. Since H is separated over S, the
graph I is closed in X x¢ H. Furthermore, because I, is isomorphic to X, it is of
finite presentation over S. Since I, is contained in D due to (%), it is a closed
subscheme of D. Moreover, I, is of finite presentation over D, since D is of finite
presentation over S. We want to show that I, descends to a closed subscheme Z of
H which is of finite presentation over H. So look at the projection p: D — H. Due
to the definition of Hilbys, the map p is faithfully flat, proper, and finitely presented.
Consider the canonical descent datum on D. In order to show I, descends to a
closed subscheme Z of H which is of finite presentation over H, it suffices to show
that the closed subschemes I, xz D and D xy I, of D xy D coincide. The latter is
easily checked by looking at T-valued points and by using the equivalence (+). The
map g : X — H factors through Z and, identifying X with I, the mapg: X — H
is obtained from p:D — H by the base change Z — H. Hence, g: X — Z is
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faithfully flat, and strongly projectivé over Z, since D, being proper and strongly
quasi-projective over H, is strongly pI'O_]eCtIVC over H. Because of (x), we have a

canonical isomorphism
R ———> X xzX.

Then (Z, g) is an effective quotient of }X with respect to R as explained in Example
11. Finally, Z — § is strongly quasi-projective because Z is a closed subscheme of
the strongly quasi-projective S-schemje H. O

Now we want to explain how the proof of Theorem 5 can be derived from the
results we have discussed up to now.} Let ® be a polynomial with rational coeffi-
cients. Since the Hilbert polynomial of any Ox-module, which is locally of finite
presentation over X and flat over S, is{locally constant, Pics is an open and closed

subfunctor of Picys. Thus, it remair;ls to show that Pic%s is representable by a
|

strongly quasi-projective S-scheme. |

In order to do this, we need the nétion of bounded families of coherent sheaves
on the fibres of X over S. So, let S be a quasi-compact scheme and let X be an
S-scheme of finite presentation. Let A Pc a family of isomorphism classes of coherent
sheaves on the fibres of X over S; i.e., for each s € § and for each extension field K
of k(s) we are given a family of coher‘ent sheaves % on X;. Two sheaves %% and

F belong to the same class if there cx1st k(s)}-embeddings of K and K’ into a field
L such that # ®g L and . ®x L are isomorphic on X;. The family A is called
bounded if there exists an S-scheme T of finite presentation and a sheaf & on
X = X xg T which is locally of ﬁmté presentation such that A is contained in the
family (%; t € T). There is the followmg proposition, cf. [SGA 6], Exp. XIII, Thm.

1.13. |

Proposition 13. Let S be quasz—compact and let X — S be strongly projective. Let A
be a family of coherent sheaves on the ﬁbres of X over S. Then the followig conditions
are equivalent:
i) A is bounded.
(i) The set of Hilbert polynomzalu x(Fx) @) is finite where Fy ranges over the
elements of the family A, and there exlst integers ne Z and N € N such that A is
contained in the family of all classes of quotients of Ox(n)".

Furthermore we need the following result; cf. i:SGA 6], Exp. XIII, Lemma 2.11.

Proposition 14. Under the assumption of Theorem 5, a fm;zily A of line bundles %y
on the fibres of X over S is bounded if and only if the set of Hilbert polynomials
1(Z)(¢) is finite.

Now consider the morphism
DiVX/* -_— PiCX/S .

Fix the polynomial ®, and denote by D(®) the inverse image of Pic%)s in Divyys. It
is clear that D(®) is a disjoint union of connected components of Divys. Then it
follows from Proposition 14 that there are only finitely many connected components
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of Divy,s which are involved. Thus, due to Corollary 9, we see that D(®) is strongly

quasi-projective over S. .
Let us assume for a moment that the following condition on Pic%/s is satisfied:
for any S-scheme S’ and for any line bundle %’ on X’ = X x4 S’ which induces an

element of Pic;s, we have

Rf(&L'(m)=0 for i>0 and n=0, and
fu&'m)+£0 fornz=0.

Note that such line bundles are cohomologically flat in dimension zero. Further-
more, in this case, the map D(®) — Pics is an epimorphism (in terms of sheaves
for the fppf-topology). Let ¥ be the line bundle on X xg D(®) which corre-
sponds to the universal (relative) Cartier divisor on X x5 D(®). Then the map
D(®) — Picys is induced by . If f(®) is the base change of f by D(®) —> S, the
direct image of . under f(®) is locally free of rank ®(0). Due to Proposition 7,
the morphism

D(®) xpiez, D(®) —> D(®)
is representable by the flat (even smooth) strongly projective morphism
P(#)— D(@),

where # is the dual of the direct image of . under|f(®), since .# is cohomologically
flat in dimension zero. Now in order to show the representability of Pic§,s, consider
the following diagram

D(®) x PicglsD (®) — D(®)

|

D(®) ——— Pic%.

It says that Picys is isomorphic to the quotient (as sheaf for the fppf-topology) of
D(®) by a proper and flat equivalence relation. Thus Pic%s is representable by a
strongly quasi-projective S-scheme; cf. Theorem 12.
Now it remains to remove the special assumption on Pic§,s which has been
made above. If nis an integer, we denote by Picy s + né the functor which associates
to an S-scheme S’ the subset
{£'(n); £ e Picks(S)}
of Picy,s(S’). Note that this functor is of the form Pics for a suitable polynomial
¥ e Q[r]. It suffices to show that there exists an integer n such that Pic§s + né
fulfills the above assumptions. However, since Picg/s is bounded due to Proposition
14, the latter follows from Propositions 13 and 10 by base change theory.
Thus we have finished part III, and thereby we conclude our discussion of
Theorem 5. '
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8.3 Representability by an Algebraic Space

The most restrictive assumption in Grothendieck’s theorem 8.2/1 on the represent-
ability of Picys is that the geometric fibres of f: X — S have to be reduced and
irreducible. As we have seen in the preceding section by looking at Mumford’s
example, even if X is projective and flat over S, there is an obstruction to Picys
being a scheme, which is located in the fibres of f. However, in Mumford’s example,
there exists a surjective étale extension S’ — S such that the functor Picy)s x5 §'
is representable by a scheme over §'. Working within the category of algebraic
spaces (the definition is given below), we can say that Picys is representable, since
this category is stable under quotients by étale equivalence relations. This example
suggests that, in comparison with Grothendieck’s theorem, the assumptions on the
S-scheme X can be weakened if one wants to represent Picy,s by an algebraic space.

Theorem 1 (M. Artin [5], Thm. 7.3). Let f : X —s S be a morphism of algebraic spaces
which is proper, flat, and finitely presented. Then, if f is cohomologically flat in
dimension zero, the relative Picard functor Picy,s is represented by an algebraic space
over S.

A proper and flat morphism f is cohomologically flat in dimension zero if,
for example, the geometric fibres of f are reduced; cf. [EGA III,], 7.8.6. Further-
more, let us mention that there is a converse of Theorem 1 when the base S is
reduced.

Remark 2. Let f : X — S be a morphism of schemes which is proper, flat, and finitely
presented. Assume that S is reduced. Then Picys is an algebraic space if and only if
[ is cohomologically flat in dimension zero.

Namely, in order to show the cohomological flatness of f when Picys is an
algebraic space, one has only to verify that the dimension of H°(X, 0y ) is locally
constant on S; ¢f. [EGA III1,], 7.8.4. Then one can assume that S is a discrete
valuation ring. Hence, the assertion follows from Raynaud [6], Prop. 5.2.

As we will see below, the method for the proof of Theorem 1 is completely
different from the one used in the last section. It does not involve projective methods
nor does it make use of the representability of the Hilbert functor or of the functor
of relative Cartier divisors. Also we want to mention that the theorem does not
contain 8.2/1. Only for the case where the base scheme S is a field, 8.2/1 and 8.2/3
are corollaries of Theorem 1, since a group object in the category of algebraic spaces
over a field is represented by a scheme. ,

If, in the situation of Theorem 1, f is not cohomologically flat in dimension ZEr0,
the only option which is left is to work with rigidificators (cf. 8.1/5), and one can
look for the representability of rigidified relative Picard functors; cf. Section 8.1.

Theorem 3 (Raynaud [1], Thm. 2.3.1). Let f: X —> S be a proper, flat, and finitely
presented morphism of algebraic spaces, and let Y be a rigidificator for Picys. Then
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the rigidified Picard functor (Picys, Y) is representable by an algebraic space over §,
and there exists a universal rigidified line bundle on (Picys, Y).

The proofs of these theorems make use of a general principle for the construction
of algebraic spaces which is due to M. Artin; cf. [5], Thm. 3.4. Namely, there is a
criterion describing a necessary and sufficient condition for the representability of
contravariant functors from (Sch/S) to (Sets) by algebraic spaces. It is for this
criterion that the category of algebraic spaces yields a natural environment for
questions on the representability of contravariant functors from (Sch/S) to (Sets).

Within the category of algebraic spaces one can carry out many of the fundamental .

constructions, as contained in [FGA], under more general conditions, and one
achieves results on the representability of certain functors under quite general
assumptions.

Before we explain the criterion, let us briefly mention the basic definitions
concerning algebraic spaces. As an introduction to the theory of algebraic spaces,
we refer to M. Artin [3]. A detailed treatment can be found in Knutson [1].

In the following, let S be a scheme. Sometimes, for technical reasons, when
we want to apply the approximation theorem 3.6/16, we have to assume that the
base scheme S is locally of finite type over a field or over an excellent Dedekind

ring.

Definition 4. A (locally separated) algebraic space X over Sis a functor
X :(Sch/S)° — (Sets)

with the following properties:

(i) X is a sheaf with respect to the étale topology.

(ii) There exists a morphism ©: U — X of an S-scheme U, which is locally of
finite presentation, to X such that T is relatively representable by étale surjective
morphisms of schemes.

(ili) The product U xy U is represented by a subscheme of U xg U such that the
immersion U xy U— U x5 U is quasi-compact.

Condition (i) means that, for every S-scheme V' and every morphism V — X,
the product U xx V is represented by a scheme and that the projection U xx V -—
V is étale and surjective. Furthermore, it follows from (i) that U xx V— U x5V
is a quasi-compact immersion. The algebraic space X is called separated over S if
U x4 U is representable by a closed subscheme of U xg U. ’

Keeping the notations of Definition 4, the algebraic space X is the quotient of
U by the equivalence relation R = U xx U (in terms of sheaves with respect to the
étale topology). Conversely, given an S-scheme U of locally finite presentation and
a finitely presented subscheme R of U x5 U which defines an étale equivalence
relation, one can show that the quotient of U by R (in terms of sheaves with respect
to the étale topology) is an algebraic space. Thus we also could have defined
algebraic spaces over S as quotients of S-schemes by étale equivalence relations.

A morphism of algebraic spaces over S is a morphism of functors. Viewing an
algebraic space as a quotient of a scheme with respect to an étale equivalence
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relation, one can describe morphisms |between algebraic spaces in terms of mor-
phisms between schemes.

Proposition 5. Let f : X; — X, be a morphism of algebraic spaces over S. Then, for
each i, there exists a representation of X,- as a quotient of an S-scheme U, by an étale
equivalence relation (as above), and there is an S-morphism g : U, — U, such that
one has the following commutative diagram

(U; xx, Uh) 3 U, — X
lgxg Jg JI
(Uy xx, U,) 3 U, — X,.

Furthermore, any morphism g : Uy — U, inducing a commutative square as on the
left-hand side gives rise to a morphism f): X; — X,.

Associating to an S-scheme its functor of points, one gets a canonical map from
the category of S-schemes to the category of algebraic spaces over S. This map gives
rise to a fully faithful left exact embedging of categories. In the following, we will
usually identify an S-scheme with its associated algebraic space over S.

Clearly, any property of S-schemes which is local for the étale topology, carries
over to the context of algebraic spaces. One just requires that the property under
consideration holds for the scheme U in Definition 4. This applies to the properties
of being reduced, normal, regular, locally noetherian, etc.. Similarly, any property
of morphisms of schemes which is localll for the étale topology (on the source and
on the target) carries over to the category of algebraic spaces. Thus, the properties
of being flat, étale, locally of finite type, l;ocally of finite presentation, etc. are defined.
In particular, an algebraic space is provided with an étale topology in a natural
way; a basis for this topology is given b}y the family of S-schemes U which are étale
over X. The structure sheaves Oy, wherie U is a scheme mapping étale to X, induce
a sheaf (with respect to the étale topology) 0y on the algebraic space X. This sheaf
is called the structure sheaf of X.

A morphism Y—— X of algebraic $paces over S is called an immersion (resp.
open immersion, resp. closed immersion) if ¥ — X is relatively representable by
an immersion (resp. open immersion, résp. closed immersion). Thus, the notions of
open and of closed subspaces of X are] defined in the obvious way as equivalence
classes of immersions. In particular, X carries a Zariski topology.

