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For the proof of Theorem 1, we will use the canonical S-ample sheaf £ (X/S)
which was constructed in Proposition 4 for smooth curves X over S. Namely, due
to Theorem 9.3/7 and the explanation following|it, we know already that Pic%s is
a scheme locally for the étale topology on S. Thus, we are concerned with a problem
of descent. It suffices to verify the assertion concerning the canonical S-ample
invertible sheaf #(X/S). Due to 6.1/7, it is enough to give the definition of £(X/S)
after étale surjective base extension. Moreover, it suffices to look at the universal
case. Since the base of the versal deformations of a fibre of X is smooth over Z (cf.
Deligne and Mumford [1], Cor. 1.7), we may assume that S is regular. In this
situation, we have to construct Z(X/S). Denote by S, the open subscheme of §
where X is smooth over S; note that S is dense§ in S. Due to Proposition 4, there
is a canonical line bundle Z(X,/S,) on Pic, s, Since S is regular, we can extend
P(X,/S,) to a line bundle £(X/S) on Picy/s such that the pull-back of Z£(X/S)
under the unit section is trivial on S. Since the geometric fibres of Picks are
connected, the extension is unique. Then it follow$ from Raynaud [4], Thm. XI.1.13,
page 170, that #(X/S) is S-ample, since the restriction of £(X/S) to S, is Sp-ample
and since, for all points s € S of codimension 1, the restriction of Pic%s to Spec(Us,)
is the identity component of the Néron model of its generic fibre; cf. 7.4/3 and 9.2/8.
O

Finally we want to sketch the proof of Theorem 2. Denote the generic point of

S by 7 and the closed point of S by s. Let P be the open subfunctor of Picys consisting

of all line bundles of total degree zero.

Let Y = X be a rigidificator for Picy/s; cf. 8.1/6. Then, due to 8.3/3, the functor

(Picy;s, Y) is an algebraic space over S. Denote by (P, Y) the open subfunctor of

(Picy,s, Y) consisting of all line bundles of total degree zero. Due to 8.4/2, (P, Y) is

smooth over S. Let

r:(P,Y)—P

be the canonical morphism. There is a largest separated quotient Q of P (in the sense

of sheaves for the fppf-topology), and one knows that Q is a smooth and separated
S-group scheme; cf. 9.5/3. Let

q:P—Q

be the canonical morphism. It is clear that r and g are epimorphisms of sheaves

with respect to the fppf-topology.

We want to show that g induces an isomorphism of P° to Q°. Note that g, is -

an isomorphism. First we want to see that g xs S’ admits a section over 0° where
S’ is a strict henselization of S. We may assume S = §'. Due to 9.1/12, there exists
a universal line bundle %, on (X xj Picys),. Let (#,0) be the universal line
bundle of (P, Y). Since %, induces the universaliline bundle of P,, the line bundles
(idy x g o r)*%, and .4, define the same homox}norphism to P,. So, due to 8.1/4,
there exists a line bundle 4} on (P, Y), such that
(idg X g o NV*Z, = MR f*(AN)

Since (P, Y) is smooth over S and since S is regu]ar, A, extends to a line bundle A
on (P,Y). After replacing .# by 4 @ f*.#, we may assume that .# extends
(idy x g o )*%,. By computing the associated divisor, one can show that, over the
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identity component (P, Y)°, the line bundle .# | x 5(p, ryo descends to a line bundle &
on X xgQ° Namely, as X is normal, M is determined by a - Weil divisor D on
X x (P, Y)°. Since .#, descends to %,, we may assume that D, descends, too. So it
suffices to look at “vertical” Weil divisors on X x (P, Y)° with support contained
in the special fibre. To treat the latter we remark that the sets of vertical Weil divisors
(with support contained in special fibres) on X, on X x (P, Y)°, or,on X x Q° are
in one-to-one correspondence under the pull-back maps. Then & gives rise to a
morphism 1: Q% — P°. Since Q is separated and since (g o 4), = idgo, it follows
that g o 2 = idgo. Moreover, one shows easily that 1 is a group homomorphism.

Next we claim that P is an algebraic space over S. Due to 8.3/1, it remains to
see that f is cohomologically flat in dimension zero. By what we have said at the
beginning of this section, it suffices to show that

dimy g H! (X, Oy,) = dimyy H* (X, Ox,) -

Due to 8.4/1, we know that dimyyH }(X,, 0x )is equal to the dimension of Picy s =
(Picy,s)s- Moreover we have dim P, = dim @, = dim Q. The latter holds, since Q is
flat over S. So it remains to see that the canonical map g,: Fs— Q, is locally
quasi-finite or, that the kernel of gslpo is finitely generated as an abstract group.
Indeed, a group scheme of finite type over a field whose group of geometric points
is finitely generated is finite; so the morphism gs|po is quasi-finite, since P? is of finite
type over k(s). The kernel of g,|pg is smooth over k(s) since, due to the existence of
the section A, it is a quotient of the smooth group PP, So, assuming that S is strictly
henselian, it remains to see that the set of k(s)-rational points of the kernel is finitely
generated. Since the map (P, Y),— F; is smooth, the rational points of P, are
induced by rational points of (P, Y),. Since (P, Y) is smooth over S, the rational
points of (P, Y), are induced by S-valued points of (P, Y); in particular, by line
bundles on X. Due to the existence of the section 4 which is defined by a line bundle,
we see that the k(s)-rational points of the kernel of g,|pe are induced by line bundles
on X which are trivial on the generic fibre. Due to the assumption on X, such a line
bundle & is associated to a Cartier divisor D having support on the special fibre
only; hence £ = Ox(D). Thus we sce that the kernel of the morphism g;| e is finitely
generated as an abstract group; namely, the group of Cartier divisors having support
only on the special fibre is a subgroup of the free group generated by the irreducible
components of the special fibre of X.

Now it is easy to complete the proof. In order to show that g: P’ — Q%isan
isomorphism, we may assume that S is strictly henselian. Recall that g is unramified
and an isomorphism on generic fibres. Now look at the commutative diagram

It follows from 2.2/9 that 1 is étale. Then it is clear that 1 and, hence, q are
isomorphisms. O
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Finally we want to mention that, in the case where X is regular, there is a direct
proof of the cohomological flatness in Artin and Winters [1] which uses the
intersection form.

9.5 Picard Functor and Néron Models of Jacobians

Let S = Spec R be a base scheme consisting of a discrete valuation ring R. As usual
we denote by K the field of fractions of R and by k the residue field of R. In the
following we will fix a proper and flat curve X over S; its generic fibre Xy is assumed
to be normal as well as geometrically irreducible. Let J, = Pick_x be the Jacobian
of Xy. It is a smooth and connected K-group scheme of finite type and we can ask
if there is a Néron model J of Ji. The purpose of the present section is to describe
J, if it exists, in terms of the relative Picard functor Picys. Thereby we will obtain
a second method to construct Néron models, which is largely independent of the
original method involving the smoothening process.
The key point of the whole construction is the fact that the relative Picard
functor Picys satisfies a mapping property which is similar to the one enjoyed
by Néron miodels. To explain this point, assume that X is regular and that X
admits a section. Furthermore, consider a smooth S-scheme T and a K-morphism
ug : Ty — Picy, . Then, using 8.1/4, uy corresponds to a line bundle £ on Xy xy T,
and the latter extends to a line bundle £ on X xg Tsince X xg T is regular; see 2.3/9.
Thus it follows that u, extends to an S-morphism u : T —> Picy,s, where u is unique
if Picys is separated. The same mapping property holds for Pic$ s if the special fibre
X, is geometrically irreducible; use 9.1/2 and 9.2/13. So if, in addition, we know
that Picy,s is a smooth and separated S-group scheme, for example if we are in the
situation of Grothendieck’s theorem 9.3/1, it follows that Pic%s is a Néron model of
Ji = Picy_x. In the latter case the assumption on X to have a section is not really
necessary. Namely, if the special fibre of X is geometrically reduced (as is required in
9.3/1), then the smooth locus of X is faithfully flat over S by 2.2/16. Working over a
strict henselization R of R, it follows from 2.3/5 that X ®; R* admits a section. So,
due to the fact that Néron models descend from R* to R by 6.5/3, we can state the
following result.

Theorem 1. Let X be a flat projective curve over S which is regular and which has
geometrically reduced and irreducible fibres. Then Picys is a Néron model of its
generic fibre; i.e., of the Jacobian Jy of Xy. In particular, the special fibre of the
Néron model of Jy is connected. '

Before we construct Néron models of Jacobians Jy of a more general type,
let us state the mapping property of the relative Picard functor Picy, in the
form we will need it later. The curve X is as mentioned at the beginning of this
section.
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Lemma 2. Assume either that X, admits a section or that K is the field of fractions
of a henselian discrete valuation ring R with algebraically closed residue field k. Then
each element of Picy,s(K) is represented by a line bundle on Xy. In particular, if X
is regular, the canonical map Picy,s(R) — Picys(K) is surjective.