An algebraic space X over S is callcj:d quasi-compact if there exists a surjective
étale morphism U — X where U is a quasi-compact scheme. A morphism X — Y
of algebraic spaces is called quasi-compact if for any quasi-compact scheme ¥ over
Y, the fibre product X xy V'is quasi-compact. Then we define 2 morphism X — Y
of algebraic spaces to be of finite type if it is quasi-compact and locally of finite type;
and to be of finite presentation if it is quasi-compact, quasi-separated, and locally
of finite presentation. ’

A morphism X — Y of algebraic spaces is called proper if it is separated, of
finite type, and universally closed. The latter has to be tested on the scheme level.
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We mention that there is a valuative criterion for properness; cf. Deligne and

Mumford [1], Thm. 4.19.
Now let us introduce the notion of points of an algebraic space.

Definition 6. A point x of an algebraic space X over S is a morphism x: Spec K — X
of algebraic spaces over S, where K is a field jand where x is a categorical monomor-
phism. The field K is called the residue field of x, usually denoted by k(x).

Two points x;:SpecK;,— X, i =1, 2, are called equivalent if there is an
isomorphism ¢ : Spec K; —» Spec K, such that x, = x,0. We identify equivalent
points. Since, in Definition 6, we have required x to be a monomorphism, it is easily
seen that this notion of points is equivalent to the usual one when X is a scheme.
Furthermore, if U — X is a morphism whel‘e U is a scheme, then each point of U
induces a point of X. So every non-empty ?lgebraic space X over S has a point
whose residue field is of finite type over S. One can even show that, for each point
x of X, there exists an étale map U — X qrom a scheme U and a point u of U
mapping to x such that the induced extension of the residue fields k(x) — k(u) is
trivial. Such a pair (U, u) is called an étale m}aighborhood of (X, x) without residue
field extension. By using Lemma 2.3/7, one easily sees that the family of all such
étale neighborhoods is a directed inductive system. So we get the notion of a local

ring at a point of an algebraic space.

Definition 7. The local ring for the étale topology of an algebraic space X at a point
x of X is defined by the inductive limit

O,z =1lim Oy,

where the limit is taken over the family of all étale neighborhoods (U,u) of (X,x)
without residue field extension.

As explained in Section 2.3, this ring is henselian. If x is a point of a scheme X,
the henselization of the local ring of X at x (in terms of schemes with respect to the

Zariski topology) serves as the local ring of | ‘X at x if X is viewed as an algebraic

space.

Let us mention some conditions under W"hlch an algebraic space is already a
scheme. So let us start with an S-scheme U and an étale equivalence relation R on
U. If R is finite, then the quotient U/R (in terms of sheaves with respect to the étale
topology) is represented by a scheme if and o}nly if, for each point u of U, the set of
points which, under R, are equivalent to u is clontained in an affine open subscheme;
cf. [FGA], n°212, Thm. 5.3. For example, if U is affine, then U/R is represented by

the affine scheme defined by the kernel of the% maps
0,(U) = 0B

In general, such a quotient is just an algebralc space and not necessarily a scheme,

even if R is finite. But it can be shown that, for any algebraic space X over S, there

exists a dense open subspace which is a sch‘eme. If the base scheme S is a field,

separated algebraic spaces over S of dimension 1 are schemes. Furthermore, group
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objects in the category of algebraic spaces over a field are schemes, as one easily
shows by using the results of Section 6.6. ’

Next we want to describe M. Artin’s criterion for a functor to be an algebraic
space. We begin by reviewing some notions which are needed to state the general
theorem. In the following, let S be a base scheme which is locally of finite type over
a field or over an excellent Dedekind ring, and let

F:(Sch/S)° — (Sets)

be a contravariant functor. If T= Spec B is an affine scheme over S, we will also
write F(B) instead of F(T).

The functor F is said to be locally of finite presentation over S if, for every filtered
inverse system of affine S-schemes {Spec B;}, the canonical morphism

lim F(B)) — F(lim B,)

is an isomorphism. Note that, if F is an S-scheme, then F is locally of finite
presentation as a functor if and only if it is locally of finite presentation as a scheme
over S; cf. [EGA IV,], 8.14.2.

Furthermore, we need some definitions concerning deformations. Let s be a
point in S whose residue field is of finite type over S, let k' be a finite extension of
k(s), and let {, be an element of F(k'). An infinitesimal deformation of {, is a pair
(4, &) where A is an artinian local S-scheme with residue field k', and where £ is an
element of F(4) inducing {, € F(k') by functoriality. A formal deformation of {, is
a pair (4, {£,}nen), Where A is a complete noetherian local ¢s-algebra with residue
field k’, where the elements &, € F(4/m"*') are compatible in the sense that ¢,
induces Eu1 BY functoriality, and where &, coincides with {,. Here m is the maximal
ideal of A. If the sequence {£,},.n is induced by an element & € F(4) via func-
toriality, then (4, {&ntnen) o1 (4, &) is called an effective formal deformation of {,.
A formal deformation (4, {£,},n) of {, is said to be versal (resp. universal) if it has
the following property:

Let (B',n’) be an infinitesimal deformation of ¢, and, for an integer n, let the
(n + 1)-st power of the maximal ideal of B’ be zero. Let B be a quotient of B’, and
denote by 5 € F(B) the element induced by #'. Then every map

(A", &) — (Bym)

sending £, ton can be factored (resp. uniquely factored) through (B',%') in the sense
of morphisms of @s-algebras. R
We mention that, in general, the canonical map

*) F(A) — lim F(A]m*)

is not injective. Hence, if (4, &) is an effective formal deformation of {,, the element
& € F(A) does not need to be uniquely determined by the sequence {&.}uen even if
(4, &) is universal. Nevertheless, the ring 4 is uniquely determined (up to canonical
isomorphism) if (4, €) is a universal deformation of {,,. But, for most of the functors
we are interested in, the map (+) is bijective for any noetherian complete local
Os-algebra A. For example, this is the case for the Hilbert functor Hilbys or for
the relative Picard functor Picys if X is proper over S, as one can show by using
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Grothendieck’s existence theorem on formal sheaves; cf. [EGA III, ], § 5. In par-
ticular, in these cases any formal deformation is effective.

Now let X be an algebraic space over S, and let x be a point of X which is of
finite type over S. Denote by k(x) the residue field of x and by {3 the inclusion of x
into X. Let A* be the completion of the local ring of X at x with respect to the
maximal ideal, and let

& :Spec A* — X

be the canonical morphism. The pair (A%, E%) will serve as an effective formal
deformation of {Z which is universal. Thus, in order to show that a contravariant
functor F from (Sch/S) to (Sets) is an algebraic space, one should first look for the
existence of universal deformations at all points of F which are of finite type over
S. Therefore, one introduces the following notion.

A contravariant functor F : (Sch/S)® — (Sets) is said to be pro-representable if
the following data are given:

(a) an index set I,

(b) for each x € I, an Og-field of finite type k* and an element {7 € F(k¥),

(¢) for each x € I, a formal deformation (A%, {£5},n) of (5 € F(K),
satisfying the condition that, for each artinian local S-scheme T of finite type and
for each n € F(T), there is a unique x € I and a unique map T — Spec A* sending
{&) tom.

Note that (4%, {£5},n) is a universal formal deformation of (3. Furthermore,
F is called effectively pro-representable if each sequence {£7} is induced by an
element & & F(A®). If F is effectively pro-representable, then the elements x € I are
called the points of finite type of F. In the case where F is an algebraic space, the
notion of points of finite type coincides with the one given in Definition 6; one
associates to x € I the point of F given by the map (3 : Spec k* — F. The universal
deformations (A%, &) of [, x € I, are called the formal moduli of F.

A morphism ¢: X — F from an S-scheme X to the functor F is said to be
formally smooth (tesp. formally étale) at a point x € X if fulfills the following lifting
property: For every commutative diagram of morphisms

X —— 2,

F «—+ Z
where Z is an artinian S-scheme, where Z, is a closed subscheme of Z defined by a
nilpotent ideal, and where Z,— X is a map sending Z, to x, there exists a
factorization (resp. a unique factorization) Z — X making the diagram commuta-
tive. One easily shows that, if £: X — F is relatively representable by morphisms
which are locally of finite presentation, ¢ is formally étale at a point x of X if and
only if, after any base change Y — F by an S-scheme Y, the projection X xp ¥ —> Y
is étale at every point of X xp Y above x; use [EGA IV, ], 17.14.2.

Theorem 8 (M. Artin [5], Thm. 3.4). Let S be a scheme which is locally of finite type
over a field or over an excellent Dedekind ring. Let F be a functor from (Sch/S)° to

e
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(Sets). Then F is an algebraic space (resp. a separated algebraic space) over S if and
only if the following conditions hold:

[0] (sheaf axiom) F is a sheaf for the étale topology.

[1] (finiteness) F is locally of finite presentation.

[2] (pro-representability) F is effectively pro-representable.

[3] (relative representability) Let| T be an S-scheme of finite type, and let ¢,
5 € F(T). Then the condition & = 1 is|representable by a subscheme (resp. a closed
subscheme) of T xg T.

[4] (openness of versality) Let X be an S-scheme of finite type,andlet{: X — F
be a morphism. If & is formally étale at a point x € X, then it is formally étale in a
neighborhood of x.

The necessity is not difficult to show and has already been discussed when
introducing the above notions. For the sufficiency which is the more interesting
part, one needs an approximation argument for algebraic structures over complete
local rings; cf. M. Artin [5], Thm. 1.6. Thc rough idea for the proof of the sufficiency
is the following. |

One has to find a morphism U —nF from an S-scheme which is locally of finite
presentation to F such that U — F i 1s relatively representable by étale surjective
morphisms. We will first construct an etale neighborhood for each point of F which
is of finite type over S. Consider such . a point x of F, and let (4%, &) be the formal
deformation pro-representing F at x\ Then one constructs an algebraization of
(A%, &%); i.e., an S-scheme X of finite type a closed point x € X with residue field
k(x) = k*, and an element & e F(X), such that the triple (X, x, &) gives rise to a versal
formal deformation of {&. More premsFly, there is an isomorphism @y , = A* such
that & induces £7 in F(4¥/m"*!) for each n e N. The existence of such an algebraiza-
tion follows easily from the approximation theorem 3.6/16 if the ring A* of the

\
formal modulus is isomorphic to a formal power series ring Os ([[t1,.- > 110
where 0 , is the completion of a local‘ ring of S.—For example, this holds for the
Picard functor of a relative curve.—In this case, A% is the completion of an S-scheme
X of finite type at a point x of ﬁmtc‘ type. Namely, write 4* as a union of 0s-
subalgebras B of finite type. Since F is assumed to be locally of finite presentation,
the element &* is represented by an ele ‘,ment & € F(B) for some 0s-subalgebra B of
finite type. The inclusion B =, A* yields a map F(B) — F (A%) sending & to £*. Due
to the approximation theorem, there is an étale neighborhood (X’,x’) of (X, x)

without residue field extension such that there is a commutative diagram

Spec A* «———— Spec A¥/m2A4*

SpecB «———— X'

sending the closed point of Spec A%/m>4* to x'. The completion Oy. .. is still
isomorphic to the ring A*. Denote by &' € F(X') the image of ¢ under the functorial
map F(B)— F(X'). Due to the versality of (4, &%), there is an automorphism
¢ : A* — A%, which is the identity modulo m?A* and which sends &7 to &, for each
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ne N where &, is induced by & via functonallty Thus (X7, x', &) is the required
algebraization.

Now, let I be the set of points of F which are of finite type over § and, for x € J,
denote by (U*,u*, £¥) an algebraization of the for‘mal modulus (4%, £*). One easily
shows that {*: U — F is formally étale at ™. Due to condition [4], after shrinking
U* we may assume that £* is étale at every point. P‘Iencc since U™ — F is relatively
representable by condition [3], it is reprcsentablc by étale maps. If we denote by U

the disjoint union of the U™, x € I, the map

U= Ur— F

xel

is representable by étale surjective maps. Furthermore, due to condition [3], the
equivalence relation U xp U — U x5 Uis relati\‘/ely representable by a subscheme
(resp. by a closed subscheme) of U x5 U. Thereby we see that F is an algebraic space

as asserted in Theorem 8. O

Conditions [0] and [1] are natural, and th«Fy are satisfied quite often. For
conditions [2] and [3], it is convenient to suppose that there is a deformation theory
for the functor F so that one can rewrite the conditions in terms of deformation
theory. Then it is often possible to decide whether|a functor is pro-representable or
relatively representable. Condition [4] is the one} which is most difficult to verify,
but it can also be interpreted by infinitesimal methods. We mention that there is a

general theorem by M. Artin which relates the reﬂ)resentability of a functor admit-
ting a deformation theory to a list of conditions 1which can be checked in specific
situations; for instance for the Hilbert functor or the relative Picard functor; cf.
M. Artin [5], Thm. 5.4. Since many technical details are involved, we omit precise

statements here.

To end our discussion, we want to indicate the

procedure of proof for Theorem

1. Details can be found in M. Artin [5], Section 7; see also the appendix of M. Artin

[7]. Since X is assumed to be of finite presentatic
case where the base scheme § is of finite type over
the general criterion for a functor to be an algebra:
for Picy,s is given by the exponential map. If f: X
dimension zero, the deformation theory for Picy,
required in the list of the general statement. Thus
to Grothendieck’s existence theorem on formal she:
formal moduli for Picyys, i.e., Picys is effectively
M. Artin’s approximation theorem, the formal mo

n over S, one can reduce to the
the integers Z. Then one applies
¢ space. The deformation theory
— § is cohomologically flat in
fulfills all conditions which are
Picys is pro-representable. Due

aves, [EGAIII, ],§ 5, one obtains
pro-representable. Then, due to
iulx are algebraizable, and hence

one gets local models for the space which will represent Picy,s. Since these local
models are unique up to étale morphism, they can be glued together to form an

algebraic space over S.

Finally let us mention that the definition of alécbraic spaces is not generalized
by allowing flat equivalence relations of finite ty;pc in place of étale ones. This
is due to the following fact; cf. M. Artin [7], Cor. 6.3.
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If U is an S-scheme of finite type over a noetherian base scheme S, and if R is a
flat equivalence relation of finite type on U, then the quotient U/R in terms of
sheaves for the fppf-topology is represented by an algebraic space.
As a corollary, one obtains the following useful assertion.

Proposition 9. Let H and G be group objects in the category of algebraic spaces
over S and let H— G be an immersion. Assume that H is flat over S. Then the
quotient G/H in terms of sheaves for the fppf-topology is represented by an alge-
braic space.

8.4 Properties

- In this section we want to collect some results concerning the smoothness and

certain finiteness properties of Picys. Let us start with a theorem which is contained
in [FGA], n°236, Thm. 2.10, for the case where Picys is a scheme; but it is immedi-
ately clear that it remains true if Picy,s is an algebraic space.

Theorem 1. Let f: X — S be a proper and flat morphism which is locally of finite
presentation. Assume that f is cohomologically flat in dimension zero so that Picys
is an algebraic space. Then the following assertions hold.

(a) There is a canonical isomorphism

Lie(Picy,s) -~ R'f, O
where Lie(Picy;s) is the Lie algebra of Picys.
(b) If S is the spectrum of a field K, then
dimg Picyx < dim H'(X, 0y) ,

and equality holds if and only if Picy g is smooth over K. In particular, the latter is
the case if the characteristic of K is zero.

Proof. (a) Write Os[e] for the Os-algebra of the dual numbers over @, and set
S[e] = Spec(Us[]). Then one can interpret Lie(Picy;s) as the subfunctor of
Homyg(S[£]), Picy;s) consisting of all morphisms which, modulo &, reduce to the unit
section of Picys. Setting X [e] = X xg S[e], one obtains the exact sequence

0— Oy — Ofpy; — 05— 0
h r—1+he

Since f is cohomologically flat in dimension zero, the canonical map f, Oy —
f«Ox is surjective. Therefore the sequcnce of sheaves with respect to the étale- -

topology
0— R'f,0x — R'f, 0%3— R'f,,0f — R*f, 0
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is exact. Since Lie(Picys) corresponds to the kernel of the map R, O —
Rf, 0%, it can be identified with R'f, Oy.
(b) follows from (a) and 2.2/15. O

Proposition 2. Let f : X — S be a proper and flat morphism which is locally of finite
presentation. Let s be a point of S such that H*(X,, Ox ) = 0. Then there exists an
open neighborhood U of s such that Picys|y is formally smooth over U.

In particular, in the case of a relative curve X over S, both Picy;s and (Picys, Y),
where Y is a rigidificator for Picys, are formally smooth over S.

Proof. Due to the semicontinuity theorem [EGA 111, ], 7.7.5, there exists an open
neighborhood U of s such that H*(X;, Ox,) = Ofor all s € U. Wemay assume U = S.
In order to prove that Picys is formally smooth over S, we have to establish the
lifting property for Picy,s. So consider an affine S-scheme Z and a subscheme Z, of
Z which is defined by an ideal A of @, satisfying 42 = 0. Then we have to show
that the map

RMf %5 Z) O x iz — RIS X5 Zo)x OF xs2,

is surjective. The cokernel of this map is a subsheaf of the Opmodule
R2(f x5 Z), (N ®ag, Ox). The latter vanishes, since H?*(X,,0x) =0 for all seS;
use [EGA 1II,], 7.7.10 and 7.7.5 (II). Thus we see that Picys satisfies the lifting
property and, hence, is formally smooth over S.

In the case of a relative curve X over §, the assumption H*(X,,0x ) =0 is
satisfied at all s € S, so Picys is formally smooth over S. Furthermore, since there
is no obstruction to lifting a rigidification, we see that (Picy/s, Y) is formally smooth
over S, too. O

Now we will concentrate on finiteness assertions for Picys. When proving
Grothendieck’s theorem 8.2/1, we had seen in 8.2/5 that Pics is quasi-projective
over S. But if we impose stronger conditions on the fibres of X, we can expect better

results.

Theorem 3 ([FGA], n°236, Thm. 2.1). Let f: X — S be a proper (resp. projective)
morphism which is locally of finite presentation. Assume that the geometric fibres of
X are reduced and irreducible. Then Picys is a separated algebraic space (resp.

separated scheme) over S.
If, in addition, f : X — S is smooth, then each closed subspace Z of Picy,s which

is of finite type over S is proper (resp. projective) over S. In particular, if S consists of
a field K, the identity component Pic% y of Picyx is a proper scheme over K.

Proof. Pics is an algebraic space over S, due to 8.3/1. If X is projective over S, we
know from 8.2/1 that Picy,s is a scheme over S and from 8.2/5 that each closed
subspace Z which is of finite type over S is quasi-projective over S. The remaining
assertions follow by using the valuative criteria for separatedness and properness.

Indeed, we may assume that S is the spectrum of a discrete valuation ring R,
and that X admits a section over S. For showing the separatedness, we have to
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verify that a line bundle & on X which is trivial on the generic fibre is trivial. There
exists a global section f e I'(X, &) vJ'hich generates % on the generic fibre. Since
the local ring Oy , of X at the generic pioint # of the special fibre is a discrete valuation
ring such that the extension R — @y, is of ramification index 1, we may assume
that f generates % at 5. Then it is ciear that f generates ¥ on X and that % is
trivial. Next assume that X is smooth: over S. For the properness, we have to show
that each line bundle on the generic fibre of X extends to a line bundle on X. Since
the local rings of X are regular, the notions of Cartier divisor and Weil divisor
coincide. Obviously, Weil divisors on} the generic fibre of X extend to Weil divisors
on X. So, each line bundle on the generic fibre extends to a line bundle on X.

If S consists of a field K, then Pic}x,,( is a scheme by 8.2/3. Since any connected
K-group scheme is of finite type as soon as it is locally of finite type, we see that

Picf%,,( is of finite type and, thus, proﬂer over K. O

Next we want to discuss ﬁnitenéss assertions for Picy,s under more general
assumptions. Since, in general, Picys will have infinitely many connected com-
ponents, it cannot be of finite type over §. So the best one can expect is that there
exists/an open and closed subgroup Pick,s of Picy;s which is of finite type over §
and which has the property that the q}uotient of Picy,s by Picy,s has geometric fibres
which are finitely generated as abstra¢t groups. We want to introduce the subgroup
Picys.

If S consists of a field, we know thfjflt the relative Picard functor Picy s is a group
scheme. Let Pics be its identity component. Then we set

Picys = |J n*(Picys)
n>0
where n : Picy;s — Picy/s is the multiplication by n. Due to continuity, Picks is an
open subscheme of Picys.

For a general base S, we introduce Picy s (resp. Pick,s) as the subfunctor of Picys
which consists of all elements whose restrictions to all fibres X, s € S, belong to
Picy i (resp. Pick j)- If Picys is an algebraic space (resp. a scheme), and if it is
smooth over S along the unit section, then PicY,s is represented by an open subspace
(resp. an open subscheme) of Picys, cf. [EGA IV;], 15.6.5.

Theorem 4 ([SGA 6], Exp. XIII, Thm. 4.7). Let f: X — S be a proper morphism
which is locally of finite presentation, jand let S be quasi-compact. Then

(a) The canonical inclusion Picks c._, Picys is relatively representable by an open
and guasi-compact immersion.

(b) If X — S is projective and if i?s geometric fibres are reduced and irreducible,
the immersion Picy,s = Picys is open and closed.

(c) Picysis of finite type over S in the sense that the family of isomorphism classes
of line bundles on the fibres of X which belong to Picks is bounded.

The hardest part of the theorem i;s assertion (c). One can reduce it to the case

where X is a closed subscheme of a projective space P%. In this case, one shows that
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all elements of Picy,s have the same Hilbert polynomial (with respect to the S-ample
line bundle belonging to the embedding of X into P%), and then the assertion can
be deduced from 8.2/5.

Next, we want to look at the special case where X is an abelian S-scheme, ie.,
a smooth and proper S-group scheme with connected fibres.

Theorem 5. Let A be a projective abelian S-scheme.
(a) Then Picys is a projective abelian S-scheme. It is denoted by A* and is called
the dual abelian scheme of A. In particular, A* coincides with the identity component
of Pic 5.
(b) The Poincaré bundle on A x5 A* gives|rise to a canonical isomorphism
1: A— A** where A** is the dual abelian scheme of A*.

A proof of (a) can be found in Mumford [1], Corollary 6.8. For (b), since 4 and
A** are flat over §, it suffices to treat the case whcre S consists of an algebraically
closed field. In this case, the assertion follows from Mumford [3], Section 13, p. 132.

In 1.2/8 we have seen that an abelian scheme over a Dedekind scheme is the
Néron model of its generic fibre. Now, using the above theorem, one can show a
much stronger mapping property for abelian schemes than the one required for
Néron models. ‘

Corollary 6. Let A be an abelian S-scheme. Then ar%y rational S-morphism ¢ : T -+ A4
from an S-scheme T to A is defined everywhere if T is regular.

Proof. We may assume T = S. Then A is projective over S; cf. Murre [2], p. 16.
Due to Theorem 5, we can identify 4 and A**. So the map ¢ corresponds to a line
bundle on A* xg S’ where S’ is a dense open subscfheme of S. Since S = T is regular
and since A* — § is smooth, the scheme A4* is regular. So the line bundle extends
to a line bundle on A* and, thus, gives rise to an extension S—A**of . O

Now let us return to the general situation of a proper morphism X — § of
schemes. We want to discuss the group of connected components of Picys over a

geometric point of S. Let s be a point of § and letbea geometric point of S such

|
that k(s) is an algebraic closure of the residue field k(s) at s. The group of connected
components of Picy_, is called the Néron- Seven group of the geometric fibre

X; = X x5k(5)of X over s. It is denoted by NSx,s(s) so that
NSy5(8) = Pch;/k(E)(k(s N/ P 1f’x;/k®(k(s NE

Theorem 7. ([SGA 6], Exp. XIII, Thm. 5.1). Let f X —> S be a proper morphism
which is locally of finite presentation, and assume that S is quasi-compact. Then
the Néron-Severi groups NSy(5) of the geometrzc fibres of X are finitely
generated. Their ranks as well as the orders of their torsion subgroups are bounded
simultaneously.

Remark 8. The Néron-Severi group is of arithmetical nature; i.e., the set of points
where the Néron-Severi group is of a fixed type is|not necessarily constructible.
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For example, let E— S be an elliptic curve with a non-constant j-invariant
over an irreducible base § which is of finite type over a field. Then there are infinitely
many geometric points § of S such that the geometric fibre E; has complex multi-
plication, and there are infinitely many geometric points such that the geometric
fibre E; has no complex multiplication. Now consider the product X = E x4 E. If
E; has no complex multiplication, the rank of the Néron-Severi group of X is 3.
If E5 has complex multiplication, the rank of the Néron-Severi group of X; is at
least 4.



Chapter 9. Jacobians of Relative Curves

The chapter consists of two parts. In the first four sections we study the represent-
ability and structure of Picy s for a relative curve X over a base S. Then, in the last
three sections, we work over a base S consisting of a discrete valuation ring R with
field of fractions K and, applying these results, we investigate the relationship
between Picy,s and the Néron model of the Jacobian Jg of the generic fibre Xj.