Proof. Let K’ be the direct image of Oy, with respect to the structural morphism
Xy — Spec K. Since Xy is geometrically irreducible, K’ is a field and the extension
K'/K is finite and purely inseparable. If Xy admits a section, K’ coincides with K
and the first assertion of the lemma follows from 8.1/4. On the other hand, if R is
henselian and k is algebraically closed, there is a classical result of Lang saying that
the cohomological Brauer group| Br(K) vanishes (see Grothendieck [3], 1.1, or
Milne [1], Chap. I1I, 2.22). In thé same way we can show that Br(K’) vanishes.
Namely, K’ can be viewed as the ﬁeld of fractions of the integral closure R’ of R in
K’ and R’ is a discrete henselian yaluation ring with algebraically closed residue
field k; use 2.3/1’ or 2.3/4 (d) to show that R’ is henselian. Thereby we see that there

are no obstructions to representing elements of Picy;s(K) by line bundles on Xk; cf.

8.1/4.
If X is regular, each line bundle on Xy extends to a line bundle on X and the
second assertion is clear also. O

If X is more general than in Theorem 1, but say, still regular, Pic%s might not
be representable by a scheme or by an algebraic space. Moreover, even if PicYs
exists as a scheme and, thus, is a smooth scheme by 8.4/2 (for example, if X admits
a section), the canonical map Picy,s — J to a possible Néron model J of Jg is not
necessarily surjective. To remedy this, we replace Picys by the open and closed
subsheaf P < Picys consisting of all line bundles of total degree 0 and pass to the
biggest separated quotient Q of P. As we will see, the latter is a good candidate for
a Néron model of Jg.

The subfunctor P = Picy,s may be viewed as the kernel of the degree morphism
deg : Picy;s — Z and is formally smooth since the same is true for Picys; cf. 8.4/2.
Furthermore, the fibres of P over § are representable by smooth schemes (8.2/3 and
8.4/2) and, on the generic fibre, P coincides with Pic%s so that Py = Jg.

In order to pass to the biggest separated quotient of P, we extend the notion of
separatedness from S-schemes to contravariant functors {Sch/S)? — (Sets) by using
the valuative criterion as a definition; thus a contravariant functor F : (Sch/S)° —
(Sets) is called separated if, for any discrete valuation ring R’ over R with field
of fractions K', the canonical map F(Spec R") — F(SpecK') is injective. If is
representable by a scheme or by an algebraic space and if the latter are locally of
finite type over S (which, for algebraic spaces, is automatically the case by our
definition), then the separatedness in terms of functors coincides with the usual
notion of separatedness for schemes or algebraic spaces.

Now consider the quotient Q = P/E (say, in the sense of fppf-sheaves) where E
is the schematic closure in P of the unit section Sy —> Picyx; then E is a subgroup
functor of P. To define E if Picys is not necessarily representable by a scheme (or
by an algebraic space), consider the sub-fppf-sheaf of Picy;s which is generated
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by all morphisms Z — Picy;s in Picys(Z) where Z is flat over S and where
Zx — (Picys)g = Picy i factors through the }mit section of Picy, k. Since the
latter is a closed immersion, one recovers the usual notion of schematic closure if
Picy,s exists as a scheme or as an algebraic sp?ce. Likewise, one can extend the
notion of schematic closure in Picy,s to any closed subscheme of the generic fibre
of Picys. For example, we can view P as the schematic closure in Picys of the
Jacobian Picy, x = Jx-

Proposition 3. As before, let X be a flat proper curve over S such that Xy is normal
and geometrically irreducible. Then the quotient Q = P/Eisrepresentable by a smooth
and separated S-group scheme; it is the biggest separated quotient of P. Furthermore,
the projection P — Q is an isomorphism on generfic fibres and, thus, the generic fibre
of Q coincides with the Jacobian Jg of X. ‘

Proof. Instead of just dealing with the most general case, we will explain how to
proceed depending on what is known about Picy)s. That P — Qisan isomorphism
on generic fibres is due to the fact that, by the definition of E, the generic fibre Ex
coincides with the generic fibre of the unit section § — P since the generic fibre of
P is separated. Furthermore, it is clear that is the biggest separated quotient of
P if Q is representable by a separated scheme. |

1st case: Picy,s is a scheme. In this situation P is a smooth group scheme whose
identity component P° is separated by [SGA 3,], Exp. VI, 5.5. So the intersection
of E with P? is trivial and it follows that E is étéle over S. More precisely, E— S
is a local isomorphism with respect to the Zariski topology. Then it is easily seen
that the quotient Q = P/E is representable by a smooth scheme and that the
projection P — Q is a local isomorphism with respect to the Zariski topology.