The chapter begins with a discussion of the degree of divisors on relative curves.
Then we give a detailed analysis of the Jacobian Jy of a proper curve Xy over a
field, showing that the structure of Ji is closely related to geometric properties of
X,. The next two sections deal with the representability of Jacobians over a more
general base. First, imposing strong conditions on the fibres of the curve and
working over a strictly henselian base, we prove the representability by a scheme,
using a method which was originally employed by Weil [2] and Rosenlicht [17; see
also Serre [1]. Then we explain results due to Deligne [1] and Raynaud [6], which
are valid under far weaker conditions.

In the second half of the chapter, we follow Raynaud [6] and consider a proper
and flat curve X over a discrete valuation ring R, assuming in most cases that X is
regular at each of its points and that the generic fibre Xy is geometrically irreducible.
Let P be the open subfunctor of Picg consisting of all line bundles of total degree
0 and let Q be the biggest separated quotient of P. We show that Q is a smooth
R-group scheme whose generic fibre coincides with the Jacobian Ji of the generic
fibre X. Thus if J is a Néron model of J, there is a canonical R-morphism @ — J.
Without assuming the existence of J, we can prove under quite general conditions
that, for example, if the residue field of R is perfect, then Q is already a Néron model
of Jg. Thereby it is seen that the relative Picard functor leads to a second possibility
of constructing Néron models. Also there are important situations where the
identity component of Picyp is already a separated scheme and where the canonical
morphism Pic§  — J° is an isomorphism. More precisely, we will see that the
coincidence of Pic}x and JO is related to the fact that X has rational singularities.

In the above cases where Q is already a Néron model of Jg, it is possible to
compute explicitly the group of components (of the special fibre) of this model, using
the intersection form on X. In Section 9.6, we explain the general approach and
carry out some computations in particular cases.

9.1 The Degree of Divisors

Let X be a proper curve over a field K. If x is a closed point of X and if fis a regular
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ord,(f) = lo, .(Ox,:/(f))
where [y, _ denotes the length of O c-modules. If, for example, x is a regular point
of X, the local ring 0y, is a discrete valuation ring and ord,(f) corresponds to the

order of f in Oy , (with respect to the canonical valuation on 0Oy.,). Since we have

ord,(fg) = ord.(f) + ord.(g)
for a product of regular elements f, g € Oy, we can define
ord,(f/g) = ord(f) — ord.(g)

for any element f/g of the total ring of fractions of Oy, .- )
Now let D be a Cartier divisor on X. For a closed point x € X, we set

ordx(D) = Ordx(fx/gx)

where f./g. is a local representation of D in a neighborhood of x. We can associate
to D the Weil divisor

Y. ord (D) x .

xeX

The degree of a Cartier divisor D is defined by
deg(D) = Y. ord,(D)-[k(x): K] .

xeX
The degree function is additive, ie.,
deg(D; + D,) = deg(D,) + deg(D,) .

If D is effective, we can write

deg(D) = idimKHO(X, 0p)

where 0, denotes the structure sheaf of the subscheme associated to D. Thus we see
that the degree of a Cartier divisor on X is not altered by a base change with a field

extension K'/K. |
Assuming for a moment that X is reduced, we can consider the normalization

& — X of X. Then one can pull back Cartier divisors D on X to Cartier divisors
D on X. We claim that
deg(D) = deg(D)..

Indeed, it suffices to justify the follow{ng assertion. Let U = Spec(4) be an affine
open subscheme of X and let A be the normalization of 4. Then, for each regular
element f of A4, one has

dimg(4/(f)) = dimg(A/(1)) -

In order to prove this, look at the commutative diagram

0 A A C — 0
Ll |
0 A A — C 0
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with exact rows, where the vertical maps are given by the multiplication with f
Since f is a regular element of both 4 and A. there is a long exact seauence

0 — ker(fo) — A/f) — A/f)

— C/f-C—0.

Using dimg(C) < oo, it follows that dim (ker(f¢)) = dimg(C/f - C). Hence, the asser-

tion is evident.

A Cartier divisor D on an arbitrary proper curve X is called principal if there

exists a meromorphic function f on X such that D
D, we have deg(D) = 0. Two Cartier divisors D

= div(f). For a principal divisor
and D, are said to be linearly

equivalent if the difference D, — D, is principal. So we see that the degree of a Cartier

divisor D is not altered if we replace D by a divis
D. Since each line bundle % on X corresponds to a

or which is linearly equivalent to
Cartier divisor D which is unique

up to linear equivalence, one can define the degree of a line bundle & by setting

deg(Z) := deg(D). The degree plays an import
formula.

Theorem 1. Let X be a proper curve over a field K.
Then the Euler-Poincaré characteristic

ant role in the Riemann-Roch

(&) = dimgH°(X, %) — dim H' (X, &)
of & is related to the Euler-Poincaré characteristic of Oy by the formula
2(2L) = deg(L) + x(Oy) .
Proof. One proceeds as in the case of a smooth curve by looking at an exact sequence

0— ¢ — L ®p, Ox(D)—> Op—0

where D is an effective Cartier divisor on X such
to Ox(E) with an effective Cartier divisor E on X.
sequence

that & ®p, Ux(D) is isomorphic
Furthermore, one has the exact

0— Oy — Ox(E)— 0 — 0.

Calculating the Euler-Poincaré characteristic of| both sequences, the assertion
follows immediately from .%# ®o, Ox(D) = Ox(E) and deg ¥ = degE — degD. []

Moy eBBh 2 KOT ) = KO+ (KO)-X(OY)

X(Og)= dom HUXJES ) -de (% 0 ) = i) <00, e

W0 O) 2 HE 00:)20 (aa fot8oons M Lommn 210 € 17k, 7.2 )

If H(X, Oy) = K, for example, if X is geometrically reduced and connected,

the Euler-Poincaré characteristic of @y is given

]?y X((DX) =1- Das Where Da =

dimg H*(X, O) is the arithmetic genus of the curve X.

If X — S is a relative curve and if % is a line
to the fibres of X over S. So, for each s € S, we get
and the degree deg(.%,) of .%, on the fibre X, gives

bjundle on X, one can restrict &
a line bundle %, on the fibre X,
rise to a Z-valued function on S.

Proposition 2. Let X — S be a flat proper S-curve bf finite presentation and let &

be a line bundle on X. For s € S, denote by %, the
Then the degree function

is locally constant on 8.

restriction of & to the curve X,.

deg:S—7, s+ deg(%)

and let ¥ be a line bundle on X.
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Proof. The Euler-Poincaré characteristic of a flat family of coherent sheaves is
locally constant on the base; cf. [EGA III, ], 7.9.4. Thus, using the Riemann-Roch
formula, one sees that the degree function must be locally constant on S. N}

Now let us return to the situation we started with. Let X be a proper curve over
a field with (reduced) irreducible components X, ..., X,. If . is a line bundle on
X, we can restrict £ to each component X,,i =1, ..., r, and we define the partial
degree of & on X, by
dchi(,,i” )} = deg(& lx,-) .

In order to explain the relationship between the total degree and the partial degrees,
we need the notion of multiplicities of irreducible componenits.

Definition 3. Let X be a scheme of finite type over a field K, let K be an algebraic
closure of K, and set X = X ®y K. Denote by X 1> ---» X, the (reduced) irreducible
components of X and, fori=1,...,r, let ;€ X be the generic point corresponding
to X;. The multiplicity of X, in X is the length of the artinian local ring Oy, .. We
denote it by d;; so

4= 1(0y,,).

The geometric multiplicity of X, in X is the length of the artinian local ring Oz ;.
where 7, is a point of X lying above #1;. We denote it by 6;; so

5:' = l(0f,ﬁi)

If X is irreducible, we talk about the multiplicity (resp. the geometric multipicity)
of X, thereby meaning the multiplicity (resp. the geometric multiplicity) of X in X.
Furthermore, we denote by

e =10%,5)
the geometric multiplicity of X,.

Note that the definition is independent of the choice of ;. since all points of X
above #; are conjugated under the action of the Galois group of K over K. There
are some elementary relations between the different notions of multiplicities which

are easy to verify.
(2) S CATY R

. . . Afy ko Sy
Lemma 4. Keeping the notations of Definition 3, one has Ao 5170
(@ &=e-d fori=1,...,r. nedi, =L ()

RelzTol> . 5

(b) &; = e, if and only if X is reduced at the point ;.
(c) e; = 1if the characteristic of K is zero; otherwise it is a power of the character- asi. »A e,

istic of K. =t Sp={{fgk)=
/ i e, 4 ity
. . o €rnt '
Using the notion of multiplicity of components, one can state a relationship 2’”‘2“

between the (total) degree and the partial degrees of a line bundle. ey

(VLI S
(R Fond B2 ¥
¥4

Proposition 5. Let X be a proper curve over a field K with (reduced) irreducible ’«‘/
components X, ..., X,. Denote by d; the multiplicity of X;in X,i=1, .. ., 1. Then
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r

deg(¥) = }, dideg(ZLlx,)

i=1

for each line bundle & on X.

Proof. It suffices to establish the formula for Cartier divisors D whose support does
not contain any intersection point of the different components. Since both sides of
the formula are additive for divisors, we have only to consider effective Cartier
divisors. Then the assertion follows from the lemma below. O

Lemma 6. Let A be a one-dimensional noetherian local ring and let py, ..., p, be the
minimal prime ideals of A. Let M be a finitely generated A-module, and let a be an
element of A which is not contained in any p;. Denote by ay the multiplication by a
on M and define

eq(a, M) = ,(coker(ay)) — La(ker(ay)) -
Then

r

eqla, M) = Zl lApi(Mpi)' eqa, Afp) -
Proof. Note that both sides are additive for exact sequences of A-modules. So we
may assume M = A/p for a prime ideal p of 4; cf. Bourbaki [2], Chap. IV, §1,n°4,
Thm. 1. If p is maximal, both sides are zero. If p is minimal, then | AP(MP) =1 and
the localizations of M at the other minimal primes are zero. Thus, the formula is
also clear in this case. |

The results about the degree of line bundles which are presented in the following
will be used in Section 9.4 to establish the representability of Picysif X is a relative
curve over a discrete valuation ring. Furthermore, they will be of interest in Section
9.5 where we will discuss the relationship between the Picard functor and Néron
models of Jacobians.

Lemma 7. Let K be a separably closed field. Let X be an irreducible K-scheme of
finite type of dimension r and let 5 be the geometric multiplicity of X. Then, for each
closed point x € X and for each system of parameters f = (f1,..-, £.) of the local ring
Oy, » the following assertions hold:

@ dimgOy /() 2 6.

(b) If f is a regular sequence, dimg Oy /() is a multiple of 5.

(©) If dimgOy /(f) = 0, then f is a regular sequence.

Furthermore, there exist x and f such that dimg Oy ./(f) = 9.

Proof. After shrinking X, we may assume that f gives rise toa quasi-finite morphism
¢: X —Y:=A%.

Denote by K the algebraic closure of K and by ¢ the morphism ¢ ®g K. Since K
is assumed to be separably closed, there exists a unique point X of X=X®xK
above x. Consider now the henselization Y’ of Y := A% at the origin. Let X" be the
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local component of X xy Y’ above X. Then the map
(P, 1 G 4

obtained from @ via base change is finite. Furthermore, ¢ is flat if and only if f is
a regular sequence; cf. [EGA 0], 15.1.14 and 15.1.21. The local rings of X' at
generic points are artinian of length § and the generic points of X' lie above the
generic point of Y’. Hence, the degree of X’ over Y’ is a non-zero multiple of 4. So,
by Nakayama’s lemma, the degree of the closed fibre of ¢’ is greater or equal to .
Since the degree of the closed ﬁbjre is equal to dimg Oy . /(f), we see that assertion
(a) is true.

If f is a regular sequence, X’ i;s flat over Y. Then the degree of the special fibre
of ¢’ is equal to the degree of X’ over Y". Thus, assertion (b) is clear.

If the degree of the special fibre is 4, it is equal to the degree of X’ over Y'; then
04(X") is free over Oy.(Y’) and, hence, flat. This shows that f is a regular sequence;
so assertion (c) is true. :

Next we want to show that the value J can be attained. After replacing X by a

dense open subset, we may assum‘e that X, is smooth over K. So the module Q%m,/f

is locally free. Furthermore, sincé Q} xis a quotient of Qx> we may assume that

there exist elements a5, ..., 4, € T'(X, Ox) such that the images of the differentials

da,,...,da,in Q%nd / give rise to a‘ basis of this module. Consider now the morphism

a:= (ad,...,a,):X—» Y := Ak

given by the functions a,, ..., a,. iThe restriction of the induced map @: X — Y to
X,.q is étale. After replacing X and Y by dense open subsets, we may assume that
a is finite and flat. Let x be a poi11nt of X such that a(x) is a rational point of Y. We
may assume that a(x) is the origin. Then f:= (ay,...,q,) is as required. Namely,
using notations as above, we ha;ve to show that the degree of the finite and flat
morphism ¢’ : X’ — Y is 8. Since the induced morphism

: / . ! ~ !
Pred - Xred =Y

is an isomorphism, the degree of 1@’ coincides with the length of the local ring Oy -
at the generic point #’ of X', which is equal to 0. O

As a corollary of Lemma 7, wje get a relation between the geometric multiplicity
of a component X; of X and the partial degree degy (&) of a line bundle £ on X.

Corollary 8. Let X be a proper curve over a field K and let X4, ..., X, beits (reduced)
irreducible components. Let £ be a line bundle on X. Denote by e; the geometric
multiplicity of X;, i=1,..., 1 Tj"hen the partial degree degy (%) of & on X;is a
multiple of e; fori=1,...,r. |

Proof. We may assume that X = wX .is reduced and irreducible, and we may assume
that % = Ox(D) is associated t10 an effective Cartier divisor D on X which is

concentrated at a single point x. Let f be a regular element of Oy, which represents
D at x, so we have |
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dimg Oy, /() = deg(£) = degy () .

Due to Lemma 7, if K is separably closed,

the geometric multiplicity J; = ¢; of

X = X, divides dimg Oy ./(f) = deg(#). In the general case, consider a separable

closure K’ of K. The irreducible component X
components Xj; of X' = X ®y K', but the geo
with e;. Thus we see that e; divides degxej(
from Proposition 5 that e; divides deg(¥) =

= X; decomposes into the irreducible
metric multiplicities e;; of Xj; coincide
% ®¢ K'), for all j. Now it follows
degy (&), since the degree function is

compatible with extensions of the base field. 0

If X is a scheme of finite presentation over a strictly henselian base S, Lemma 7
can be used to show the existence of subschemes of X which are finite and flat over

S and which have small degrees over S.

Corollary 9. Let S be a strictly henselian local scheme, let s be its closed point, and
let X be a flat S-scheme which is locally of finité presentation. Let X, be an irreducible
component of the special fibre X, of X and let 6 be the geometric multiplicity of X,
in X;. Then there exists an S-immersion a: Z — X, where Z is finite and flat over
S of rank 6 and where a(Z,) is a point of X, not lying on any other irreducible
component of X,. |

Proof. Let U be an open subscheme of X sujch that U, = U xg k(s) is non-empty
and contained in X,. Due to Lemma 7, there exist a closed point x of U, and a
regular system of parameters f of Oy, = Oy, ®p,, k(s) such that

dimk(s)@U,,x/ (f— ) =9d.

After restricting U, one can lift f to a sequence f of elements of I'(U, Op). Then f is
a regular sequence of Oy ,; cf. [EGA O], 15.1.16. After restricting U, a local
component Z of V(f) which contains x is ﬁﬁite and flat over S, so Z fulfills the
assertion; cf. [EGA 0], 15.1.16. O

Corollary 10. Let S be a strictly henselian local% scheme with closed point s, and let X
be a flat curve over S which is locally of finite presentation. Let X, be an irreducible
component of the special fibre X with geometric}’ multiplicity § in X,. Then there exists
an effective Cartier divisor Z of degree 8 on X such that Z meets X,, but no other
irreducible component of X,. Furthermore, de‘gxo(Z) = ¢ where e is the geometric

multiplicity of X,.

Corollary 9 implies the following criterion for the representability of elements
of Picy,s by line bundles.

Proposition 11. Let f: X — S be a quasi-separated morphism of finite presentation
such that f, Oy = Os. Consider S-morphisms Z;— X,i=1,...,r, where Z; is finite
and flat over S of degree n;. Set n = gcd(ny,...,n,). Then, for each flat S-scheme T
and for each element £ € Picy;s(T), the multiple n- ¢ is induced by a line bundle on
Xr=XxgT
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Proof. Since nis a linear combination of n,, .. ., n, with integer coefficients, it suffices
to prove that each n;- £ is induced by a line bundle. Due to [EGA 111, ], 1.4.15, and
[EGA 1V, ], 1.7.21, the assumption f, Oy = 05 remains true after flat base change.
So we may assume S = T. The morphism Z; — X gives rise to a Z-section of
X xg Z;.So the pull-back of  in Picys(Z;) is induced by a line bundle £ on X xg Z;
cf. 8.1/4. Then the norm of % with respect to the finite flat morphism X xg Z; — X
gives rise to the element ;- £ in Picys(S); cf. [EGA IV, ], 21.5.6. ]

As an application of Corollary 9 and Proposition 11, one obtains the following
result.

Corollary 12. Let S be a strictly henselian local scheme, let s be its closed point, and
let f: X — S be a flat morphism of finite presentation such that [+ 0x = Os. Denote
by & the greatest common divisor of the geometric multiplicities in X, of the irreducible
components Xy, ..., X, of X;. Then, for each flat S-scheme T, and each element & of
Picys(T), the multiple 6+ & is induced by a line bundle on X xg T.

9.2 The Structure of Jacobians

In the following let X be a proper curve over a field K. Then, due to 8.2/3 and 8.4/2,
Pic}x is a smooth scheme; we will also refer to it as the Jacobian of X. In the
present section, we want to discuss the structure of Picgx as an algebraic group
depending on data furnished by the given curve X. To start with, let us mention
some general results on the structure of commutative algebraic groups.

Theorem 1 (Chevalley [1] or Rosenlicht [2]). Let K be a field and let G be a
smooth and connected algebraic K-group. Then there exists a smallest (not necessaril y
smooth) connected linear subgroup L of G such that the quotient G/L is an abelian
variety.

If K is perfect, L is smooth and its formation is compatible with extension of the
base field.

Chevalley has treated the case where K is algebraically closed and has shown
that there exists a smooth connected linear subgroup L of G such that the quotient
G/Lis an abelian variety. If the base field is perfect, the existence of such a subgroup
follows by Galois descent from the case of algebraically closed fields. It is clear that
such a group is the smallest connected linear subgroup of G with abelian cokernel,
and that its formation is compatible with extension of the base field.

If the base field is not perfect, there exist a finite radicial extension K’ of K and
a connected smooth linear K'-subgroup H' of G’ = G @, K’ such that the quotient
G'/H’ is an abelian variety. Let us first show that there exists a connected linear
subgroup H of G such that H ® K’ contains H'. Let n be the exponent of the radicial
extension K'/K. Then consider the n-fold Frobenius
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F,: G —> G'®) = G’ x K0P

(cf. [SGA 3,1, Exp. VII,, 4.1); the second projection is induced by the inclusion
K’ —s K47 Now let H. be the pull-back of the subgroup H'®" of G'®”. If #" is
the sheaf of ideals of 0 associated to H', the sheaf of ideals associated to H) is
generated by the p"-th powers of the local sections of #'. Since K'/K is of exponent
n, we see that %" is generated by local sections of Og and, hence, that H; is defined
over K. Now it remains to show that there exists a smallest connected linear
subgroup L of G having abelian cokernel. This follows immediately from the fact
that an intersection of two linear subgroups of G is linear again and has abelian
cokernel if each of them has abelian cokernel. O

For an arbitrary base field K, the connected linear subgroup L does not
need to be compatible with field extensions. If the base field K is perfect and
the group G is commutative, one has further information on the structure of the

group L.

Theorem 2 ([SGA 3,1, Exp. XVIL Thm. 7.2.1). Let K be a field and let G be a smooth
and connected algebraic K-group of finite type. Assume that G is commutative and
linear. Then G is canonically an extension of a unipotent algebraic group by a torus.

If, in addition, the base field K is perfect, this extension splits canonically; i.e., G
is isomorphic to a product of a unipotent group and a torus.

Now we come to the discussion of the structure of Pic,x. We start with a result
which is a direct consequence of 8.4/2 and 8.4/3.

Proposition 3. Let X be a proper and smooth curve over a field K. Then the Jacobian
PicYx is an abelian variety.

If the base field K is perfect, the curve X is smooth over K if and only if it is
normal. The two notions are not equivalent over arbitrary fields, so it may happen
that Pic} k is not proper although X is normal.

Proposition 4. Let X be a proper curve over a field K. Assume that X is normal,
geometrically reduced, and geometrically irreducible. Then Picy k contains neither a

subgroup of type G, nor a subgroup of type G,,.

Proof. Since, for any separable field extension K'/K,the K'-curve X ®y K'isnormal,
we may assume that K is separably closed. Then there exists a rational point on X
because X is geometrically reduced. So, for any K-scheme T, elements of Picyx(T)
can be represented by line bundles on X xg T; cf. 8.1/4. Now, let us assume that
there is a subgroup G of Picy,, which is of type G, o1 G. The inclusion G —; Picyx
corresponds to a line bundle £ on X xg G. Since X is normal, the line bundle .&
is isomorphic to the pull-back of a line bundle on X; cf. Bourbaki [2], Chap. VII,
§1,n°10, Prop. 17 and 18. Hence, the map G — Picy,x which is induced by & must
be constant. So we get a contradiction and the assertion is proved. O
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Now we turn to more generial cases. Let us denote by X,., the largest reduced
subscheme of X. By functoriality, we get a canonical map

|
10 10
?lcxuc —> Picy_,x -

So we can look at the kernel ahd at the image of this map. The algebraic group
corresponding to the kernel can easily be described by the nilradical of Oy.

Proposition 5. Let X be a proper curve over a field K. Then the canonical map
Picy,x — Picy, x

is an epimorphism of sheaves for the étale topology. Its kernel is a smooth and con-
nected unipotent group which is a successive extension of additive groups of type G,.
Proof. Let X' — X be a closed |subscheme which is defined by a sheaf of ideals A"
of Oy satisfying 42 = 0. It suffices to show that the canonical map

PiCX/K —> Pier/K

is an epimorphism of sheaves for the étale topology and that its kernel is of the
type described above. Let f: X — Spec K be the structural morphism. The exact

sequence given by the exponential map
0— N — 0F— 0F —0
n+—1+n
gives rise to the exact sequence
RYf, 4 —> RY, 0% — RY, 04 — R, N

which has to be read as a scquelnce of sheaves for the étale topology. Because X is
a curve, we have R%f, 4" = 0. Hence the canonical map

Picyx = RYf, 0% — Picxx = RY,0%

is an epimorphism. Since, for any K-scheme T, there is a canonical isomorphism

|
HY(X, #) ® 01(T) = RN (T) ,

the group functor Rf, 4 is represented by the vector group HY(X, ). Then it
follows from the exact sequcncé above that the kernel of the map we are interested
in is a quotient of the vector group H'(X, A). The latter is a successive extension
of groups of type G,. So, as can easily be deduced from [SGA 3], Exp. XVII,

Lemme 2.3, the kernel is as requlircd. O

It remains to study Picgx er reduced curves. Therefore, let us assume now that
the curves under consideration are reduced. Before starting the discussion of the
general case, we want to have a closer look at an example.

Definition 6. Let S be any scheme, and let g be an integer. A semi-stable curve of genus
g over S is a proper and flat morphism f: X — S whose fibres X5 over geometric
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points § of S are reduced, connected, one-dimensional, and satisfy the Jollowing

conditions:
(1) Xs has only ordinary double points as singularities,
(i) dim,qH (X5, 0x) = g.

A point x of a curve X over an algebraically closed field K is an ordinary double
point if the completion @y, of the local ring (OXx of X at x is isomorphic to the
quotient K[[¢, &1 /(L&) of the formal power serie:s ring K[[¢,£]]in two variables,
Fora curve X over a field K, one can formulate the condition of X being semi-stable,
without performing the base extension by an algébraic closure K of K. Namely, a
geometrically connected curve X over a field K is‘semi-stable if and only if for each
non-smooth point of X there exists an étale neighborhood which is étale over the
union of the coordinate axes in AZ. j

The interest in semi-stable curves comes from the semi-stable reduction theorem,

see Deligne and Mumford [1] or Artin and Winters [1], which we want to mention

without proof.

Theorem 7 (Semi-Stable Reduction Theorem). Let R be a discrete valuation ring with
JSraction field K. Let Xy be a proper, smooth, and geometrically connected curve over

- K. Then there exist a finite separable field extension K’ of K and a semi-stable curve
P i

X' over the integral closure R’ of R in K’ withj generic fibre Xy =~ X, ® K.
Furthermore, X’ can be chosen to be regular. ‘

If X is a semi-stable curve over an algebraicallj closed field K, one can associate
a graph I' = T'(X) to it: the vertices of I are the irreducible components of X, say
X1,...,X,,and the edges are given by the singular p}oints of X'; namely, each singular
point lying on X; and on X; defines an edge joining the vertices X; and X;. Note

that X; = X; is allowed.