2nd case: Picy,s is an algebraic space. Since tﬂc unit section of P is locally closed,
E is still étale over S, and it is clear that the quotient Q = P/E exists as an algebraic
S-group space which is smooth and separated. Furthermore, it follows from 6.6/3
that Q is an S-group scheme. 3

3rd case: Picys is not necessarily representable by a scheme or by an algebraic
space. Then we can apply 8.1/6 and choose a rigidificator ¥ <= X of the structural
morphism f: X — S. Associated to it is a sequence

0 — Vi s Vi —> (Picys, Y) — Picys — 0

which is exact with respect to the étale topology; cf. 8.1/11. Considering only line A

bundles of total degree 0, this sequence restricts to a sequence
0o V¢, VF—(P,Y)—P—0
which, again, is exact with respect to the étale topology. One knows from 8.3/3 and

8.4/2 that (Pics, Y) and, hence, (P, Y) is an algebraic space which is smooth over S.
Consider the exact sequence

V¢ — (P,Y)—>P—0,

and let H be the schematic closure of the kernel of r¢. Then H is an algebraic
subgroup space of (P, Y); it contains the kernel of r, as is easily seen by using the
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fact that V;* is flat over S. Furthermore, the quotient (P, Y)/H exists as an algebraic
space by 8.3/9 since H is flat over S; it is separated due to the definition of H. We
claim that (P, Y)/H is canonically isomorphic to Q = P/E. To see this, we mention
that, by continuity, r maps H into E. So r induces a morphism 7 : (P, Y)/H — P/E.
On the other hand, one concludes from ker(r) = H that the projection (P, Y) —
(P, Y)/H splits into morphisms

@, Y)->P-5@PY)/H.

Since (P, Y)/H is separated and, thus, E = kerg, we thereby obtain a morphism
g: P/E — (P, Y)/H which is an inverse of 7. So Q is isomorphic to (P, Y)/H and
therefore is an algebraic group space. But then Q is a separated group scheme by
6.6/3, which is smooth by the analogue of [SGA 3,1, Exp. VI, 9.2, for algebraic
group spaces. [

In order to show that the smooth and separated S-group scheme Q of
Proposition 3 is, in fact, a Néron model of J,, we have to work under conditions
like the ones given in Lemma 2 assuring that each K-valued point of Q extends
to an R-valued point of Q (assuming R to be strictly henselian). Also we have to
show that @ is of finite type over S.

Theorem 4. Let X be a proper and flat curve over S = Spec R whose generic fibre is
geometrically irreducible. Assume that, in addition, X is regular and either that the
residue field k of R is perfect or that X admits an étale quasi-section. Then:

(a) If P denotes the open subfunctor of Picys given by line bundles of total degree
0 and if E is the schematic closure in P of the unit section Sx — Px, then Q = P/E
is a Néron model of the Jacobian Jy of Xk.

(b) Let X, ..., X, be the irreducible components of the special fibre X, and let
5; be the geometric multiplicity of X; in X; cf. 9.1/3. Assume that the greatest
common divisor of the &; is 1. Then Picys is a separated scheme and, consequently,
the projection P ~— Q gives fise to an isomorphism Pic%s > Q°. Thus, in this case,
Picys coincides with the identity component of the Néron model of Jg.

Remark 5. In the situation of the theorem, the assumption that X admits an
étale quasi-section is automatically satisfied if the special fibre X, is geometrically
reduced or, more generally, if X, contains an irreducible component which has
geometric multiplicity 1 in X,. Namely, then the smooth part of X must meet such
a component and, passing to a strict henselization of S, we have a section by 2.3/5.
On the other hand, if X admits an étale quasi-section over S, say a true section after
we have replaced S by an étale extension, then, X being regular, this section factors
through the smooth locus of X; see 3.1/2. In particular, there are irreducible
components which have geometric multiplicity 1 in X, so that the condition in
Theorem 4 (b) is automatically satisfied.

Now let us start with the proof of Theorem 4. The main part will be to show
that Q is of finite type over S. We will use the remainder of the present section to
establish this fact; see Lemmata 7 and 11 below. But let us first explain how to obtain
assertions (a) and (b) if we know that @ is of finite type.
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The formation of the schematic closure E is compatible with flat extensions of
‘valuation rings. Likewise, the regularity of X remains invariant under étale base
change by 2.3/9. Thus, in order to show that Q is a Néron model of Jg, we may
assume that R is strictly henselian.

Itis already known from Proposition 3 that Qisa smooth and separated S-group
scheme with generic fibre Ji. Furthermore, it follows from Lemma 2 and 9.1/2 that
the canonical map P(R) — P(K) is surjective. So we see that the canonical map
O(R) — Q(K) is surjective and, hence, bijective since Q is separated. Thus, if 0 is
of finite type, it is 2 Néron model of Jg by the criterion 7.1/1. This verifies assertion
(a). Using the representability result 9.4/2 for Picys, assertion (b) is a consequence
of assertion (a).