Example 8. Let X be a semi-stable curve over a field K. Then Pic}x is canonically
an extension of an abelian variety by a torus T.

More precisely, let X, ..., X, be the irreducible components of X, and let X, be
the normalization of X,,i = 1,...,r. Then the canonital extension associated to Pic?(,K
is given by the exact sequence

£ T
1— T e Picx - [] Pick x — 1
i=1 !

where m* is induced via functoriality by the morphisms n;: X, — X, i=1,..., r. The
rank of the torus part T'is equal to the rank of the cohamology group H(I'(X ®y K), Z).

Proof. Let . : X — X be the normalization of X. The connected components of X
are the normalizations X; of the irreducible components X;. They are proper and
smooth over K, hence Pic%i/,( is an abelian variety over K. Furthermore, the map
7* is compatible with field extensions. So we may assume that K is algebraically
closed. Now look at the exact sequence

(%) 11— 0f > n,0f — 7,050 — 1.
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The quotient 2 = 7, 0% /0% is concentrated at the singular points Xq,...5 Xy of X,
The associated long exact sequence

1 — H°(X,0%) — H°(X,n,0%) — H°(X, 2)
— H'(X, 0%) — H'(X, 7, 0%) — 1
can be written in the following way
(+%) 1—>K*—>11!K;"—>ﬁK}"—»Pic(X)——»]Pic(X)—»l
i= 7=

where .
K} = H°(X,,0%) = K* and K¥ = (K(%;,) x K(%;,)*)/K* = K*

if X;; and %;, are the points of X lying above the double point x;. Using the long
exact sequence of sheaves with respect to the étale topology which is associated to
(*), one sees that 7* is an epimorphism, since Rf,2 = 0 where f: X —> SpecK is
the structural morphism. Furthermore, the kernel of n* is given by the quotient of
the map R, (r,0F) — R°f,(2). The latter is a quotient of a torus and, hence a
torus. The assertion concerning the rank of the torus follows from the exact sequence

(%%). O

Now let us return to the general situation of a reduced curve over a field K. As
in the theorem of Chevalley, one can expect to describe the torus part and the
unipotent part of Picg, in geometric terms, at least if the base field is perfect.
So, in the following, let K be a perfect field and let X be a proper curve over K
which is reduced and geometrically connected. Denote by X — X the normal-
ization of X. We want to introduce an intermediate curve X’ lying between X
and X.

Since there is a dense open part of X which is smooth, there exist only finitely
many non-smooth points of X. We will define X* by identifying all the points of X
lying above such a non-smooth point of X. In order to explain this procedure, we
can work locally. So consider a non-smooth point x of X, and let U = Spec 4 be
an affine open neighborhood of x such that x is the only non-smooth point of U.
Let X, ..., %, be the points of X lying above x, and let U = Spec 4 be the inverse
image of U in X. Then we define the open affine subscheme U’ = Spec 4’ of X' lying
over U by taking for A’ the amalgamated sum of the maps

ATk  and ko) — [TKE).
i=1 i=1

So A’ consists of all elements f € 4 which take the same value r & k(x) at all points
X1, -..> X, These local constructions fit together to build a proper curve X’, and we
get canonical morphisms

rLx %x.
The map f maps the points X, ..., X, to a single point x’ of X’ with residue field

k(x). So g does not change the residue field. Let #;, = 4 be the ideal of the point %;,
i=1,..., n. Then we obtain the exact sequences
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n n
0 — l—[m‘.i _— H@)?,x, _— Hk(f,) — 0
i=1 i=1 i=1
0 —— m —— Oy, — kix) — 0

where 1’ is the maximal ideal of Oy. ... The first vertical map is bijective, and
the last one corresponds to the embedding of k(x') = k(x) into the product of the
residue fields k(x,), i = 1, ..., n. Due to the construction, it is clear that the map
X' —» X is a universal homeomorphism. Moreover, X" is the largest curve between
% and X which is universally homeomorphic to X. One shows easily that the
construction of X’ is compatible with field extensions, since K is perfect. The
singularities of X’ are as mild as possible. Namely, after base extension by an
algebraic closure K of K, the singularities of X' ®g K are transversal crossings of
a set of smooth branches (i.e., analytically isomorphic to the crossing of the coordi-
nate axes in A" for some n).

Proposition 9. Let X be a proper reduced curve over a perfect fieldK. Letg: X' — X
be the largest curve between the normalization X of X and X which is universally

homeomorphic to X. Then the canonical map
Ip : PiCX/K — PicX‘/K
is an epimorphism of sheaves for the étale topology. The kernel of  is a connected

unipotent algebraic group which is trivial if and only if the canonical map X' —> X
is an isomorphism.

Proof. Let ? = Oy (tesp. 2 = Oy.) be the sheaf of (reduced) ideals defining the
non-smooth locus of X (resp. of X’). There exists an integer eé€ N such that
g,2° = 2. Consider the exact sequence

0— 0f — g, 05 — (1 + 9,2/ + P)—0,

and set € := (1 + g,2)/(1 + #). It is a sheaf which is concentrated on the finitely
many points of X which are not smooth; more precisely, its support consists of the

points of X which are not ordinary multiple points. Let f: X — SpecK be the

structural morphism. Since R'f, ¢ = 0 and f, 0% = f+94 0%, the exact sequence of
above gives rise to an exact sequence _
1 — RY,€ — R, 04 — R'f,(9.0%) — 1
of sheaves for the étale topology. Thus, we see that
Picyx = R'f; 0F > Picyx = RU(f © ), 0F = R'4(0:0%)

is an epimorphism. Due to Serre [1], Chap. V, n°15, Lemma 20, the group R°f,%
and, hence, the kernel of ¥ is represented by a unipotent group. For a further
description of this group see Serre [1], Chap. V,n°16 and n°17. Moreover, the kernel
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of y is trivial if and only if the gr
or, equivalently, if and only if X
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oup H°(X, %) vanishes; i.c., if and only if g, 2 = &
— X is an isomorphism. ]

Proposition 10. Let X be a proper reduced curve over a perfect field K, and let K be
an algebraic closure of K. Let X' — X be the largest curve between the normalization

2

is an epimorphism of sheaves for
latter is trivial if and only if each
to its normalization and the confi

X of X and X which is universally homeomorphic to X. T hen the canonical map

: Picyx — Picgk

the étale topology. The kernel of ¢ is a torus. The
irreducible component of X ®y K is homeomorphic
guration of the irreducible components of X ® K

is tree-like; i.c., H-(X ®¢ K,Z) = 0.

Proof. The proof can be done similarly as in Example 8. We may assume X = X'.

Let 7 : X — X be the normaliza

tion of X. The connected components of X are the

normalizations X, of the irreducible components X;. Let x;,,i=1,..., N, be the

singular points of X, and let X
Consider the exact sequence

,j=1, ..., m, be the points of X lying above %;.

1— 0F —> 1,05 — 7, 05/05 — 1.

The quotient 2 = n, 0%/0% is concentrated at the points x;, i =1, ..., N. The

associated long exact sequence |

1 —» HO(X, 03) — H°(X, n,,0%) — H°(X, 2)
— . HY(X, 0F) — H\(X, 1,0%) — 1

can be written in the following vjvay

r N\ n; ~
1—TI*—[[IF—1T] (H K;‘})/K;“—%Pic(X)——-)Pic(X)——»l
i=1 i=1 \j=1

where T* = HO(X, 0%), T = HY(X,, 0%), K* = k(x)), and K} = k(%;). As in Ex-
ample 8, one shows that ¢ is an epimorphism for the étale topology and, moreover,
that the kernel of ¢ is the qu‘otient of the map R%,(n,0%) — R°f,(2) where

f: X — Spec K is the structura:
hence, a torus.

morphism. The latter is a quotient of a torus and,

It remains to show the last assertion. We may assume that K is algebraically
closed. The kernel of ¢ is trivial if and only if the canonical map

3|

i=1

!

N ni
)

is surjective. If the map is surjecjtive, it is clear that, for any singular point x; of X,

the points Xy, j =1, ..., n;, lie

on pairwise different components of X. Hence,

each irreducible component of .;X is homeomorphic to its normalization. Further-
more, the surjectivity implies H'(X,K*)=0 which is equivalent to H'(X,Z) = 0.
The converse implication follows by similar arguments. O
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Now we can deduce from Propositions 9 and 10 the structure of the linear part
of Picy x.

Corollary 11. Let X be 4 proper curve over a perfect field K and denote by X the
normalization of the largest reduced subscheme X,y of X. Then the canonical map
Picyx —» Picg

is an epimorphism of sheaves Jor the étale topology. Its kernel consists of a smooth
connected linear algebraic group L. The quotient of Picg,,,( by L is isomorphic to Pic%m
which is an abelian variety.

Next we want to look at a reduced curve X over a perfect field K. As before, let
X' denote the largest curve between X and its normalization X. Via functoriality,
we get the following sequence of algebraic|groups

Picyx — Picy., x — Picg ,

where each map is an epimorphism of sheaves for the étale toplogy. Due to continu-
ity, we obtain epimorphisms between the identity components

: .0 s 0 | = 0
Picyx — Plcxm — Picg, .

Furthermore, if Pic?m( does not contain a to1:rus, Pict, 1k does not either; for example,
this can be deduced from Theorem 2. So, we obtain the following corollary.

Corollary 12. Let X be a reduced proper curve over a perfect field K and let K be an
algebraic closure of K.

(@ If Picy x contains no unipotent connected subgroup, the singularities of X ®x K
are analytically isomorphic to the crossing of the coordinate axes in A"

(b) If Pic},}/K contains no torus, each irredicible component of X ®y K is homeo-
morphic to its normalization and the configuration of the irreducible components of
X ® K is tree-like.

(©) If Pic}y is an abelian variety, the irreducible components of X are smooth and
the configuration of the irreducible components of X ®y K is tree-like.

Indeed, consider the universal line bundle 3’ on X xy Picy . Due to 9.1/2, the
degree of the restriction Z: of & to the fibre over a point $ € Picy x is zero.
Conversely, a line bundle of degree zero is isomorphic to a line bundle Ox(D) where
D is a Cartier divisor which can be written as ‘

D=(x; —x4) +... + (%, — Xo)
where x,, ..., x, are closed points of X. Since X is connected, the image of the map

X — Picxuc s X th(x —Xo)],
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is contained in Picy/x. Thus we see that each line bundle of degree zero gives 1
to an element of Pic} x. For arbitrary curves over fields, one has to look at t
partial degrees on the irreducible components.

Corollary 13. Let X be g proper curve over a field K and let K be an algebraic closu
of K. Then Picy x consists of all elements of Picy,x whose partial degree on eac
irreducible component of X ®g K is zero.

Proof. We may assume that K is algebraically closed. Let Xi,..., X, bethe (reducec
irreducible components of X. Fori=1,..., r, let X, be the normalization of X,
Then consider the canonijcal morphism

which is defined by functoriality. Due to continuity, the identity components are
mapped into each other, so we have morphisms
Pickx — Pic} , .

Since the degree of a Cartier divisor on X; and the degree of its pull-back on ¥ R
coincide, we see that the partial degrees of elements of Pic}(K) are zero. Due to
Corollary 11, the canonical morphism

r
Picyx — II Picg x
.2

is an epimorphism and jts kernel is a connected subgroup of Picyx. So the kernel

is contained in Picy k. Since the canonical map induces an epimorphism on the
belong to Picd . 0

Corollary 14. Let X be 4 proper curve over an algebraically closed field K with r
irreducible components X 1++-> X,. Then the Néron-Severi group of X is a free group
of rank r.

More precisely, the map given by the partial degrees

Picyx/PicY x — 77, £+ (degy (2),..., degy (£))

is injective and has finite index.

~

9.3 Construction via Birational Group Laws

We want to explain how the proof of Grothendieck’s theorem 8.2/1 can be modified
in the case of relative curves in order to recover the Jacobian variety as constructed
by Serre [1] and Weil [2]. We begin by repeating what Grothendieck’s approach
to the representability of Picys yields in the case of a relative curve X over a
scheme §.
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Theorem 1. Let X — S be a projective and flat curve which is locally of finite
presentation. If the geomeiric fibres of X over S are reduced and irreducible, Picys
is a smooth and separated S-scheme.

More precisely, there is a decomposition

Picy;s = [ (Picys)"
nez

where (Picy,s)" denotes the open and closed subscheme of Picys consisting of all line
bundles of degree n; the scheme (Picy;s)° coincides with the identity component Picys
of Picys. Moreover, (Picys)" is quasi-projective over S and is a torsor under Pic3 s
forallneZ.