It remains to show that the quotient Q = P/E is of finite type over S. We will
present two methods to obtain this result. The first one is based on the existence
theorem for Néron models 10.2/1 and uses the fact that the Néron-Severi group of
the special fibre of Picys is finitely generated. But it works only under the additional
assumption that the generic fibre Xy is geometrically reduced (which is the case if
X admits an étale quasi-section; see 3.1/2). Relying on the existence of a Néron
model J of Jg, there is a canonical morphism Q — J and it is to show that the
latter is an isomorphism. The second method is independent of the theory of
Néron models and uses the intersection form which is associated to the irreducible
components of the special fibre X;. It works in the general situation of Theorem 4
and, as we will see in Section 9.6, provides a means of computing the group of
connected components (of the special fibre) of the Néron model J of Jg.

Q is of finite type, a first proof via the existence of a Néron model J of Jg. We
start by translating the existence theorem for Néron models 10.2/1 to our situation,
a result which we will prove in Chapter 10 and which is independent of Chapter 9.

Proposition 6. Let Xy be a proper curve over K which is geometrically reduced and
irreducible. Let Jy be its Jacobian. Then Jx admits a Néron model J of finite type
over S if any of the following conditions is satisfied:

(a) Xy is smooth,

(b) Xy xx K is normal, where K is the completion of K,

(c) Xy is normal and R is excellent.

Proof. If Xy is smooth, Ji is an abelian variety by 9.2/3. So Ji has a Néron model
J of finite type.

If only condition (b} is known, Jx is not necessarily an abelian variety. However,
condition (b) is compatible with separable extensions of the field K. So, for any
separable field extension L over R, we know from 9.2/4 that J;, does not contain
subgroups of type G, or G,,. Therefore we can conclude from 10.2/1 that Jg has a
Néron model J of finite type.

Finally, condition (c) implies condition (b) since K is separable over K in this
case. |

Let us apply Proposition 6 in order to show that, in the situation of Theorem
4 and under the additional assumption of Xy being geometrically reduced, the
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Jacobian Ji of X admits a Néron model of finite type. Since X is proper over S,
all closed points of X belong to the special fibre X;. Therefore, if R is the completion
of R, the local rings at closed points of Xz may be viewed as completions of local
rings of X and, thus, the hypothesis on the regularity of X remains unchanged if we
replace R by its completion R. So, in particular, X is regular and, thus, J; admits
a Néron model J of finite type by Proposition 6. Now it is quite easy to prove that
0 is of finite type.

Lemma 7. In the situation of Theorem 4, assume that Xy is geometrically reduced.
Then Q = P/E is of finite type over S.

Proof. As we have just seen, Jy admits a Néron model J. Since the formation of
Q and of J is compatible with étale base change, we may assume that the base
ring R is strictly henselian. Furthermore, recall that Q is a smooth and separated
S-group scheme such that the canonical map O(R) — Q(K) is bijective. It is
enough to show that the canonical morphism v : Q —> J restricts to an isomorphism
0° =~ J°. Namely, using the bijejctivity of Q(R) — J(R), this implies that the
groups Q(R)/Q°(R) and J(R)/J °(R), which by 2.3/5 can be interpreted as the groups
of connected components of the special fibres of Q and J, coincide and thus are
finite. Consequently, @ will be of finite type.

So let us show that vinduces an isomorphism 0° —» J°. The group of connected
components Q(R)/Q°(R) = Q(k)/Q?(k) may be viewed as a quotient of a subgroup
of the Néron-Severi group of the special fibre of Picy;s and, thus, is finitely generated
(in the sense of abstract groups); see 9.2/14. Since the map v: Q@ — J is surjective
on R-valued points and, hence, oh k-valued points, it follows that the quotient
Jo/v(QY) is a connected smooth algebraic group over k whose group of k-valued
points is finitely generated. However, then J2/v(Qf) must be of dimension zero and,
thus, is trivial as is easily seen by considering the multiplication with an integer n
not divisible by char k. Therefore Q0 —> JO is surjective and quasi-finite. But then,
being an isomorphism on generic fibres, it must be an isomorphism by Zariski’s
Main Theorem 2.3/2' so that the desired assertion on Q follows. O

Q is of finite type, a second proof via the intersédtion form associated to the special

fibre X,. This approach requires a detailed analysis of divisors on X which have
support on the special fibre X, only.
Lemma 8. Let X be a proper flat curve over S = Spec R such that X is normal and
such that Xy is geometrically irreducible. Assume that Risa strictly henselian discrete
valuation ring. Let D be the group of Cartier divisors on X which have support on the
special fibre X,, let Do be the subgjroup of all divisors in D which are principal, and
let E be as in Theorem 4. Then the canonical map D/Dy — E(R) is bijective.

Proof. The injectivity of the map follows from 8.1/3. To show the surjectivity, we
consider the Stein factorization

X———+Y—>S
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of the structural morphism f: X — S, where g,(0x) = Oy and where h: Y — S is
finite. Then Y is the spectrum of a normal ring R’ which is finite over R. Since X
is geometrically irreducible and since X is normal, it follows that K’ = R' ®g K is

a finite purely inseparable field extension of K

and that R’ is the integral closure of

R in K'. So, similarly as in the proof of Lemma 2, it is seen that R’ is a strictly
henselian discrete valuation ring and that each a € E(R) is represented by a line

bundle .# on X.

Now fix a point a € E(R) and a representing line bundle % on X. Since the
restriction of .# to the generic fibre X is trivial, % is of the form @,(A) where A is
a Cartier divisor on X having support on the special fibre of X. Thus a is represented

by AeD.

Let (X;);; be the family of reduced irreduc
X, As in 9.1/3, we write d; for the multiplicity

O

ible components of the special fibre
of X; in X, and e, for the geometric

multiplicity of X;. Then ¢, is a power of the characteristic of k and &; = d,e; is the

geometric multiplicity of X in X; cf. 9.1/4.

For any line bundle % on X, one can ¢

component X;; it is a multiple of the geometz
particular, we can consider the map

onsider its degree deg;(%) on the
ic multiplicity e; of X;; cf. 9.1/8. In

p:Pic(X)— 7', L (et - degi(L))icr

which, composed with the canonical map D — Pic(X) yields a map o: D — 7/,

where D is as in Lemma 8.

Lemma 9. Let R, X, D, Dy, and E be as in I
complex

0— Dy D-57F

where  is given by B(a,,... ,Aa,) =Y a0, The I
o:kerf/fima— Q

which is bijective if P — Q = P/E induces a su
Picgs(S) — Q

between S-valued points of the identity compone
im o has rank card(I) — 1, then ker B/im o and, t

emma 8. Then there is a canonical

70

atter gives rise to a surjection

5)/Q°(S)
rjection
°(S)

hus, also Q(S)/Q°(S) is finite.

nts of Picys and Q. Furthermore, if -

Proof. To begin with, recall that divisors in D have total degree 0 and that therefore

B oo =0by9.1/4and 9.1/5. So the sequence in question is a complex. Furthermore,

the map p : Pic(X) — Z’ is surjective by 9. 1/10 Since R is strictly henselian and
since Picy,s can be defined by using the étale topology in place of the fppf-topology,
we can interpret Pic(X) as Picy5(S). So P(S) is mapped surjectively onto ker f§ and,
due to 9.2/13, we have the exact sequence

0 — Pic%;s(S) — P(S) — ker p—0.
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Using Lemma 8 we can interpret imo as the image of E(S) under the map p:
Pic(X) — Z*. Therefore we have a canonical isomorphism

P(S)/(Pic%s(S) + E(S)) = ker f/ima .
Taking the above isomorphism as an identification, we define ¢ as the canonical
map
(* P(S)/(Picy,s(S) + E(S)) — Q(S)/Q°(S) .
To show that it is surjective, it is enough to show that the canonical map
() P(S)/P°(S) — Q(S)/Q°(S)
is surjective. We will prove the latter fact by relating («#) to the canonical map
(%) P (k)P (k) — Qu(k)/QR (k) -

The map (**x*) is surjective. Namely, k is separably closed, and P, is smooth, as
follows from the formal smoothness of P. Thus, (+*#) may be interpreted as mapping
connected components of P, to connected components of Q. So it is surjective, due

to the surjectivity of P, — Q.
Since we know already from Proposition 3 that Q is a smooth group scheme
and since the base S is strictly henselian, it follows from 2.3/5 that the restriction map

0(8)/Q°(S) — Qulk)/ 2L (k)
is bijective. The same is true for
P(S)/P°(S) —> Py (k)/P (k)

if P is a scheme or an algebraic space which is locally of finite type over S. Namely,
then the formal smoothness of P says that“P is, in fact, smooth. So (%) will be

surjective in this case.
In the general case, we must work with a rigidificator Y and consider the

associated exact sequence
0— V¥ oy VF — (P,Y) — P—0
of 8.1/11. It is enough to show that
P(S)/P°(S) — P (k)/F{(K)

is surjective, or, that the composition

(P, Y)(S) — (P, Y)i(k) — Py(k)

is surjective. The first map (P, Y)(S) — (P, Y),(k) is surjective by 2.3/5 since (P, Y)
is smooth (8.4/2). Furthermore, (P, Y), is an extension of the smooth group scheme
P, by the quotient (V5*),/(V¥).. The latter is smooth since V3* is smooth; cf. [SGA
3.1, Exp. VI, 9.2. Thus, by the same reference, we see that the morphism (P, Y), —
P, is smooth and it follows, again from 2.3/5, that (P, Y),(k) — P, (k) is surjective.
This shows that the map (*+) is surjective.