Proof. The representability of Picys is due to 8.2/1; see also 8.2/5. The smoothness
follows from 8.4/2. Due to 9.1/2, the degree of line bundles belonging to a fixed
connected component of Picy,s is constant, thus Picys breaks up into the disjoint
union of the (Picys)", n € Z. In order to show that (Picys)" is a torsor under PicYs,
it remains to show that (Picys)" and Picy,s become isomorphic after faithfully flat
base extension. So we may assume that X has a section over S. Then it suffices to see
that (Picy,s)° is isomorphic to Picys. Since the geometric fibres of X over S are
irreducible and reduced, the latter follows immediately from 9.2/13. O

Let us mention some conditions under which X is projective over S.

Remark 2. Let X be a proper flat curve over S which is locally of finite presentation
and whose geometric fibres are reduced and irreducible curves of genus g. Assume
that X is a relative complete intersection over S. Then the relative dualizing sheaf
is a line bundle. If g > 2, it is S-ample and, hence, X — S is projective. Likewise,
if g = 0, the dual of the relative dualizing sheaf is S-ample and, hence, X —Sis
projective; moreover it is smooth. If g = 1, it follows that X — S is projective
locally for the étale topology on S, since X —> S admits a section through the
smooth locus after étale surjective base change, and since the line bundle of all
meromorphic functions having only simple poles along the given section is relatively

ample.

Now we turn to a more general situation where we can construct Pics via
birational laws. In the following let f: X — Sbea quasi-projective morphism of
schemes which is of finite presentation. We want to explain some basic facts on the
relationship between the n-fold symmetric product (X/8)™ and the Hilbert functor
HilbY,s, where HilbYs is the Hilbert functor associated to the constant polynomial
n. We can say that, for any S-scheme T, the set Hilb%,s(T) consists of all subschemes
D of X xg T which are finite and locally free of rank n over T. The n-fold symmetric
product (X/S)™ is defined as the quotient of the n-fold product of X over S
by the canonical action of the symmetric group. Let us start by discussing the
representability of (X/S)®.

For any commutative ring A and for any A-module M, define the symmetric
n-fold tensor product of M by

TS (M) := (M®")® = M®"

9.3 Construction via Birational Group Laws 253

where M®" is the n-fold tensor product of M over 4 and where S, is the symmetric
group acting on M®" by permuting factors. If M is a free A-module, TS%(M)is also
free and there is a canonical way to choose a basis of TS (M) after fixing a basis of

M. Thus, we see that TS}(M) is

compatible with any base change if M is a free

A-module. Since any flat A-module is a limit of finitely generated free A-modules,

TS (M) is a flat A-module and ¢
A. If B is an A-algebra, TS%(B)
say S = Spec 4 and X = Spec B,

»mpatible with any base change if M is flat over
is a subalgebra of B®" If X and S are affine,
the symmetric product (X/S)™ is represented by

Spec(TS%(B)). If X is quasi-projective over S, one can establish the representability

of the symmetric product (X/S)™
any finite set of points lying on a

as an S-scheme by gluing such local pieces, since
single fibre of X, /S is contained in an open affine

subscheme of X. Furthermore, {15 we have seen above, the symmetric product
(X/8)™ of a flat S-scheme X is flat over S and compatible with any base change.

A polynomial law f from an%A-module M to an A-module N consists of the
following data: for any commutative A-algebra A, there is a map

fr M@ A —N®, A

such that, for any morphism u: A

M®,

it

M ®A A"

' — A" of commutative 4-algebras, the diagram

A — s N A
Ru N®u
L, N®, A"

is commutative. A polynomial law from M to N is called homogeneous of degree nif,

in addition, for any a’ € A" and fo‘

fla

holds. For example, the map |
" M — TS(M)

rany m' € M ®, A', the equation
m') = (@) fa(m) .

mrm® - @m (ntimes)

E

gives rise to a homogeneous poly%lomial law of degree n. Furthermore, if M is a free
A-module of finite rank, the mapy" is universal; .., any homogeneous polynomial
law f from M to N of degree nis in;duced by a unique A-linear map ¢ : TS"(M)— N.

The latter means

Sfu =‘

(p®@A)("®A)3

cf. [SGA 4], Exp. XVIL, 5.5.2. $ince a flat A-module is a limit of free 4-moduies,
the map 7" is universal if M is a flat A-module.

Let us fix S = Spec 4, X = Spec B and f: X — S. For any B-module L which

. - i
is free of rank n over A, there is a

canonical morphism

det, : TS}(B) — A

which is compatible with any basfe change A — A'. Indeed, viewing the multiplica-

tion on L by an element b eB;

as an A-linear map, the determinant yields a

homogeneous polynomial law of degree n from B to A and, hence, a map of TS}(B)
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to A. Furthermore, one can show that det, is a morphism of A-algebras; cf. [SGA

4["], Exp XVII, 6.3.1.
If f: X — Siis affine and if & is an Oy-module such that f, % is locally free over

S of rank n, one can construct a morphism
0y:S— (X/S)™

by gluing the local morphisms constructed above.

Now let f: X — § be quasi-projective and consider an element D € Hilb} 5(T)
for an S-scheme T, i.e., a subscheme D of X x¢ T which is finite and locally free of
rank n over T. Then (f7), 0 is a locally free Or-module of rank n. So the above
construction gives rise to a section

0g,: T — (D/T)™ —> (X/S)™ .
Thus we get a canonical morphism
o : Hilby,s — (X/S)™ .

On the other hand, if f: X — Sisa scparaited smooth curve, each section s of
S gives rise to a relative Cartier divisor s(S) of X over S of degree 1. Namely, due
to 2.2/7 the vanishing ideal of ¢(S) is locally pn;ncipal. So we get a morphism

X"—Hilbys,  (Sp,...,8) Y. 5(5),

from the n-fold product of X over S to the I—;Iilbert functor which is symmetric.
Hence it factors through (X/S)". Note that, in this case, Hilb},s coincides with the
subfunctor of Divys consisting of all divisors vs;/ith proper support. So it induces a

morphism

2 (X/S) —> Hilbs .

Proposition 3 ([SGA 4], Exp. XVII, 6.3.9). If X — S is a smooth and quasi-
projective morphism of relative dimension 1, then, for each ne N, the canonical
morphisms

o : Hilby,s — (X/S)™ and a: (X/8)™ — Hilbys

are isomorphisms and inverse to each other.

Now let us consider the case where f: X — S is a faithfully flat projective curve

of genus g whose geometric fibres are reduced| and connected. Denote by X' the
smooth locus of X. Note that X' is S-dense in X and that, moreover, the canonical

map

( 0. & /S)(y) N ( X / L;)(y)

is an open immersion with S-dense image, as one can easily verify by using the fact
that (X/S)® commutes with any base change. Since X is proper over S, the functor
Hilb%.s is an open subfunctor of Hilb% s, and since X” is smooth over S, it is already
an open subfunctor of Div{; cf. 8.2/6. Furthermore, since X is proper and flat over

S, the functor Div§s is a subfunctor of Hilb%,s. Hence, we have a commutative
diagram of canonical maps
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Hilbg,s —~, (X//S)@

Divgs ——— (X/S)® .

The S-scheme (X"/S)® is smooth. Indeed, by étale localization it is enough to treat
the case X’ = Aj. But then the smoothness of (X"/S)® follows from the theorem on
symmetric functions. Now, let D < X x4 (X'/S)® be the effective relative Cartier
divisor of degree g which is induced by the map x'/8)@ — Div§,s. We will refer
to D as the universal Cartier divisor of degree g. Let W < (X7/S)® be the subscheme
of all points w € (X"/S) such that H*(X,,, Ox_(D,)) vanishes; so

W={weX'/S)9;H'(X,, 0, (D,)) =0} .

Then, due to the semicontinuity theorem [EGAIII, ], 7.7.5, Wis an open subscheme
of (X'/S)®, and the following lemma shows that W — § is surjective.

Lemma 4. Let X be a proper curve over a separably closed field K. Assume that X
is geometrically reduced and connected. Then there exists an effective Cartier divisor
Dy of degree g = dimgH"(X, Ox) on X whose support is contained in the smooth locus
of X and which satisfies H(X, Ox(D,)) = K and H'(X, O(D,)) = 0.

In particular, keeping the notations of above, the map W — § is surjective.

Proof. The Riemann-Roch theorem implies HO(X, 0Ox(Dy)) = K if HY(X, Ox(D,)) =
0. So it suffices to show the existence of an effective Cartier divisor D, of degree g
satisfying H'(X, Ox(D,)) = 0. Let » be a dualizing sheaf on X; cf. [FGA], n°149,
Sect. 6, Thm. 3 bis. Then, for any Cartier divisor E of X, there is a canonical
isomorphism

H'(X, 0x(E)) = H°(X, o(~ E)),

where w(—E) is the Oy-module o ® Ox(—E). In particular, dimgH°(X,w) = g.
Proceeding by induction, we will show that there exist points x;, ..., x, of the
smooth locus of X such that

dimg HO(X, 0(—x; —... —x)) =g —1i, fori=1,...,g.

Since the @y-module @ has no embedded components, the support of a non-
zero section of w cannot consist of finitely many points. So one can choose a
rational point x;,, of the smooth locus of X such that there is an element of
H°(X,w(—x; — ... — x;)) which does not vanish at X;+1- Then,

Dy = x, +.o..+x,
is an effective Cartier divisor as required. I

Due to [EGAIII, ], 7.9.9, the direct image ( Jw)s Ox x (D) is locally free of rank
1, and the canonical morphism

(W)« Ox xw(D))y o, ,, k(W) = HO(X,, Ox_(D,))
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is bijective; cf. Mumford [3], Sect. 5, Cor. 3.
The universal Cartier divisor D gives rise to a canonical map

p: W — Pic¥)s

where Pic{)s is the open subfunctor of Picy,s consisting of line bundles of (total)

degree g; cf. Section. 9.1. Next we want to prove that p is an open immersion.

Lemma 5. Keeping the notations of above, the canonical map
p: W — Pic{)s
is an open immersion.

Proof. First of all let us show that p is a monomorphism. So, let L, and L, be
elements of W(T) for an S-scheme T giving rise to the same element in Picg)s(T).
Let us denote by L, (resp. L,) the associated divisors of X xg T, too. Due to 8.1/3,
we may assume that the associated line bundles 0y (L;)and Oy, (L,)are isomorphic.
Since the direct images (fr)Ox,(L;) are locally free of rank 1, it follows that L,
and L, are equal and, hence, that p is a monomorphism. Now we prove
that p is relatively representable by an open immersion. It has to be shown
that, for any S-scheme T and for any morphism A: T —> Pic¥)s, the induced

morphism
pr: W Xpicg, T—T

is an open immersion. Since it suffices to check this after étale surjective base change,
we may assume that the morphism 1 is induced by a line bundle & on X X5 T. The
image of p is contained in the subset T" of T consisting of all pointst € T satisfying
HY(X,, %) =0. Since T" is open in T by [EGA 1I1,], 7.7.5, we may replace T by
T*. In this case, H°(X,,.%,) is a k(t)-vector space of rank 1 for each ¢ € T. Moreover
(fr)yZ is locally free of rank 1 and a local generator of (f1)<Z gives rise to a
generator of H(X,, %) on any fibre X,. Therefore, a local generator of (f)Z is
uniquely determined up to a unit of the base. Hence, the local generators of (fr)xZL
give rise to a closed subscheme L of X xg T whose defining ideal is locally generated
by one element. Due to 8.2/6, there exists a largest open subscheme T" of T such
that the restriction of L to X x5 T"is an effective relative Cartier divisor. It is clear

that py factors through T”. So we may replace T by T” and we may assume that L.

is an effective relative Cartier divisor. Thus we can view J as a section of Divgs and,
hence, of (X/S)@. Since W is an open subscheme of (X/S)®, the map py can be
represented by the open immersion of the inverse image A~ (W) into T. O

Lemma 6. Keeping the notations of above, there exist a surjective étale extension
S’ —> S, an open subscheme W' of W X S with geometrically connected fibres, and
a section ' : S' — W' such that

W' —s PicY gy s W pW) —pog op ()

is an open immersion, where p': W' — §'is the structural morphism.
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Proof. If there is a section ¢ : § — W, we can assume that the geometric fibres of W
are connected after replacing W by an open subscheme; cf. [EGAIV,],15.6.5. Then
we can transform the morphism

p: W— Picf)s

by a translation into an open immiersion

W — Picys , wi— p(w) — poeop(w),
where p: W — S is the structur%l morphism. Since the fibres of W over S are
‘geometrically connected, the imagt;:: of the above map is contained in PicYs. In the
general case, one can perform a surjective étale extension §'— S in order to get a
section S' —> W, because W — S! is smooth and surjective. Since the g-fold sym-
metric product (X/S)® commutes with the extension §' — S, one is reduced to

the case discussed before. O

In the following, keep the notajltions of Lemma 6. Assume S = §" and W = W'
and that there is a section &:S-—> W. The group law of Picys induces an
S-birational group law on W. We }want to describe this S-birational group law on
W in terms of divisors. So consider the projections

pi%WXSW__’W

fori = 1,2,andlet p be the structufal morphism p: W — §.Sincea morphism from
an S-scheme T to W corresponds to an effective relative Cartier divisor of degree g
on X xg T, namely, to the pull-back of the universal divisor D on X xg W, the
projections p, and p, giverise to divisors D; and D,on X X W xg W.Furthermore,
let D, be the divisor on X x5 W x s W induced by &. Then consider the locally free
sheaf

L = OgxwxgwD1 — Do + D3) -
on X xg W xg W. The pull-back of & via
(idy,cop): W— W xg W

is isomorphic to O x w(D)- Since the fibres of W are geometrically irreducible, there
is a p,-dense open subscheme W; of W xs W such that, for each point ¢t of Wy, the
restriction %, of & to the fibre X xgt satisfies HY(X, %) =0. As before, we
conclude that (fy,),-2 is locally i‘ree of rank 1 over W and that, for any t € W;, 2
generator of H(X,, %) lifts to a local generator of (fiy,)Z att. A local generator
of (f,)<Z is uniquely determined up to a unit of the base. Hence, the local
generators of (fy,)¢< give rise to a subscheme D,, of X xg W; whose defining
ideal can locally be generated by ome element. Since the pull-back of D;, by
(idy, & o p) coincides with D which is an effective relative Cartier divisor, we see by
Lemma 8.2/6 that there exists a pll—dense open subscheme ¥; of W; such that Dy,ly,
is an effective relative Cartier divijsor of degree g. Since W is an open. subfunctor of
Div{s, we see, after replacing V; by a smaller p,-dense open subscheme of V;, that
Dy, |y, gives rise to a V,-valued point of W. Proceeding similarly with the other

projection, it is easy to show that the mapping
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W xs W-->W, D,,D,)+— D,,

gives rise to a strict S-birational group law; cf. 5.2/1.