The injectivity of o under the assumption that Picy,s(S) — Q°(S) is surjective
is easily derived from the exact sequence
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0 —> E(S) — P(S)— O(S) .

Finally, the submodule ker § = Z! has rank card(l) — 1. If the same is true for
im , it follows that ker f/im a and, thus, also Q(S)/Q°(S) is finite. O

Let us assume now that X is regular. Under this assumption we can give an
explicit description of the Z-submodule ima < Z' considered in the preceding
lemma. To do so we introduce the intersection matrix ((X;- X;)); jc; where the
intersection number (X;- X;) is defined as the degree on X; of the line bundle which
is associated to X; as a Cartier divisor on X. Thereby we obtain a symmetric bilinear
intersection pairing D x D —» Z on the group D ~ Z' of divisors on X which have
support on the special fibre X; see also [SGA 7], Exp. X, 1.6. The map a is closely
related to the intersection pairing; namely, o : D ~ Z' — 7', as a Z-linear map, is
described by the matrix (e;*(X;- X));,j; Which is called the modified intersection
matrix.

Lemma 10. Let R, X, and D be as in Lemmata 8 and 9 and assume that, in addition,
X is regular. Let d; be the multiplicity of X; in X, i.e., the multiplicity of X, in the
divisor () = “special fibre of X, and let d be the greatest common divisor of the d,,
i € I. Then, for any divisor Y n;X; € D, we have

(X = — 3, 2y = md X, X))
i<j Wity

Therefore the intersection form D x D — Z is negative semi-definite and its kernel

is generated by the divisor A =Y d;d™*X; € D. Furthermore, the Z-module imo. of

Lemma 9 is isomorphic to D/ZA and thus has rank card(I) — 1.

Proof. Tensoring with @, we can extend the bilinear pairing D xD—Z to a
bilinear pairing D®Q x D ® @ — Q. Therefore we may work with rational
coefficients. Set Y; = d,X; and m; = n;d;’*. Since (n) = d;X;=)"Y; and since
(Y- (7)) = (X;* (n)) = 0O for all i, we can write

— ) (m; —m)*(Y; Y))

i<j

1
- Z ﬁ(nidj - ”jdi)z(Xi'Xj)

i<j dit;
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All assertions of the lemma follow easily from this computation since the special
fibre of X is connected. The latter/is due to the fact that X is proper over S and that
the generic fibre of X is connected. 1

Now it is easy to complete the proof of Theorem 4 and to show that the group
scheme Q is of finite type over R. :

Lemma 11. Assume that X is a flat proper curve over R which is regular and
which has geometrically irreducible generic fibre Xx. Then the smooth and separated

S-group scheme Q = P/E is of finite type.

Proof. We may assume that R is strictly henselian. Then it follows from Lemmata
9 and 10 that ker f/im « and thus 0(S)/Q°(S) are finite. The latter implies that Q is
of finite type since it is locally of finite type; cf. [SGA 3,], Exp. Vi, 3.6. O

Remark 12. In the assertion of Theorem 4, we may replace the condition that X be
regular by the condition that all local rings of X xg Spec(R*") are factorial (R™"
being a strict henselization of R); only this is needed for the proof of Lemma 2. In
particular, it is enough to require the strict henselizations of all local rings of X to

be factorial.

Remark 13. The above approach to the proof of Theorem 4 via the relative Picard
functor and via the intersection form provides a second method of constructing
Néron models, which is fairlyindependent of the one presented in earlier chapters.
However, if one starts with a proper and smooth curve Xy over K, say under the
assumption that R is excellent and that its residue field k is perfect, then in order to
apply Theorem 4 to the Jacobian Jg of X, one first has to construct a proper
R-model X of Xy which is regular; i.e., one has to use the process of desingularization
for curves over R; see Abhyankar [1] or Lipman [1]. Alternatively, for a smooth
curve X, one can apply the semi-stable reduction theorem and thereby construct
a semi-abelian Néron model of Ji, after replacing R by its integral closure in a finite
extension of K. Then the technique of Weil restriction leads to a Néron model of
Jy over R; cf. 7.2/4. Proceeding cither way, one constructs Néron models for
Jacobians of smooth curves and eventually for general abelian varieties. But it
should be kept in mind that the original construction of Néron models which we
have given in Chapters 3 and 4 is more elementary in the sense that it uses just the
smoothening process and not the theory of Picard functors as well as the existence
of desingularizations or semi-stable reductions.