In analogy to the classical case where the base S consists of a field, we call the
S-group scheme associated to this S-birational group law the Jacobian of X over §
if it exists. In the case where S consists of alfield, it can easily be shown that the
existence of the Jacobian implies the representability of Picy,s; namely the latter is
a disjoint sum of “translates” of the Jacobian. Furthermore, it is clear that the
Jacobian coincides with Picy,s. So, even for a general base, the Jacobian represents
the subfunctor Picy,s as defined in Section 8.4. For example, if S is a local scheme
which is normal and strictly henselian, the results of Section 5.3 can be used to show
that the Jacobian is represented by a separated and smooth S-scheme. Summarizing
our discussion, we can state the following result

Theorem 7. Let S be a normal strictly henselian local scheme and let f: X —» S be a
flat projective morphism whose geometric fzb?es are reduced and connected curves.
Then the Jacobian of X is a smooth and separated S-scheme. It coincides with Picg s
as defined in Section 8.4. ‘

If one admits Theorem 8.3/1, namely that Picy,s is an algebraic space over §,
one can drop the assumption of S being normal in Theorem 7. Indeed, due to 8.4/2,

Picys is smooth over S, since X is a relative curve. Hence, Picy /s is represented by

an open subspace of Picy;s. So in order to prove that Pic%s is a scheme, it suffices
to show that Picx,s can be covered by the t;ranslates AW', where W' is the open
subscheme of Pic}s constructed in Lemma 6,/and where 1 ranges over W'(S). Since
W' is smooth and faithfully flat over S, we he‘lve enough sections 1 to cover Pic};
. by translates AW’; cf. 5.3/7. So every point of PICX/S has a scheme-like neighborhood.
Hence Picys is a scheme.

If the geometric fibres of X over S are 1rredu01ble and reduced, and if there is a
section ¢ : S — X contained in the smooth locus of X, one can construct the whole

Picard scheme Picy,s from Picy,s by translations. Namely,
Picys = ] (Picks + n°[(9)]),

where [0(S)] is the element of Picys associatjed to the Cartier divisor ¢(S); due to

2.2/7 the vanishing ideal of o(S) is an effective relative Cartier divisor of degree 1.
It is not hard to show directly that the right—haind side represents the relative Picard .

functor in this case. So, for a normal and strictly henselian base, one obtains a
different approach to the representability of PiCX/S in the case of a flat projective
curve X over S whose geometric fibres are reﬂluced and irreducible.

In the case where the base S consists of|a field, one has to perform a finite
separable field extension §' —» Sin order to get enough sections. Then the preceding
construction yields the representability of Pic},s xg S’ over the base S’ and the
representability over the given base is reduced|to a problem of descent. If S consists
of a field, this problem is not a serious one jand can be overcome easily as was
demonstrated by Serre and Weil. In Section 9/4, we will dicuss the representability

of Picy;s by a separated S-scheme in the case of a more general base.
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9.4 Construction via Algebraic Spaces

In the following, let f: X — S be a proper and flat curve which is locally of finite
presentation over the scheme S. So far we have discussed the case where the
geometric fibres of X are reduced and connected. Now we want to study more
general cases. Due to the general result 8.3/1, we know that Picys is an algebraic
space if f is cohomologically flat in dimension zero. Recall that f is said to be
cohomologically flat in dimension zero if, for every S-scheme §’, the canonical

morphism
(f40x) ® Os. = [, O

is an isomorphism, where X' = X xg §'. For example, the condition is satisfied if
the geometric fibres of X/S are reduced; cf. [EGA II1, ], 7.8.6. The cohomological
flatness of f is closely related to the condition that the arithmetic genus of the fibres
of X is locally constant on S.

Indeed, if f is cohomologically flat in dimension zero, f, 0y is a locally free
Os-module by 8.1/7 and dim,, H%(X;, Oy ) is locally constant on S. Moreover, since
the Euler-Poincaré characteristic of the fibres of X is locally constant on S by
[EGA III, ], 7.9.4, the dimension dim,,H"'(Xj, 0y ) must be locally constant on S.
Conversely, if the arithmetic genus of the fibres of X is locally constant on S, the
same arguments as above show that dim,, H%(X,, Ox_) is locally constant on S. Then
it follows from [EGA III,], 7.8.4 that f is cohomologically flat in dimension zero
at least if S is reduced.

If X is cohomologically flat over § in dimension zero, Picys is an algebraic space
over §, but, in general, we cannot expect Picy;s to be a scheme, as Mumford’s
example shows; cf. Section 8.2. Since Picys is smooth over S by 8.4/2, Picys is
represented by an open subspace of Picy;s which may be a scheme, even if Picys is
not. The main task of this section will be to present conditions under which Pic%s
is a scheme. We remind the reader that by Theorem 9.3/7 this is the case if the fibres
of X are not too bad and if X admits many sections over S. Now let us first state
the main results on the representability of Picy,s and of PicY,s in the case of relative
curves, afterwards we will sketch their proofs.

Theorem 1 (Deligne [1], Prop. 4.3). Let X — S be a semi-stable curve which is locally
of finite presentation. Then Picy,s is a smooth algebraic space over S. The identity
component Pic%s is a smooth separated S-scheme and-there is a canonical S-ample
line bundle £ (X /S) on Picy,s. Furthermore, PicY,s is semi-abelian.

If the base scheme § is the spectrum of a discrete valuation ring, one can prove
the representability of Picy s by an algebraic space and the representability of Pic% s
by a separated S-scheme under far weaker assumptions on the fibres of X than in
Theorem 1.

Theorem 2 (Raynaud [6], Thm. 8.2.1). Let S be the spectrum of a discrete valuation
ring. Let f: X — S be a proper flat curve such that f,0y = Os and let X be
normal. If the greatest common divisor of the geometric multiplicities of the irreducible
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components of X in X, is 1 where s is the closed point of S, then
(a) Picys is an algebraic space over S,
(b) PicYs is represented by a separated S-scheme.

Corollary 3. Let S be the spectrum of a discrete valuation ring. Let f: X — S be g
proper flat curve with connected generic fibre. Assume that X is regular and that there
is a rational point on the generic fibre of X. Then Picy,s is an algebraic space over §
and Picys is a separated S-scheme.

Corollary 3 is easily deduced from Theorem 2. Indeed, due to the valuative
criterion of properness, the given rational point on the generic fibre extends to a
section o of X over S. Due to 3.1/2, the image of ¢ is contained in the smooth locus
of X. So there exists an irreducible component of the special fibre X, of X having
geometric multiplicity 1 in X,. Therefore Theorem 2 applies and the assertion is
clear. O

Now let us turn to the proofs. For the proof of Theorem 1, we need further »

information on Picys in the case of smooth relative curves.

Proposition 4. Let f: X — S be a proper smooth morphism of schemes whose geo-
metric fibres are connected curves. Then Picy s is an abelian S-scheme and there is a
canonical S-ample rigidified line bundle £(X/S) on Pics.

The construction of #(X/S) is canonical in such a way that, for any base change
S’ —> S, there is a canonical isomorphism of rigidified line bundles

Z(X/S) ®g, U5 —> L(X'[S) 5

where X’ denotes the §’-scheme X x ¢ §'. One will use this fact to show the represent-
ability of Pic} s by an S-scheme in the more general case of semi-stable curves.

Proof of Proposition 4. In order to keep notations simple, let us write P instead of
Picys in the following. Diue to 6.1/7, it suffices to prove the assertion after étale
surjective base change S’ — S. So we may assume that X — § is projective; cf.
9.3/2. Then Picys is a separated smooth S-scheme by 9.3/1 and the identity compo-
nent P is quasi-projective over S. Since P is proper over S by 8.4/3, it is even

projective over S. So it remains to explain the construction of the canonical S-ample

sheaf £ (X/S)on P.

It is enough to look at the universal case. So, since the base of the versal
deformations of a smooth curve is smooth over Z (cf. Deligne and Mumford [1],
Cor. 1.7), we may assume that S consists of a regular noetherian ring. Due to 8.2/1,
the Picard functor Picps is a separated S-scheme and, due to 8.4/5, the identity
component Picys is represented by an abelian S-scheme. Denote it by P* and call
it the dual of P. There is a universal line bundle # on P xg P*, the Poincaré bundle,
which is rigidified along the unit sections of P and P* over S; cf. 8.2/4. For the
construction of the canonical S-ample sheaf #(X/S) on P/S, we need the existence
of the canonical isomorphism
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@:P = P*

which is given by the ®-divisor. To define the @-divisor, assume first that X — §
has a section 6 : S — X. Then oné has a morphism

(X/8)6™V —P= Png/s > Dr+—[Dy] — (g — [or],

where, for any S-scheme T and for any T-valued point Dy. of (X/8)“7 (i.e., for any
effective Cartier divisor on X xg T of degree g — 1), we denote by [Dr] the element
of Picy,s(T) corresponding to Dy and where o7 denotes the relative Cartier divisor
of X x4 T associated to the section o, = o x5 T. Let W¥™* be the schematic image

of this morphism; note that it depénds on the section ¢. It is not hard to see that

the induced map

(X/S)(g_“ — Wt

is S-birational; cf. Lemma 9.3/5. Furthermore, W91 is an effective relative Cartier
divisor on P, usually denoted by ® If one replaces o by a second section, @, has
to be replaced by a translate. Now let us consider the morphism

Po,: P—P*, 1+ 0p,(1¥(8,)) ® (0r,(0,))

where, for an S-scheme T, we dcnote by Pr the T-scheme P xg T and where
1, : P — Pris the translation by the T-valued point t € P(T). This map is indepen-
dent of the choice of ; so we can drop the o. If we do not have a section, we may
perform an étale sur_]ectlve base c‘hange in order to get a section and, hence, to
obtain @e. Because ¢g is independent of the chosen section, it is already defined

over the given base S by descent tl‘reory
In order to check that the above map is an isomorphism, one can assume that

the base scheme S consists of an algebralcally closed field. In this case, the assertion
is classical; cf. Weil [2], n°62, Cor. \2 Now we set

Z (@)_m*@p(@))@p (0p(®)) " ® p3(0p(®))"

where m: P xg P— P is the group law of P and where p;: P xg P — P are the
projections for i = 1, 2. Note that‘ a priori, this definition depends on the chosen
section o, but that in fact, due to the theorem of the square, Z(®) is independent

of 5. Again, by descent theory, it rs\ already defined over S. The morphism @ gives

rise to an isomorphism
idp Xg qae.P xg P~ P x5 P*

such that there is an isomorphism 1of rigidified line bundles
2(©) 2 (idp x5 90)* P .
Consider now the pull-back of 2 by the map
(idp, @) : P — P x5 P*
and denote this line bundle on P bS'
L(X/S) = (idy, 92 = (idy,ids)* £(©)

which is isomorphic to Op(® + (——%1)*@). Then £(X/S) is rigidified along the unit
section and one can show that #(X/S) is S-ample on P. O