9.6 The Group of Connected Components of a Néron Model

In the following we assume that the base scheme § = Spec R consists of a strictly
henselian discrete valuation ring R. Then, if J is an R-group scheme which is a Néron
model of its generic fibre J, we can talk about the group J (R)/J°(R) of connected
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components of J or, more precisely, of the special fibre of J. The purpose of the
present section is to give explicit computations for this group in the situation of
Theorem 9.5/4, where we deal with Néron models J of Jacobians and where J can
be described in terms of the relative Picard functor of a proper and flat S-curve X.
As a key ingredient, we will use Lemma 9.5/9 of the previous section.

The notations will be as in 9.5/4. So X is a flat proper curve over S which is
regular and whose generic fibre is geometrically irreducible. Furthermore, let (X Dier
be the family of reduced irreducible components of the special fibre X,, and let d,
(resp. e;, resp. &; = d;e;) be the multiplicity of X; in X, (resp. the geometric multi-
plicity of X;, resp. the geometric multiplicity of X; in X,); cf. 9.1/3. Usually we will
set I = {1,...,r}. Also recall that the intersection number (X;- X;) between irredu-
cible components of X, has been defined as the degree on X; of the line bundle given
by X; as a Cartier divisor on X it is divisible by the multiplicity e;.

Theorem 1. Let S be the spectrum of a strictly heﬁselian discrete valuation ring R and,
asin9.5/4, let X be a flat proper curve over S whijch is regular and whose generic fibre
is geometrically irreducible. Furthermore, assume either that the residue field k of R
is perfect (and, thus, algebraically closed) or that X admits an étale quasi-section (and,
thus, a true section). |

Let Jy be the Jacobian of Xy, and let (X;);., be the family of (reduced) irreducible
components of X,. Then, considering the maps

D7 5757

of 9.5/9, where o is given by the modified intersection matrix (e] (X X)) jer and
where f(ay,...,a,) = ) a;8;, the group of connected components J(R)/J°(R) of the
Néron model J of Jy is canonically isomorphic to the quotient ker f/im a.

Proof. It follows from 9.5/4 that the Néron model J of Ji exists and coincides
with the quotient Q = P/E, where P is the kernel of the degree morphism deg:
Picy;s — Z and where E is the schematic closure of the generic fibre of the unit
section S — Picys. Furthermore, Lemma 9.5/9 provides a canonical surjection

ker ffima— Q(S)/Q°(S) = J(S)/I°(S)

which we have to show is bijective. As stated in 9.5/9, the bijectivity will follow if
the canonical map

() P icf\)'/s(S) — 0°(S)

is surjective. So let us prove the latter fact.

The easiest case is the one where X admits a section or, more generally (see
9.5/5), where the ged of the geometric multiplicities &; of the components X; in X,
is 1. Then it follows from 9.5/4 (b) that Pic}s is a separated scheme and that the
canonical morphism Pic§;s — Q° is an isomorphism. So the bijectivity of (+) is
trivial in this case. |

It remains to treat the case where the residue field k is algebraically closed. To
do this, we may assume that, in addition to oujr assumptions, the base ring R is
complete. Namely, the assumptions of the theorem are not changed if R is replaced
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by its completion; for the regularity of X this has been explained after 9.5/6.
Furthermore, note that the special fibre X, remains the same if R is replaced by its
completion and that the formation of Q is compatible with such a base change since
it commutes with flat extensions of discrete valuation rings. .

The canonical morphism P — Q is an isomorphism on generic fibres. Further-
more, the map P(S) — P(K) is surjective by 9.5/2 and Q(S) — Q(K) is bijective
since Q is a Néron model of its generic fibre. So the canonical map

P(S)— 0(S)

is seen to be surjective. In order to derive the surjectivity of () from this fact,
we will use the Greenberg functor; see Greenberg [1]. Having no information on
the representability of P at hand, it is necessary to work within the context of
rigidificators. -

Therefore, choose a rigidificator Y < X, and let (P, Y) be the open and closed
subfunctor of the Picard functor of rigidified line bundles (Picy,s, Y) which equals
the kernel of the degree morphism. We claim that the canonical map (P, Y)(S) —
P(S) is surjective. Namely, each element of P(S) is given by a line bundle & on X
and the pull-back of # to Y is trivial. The latter is true because Y is finite over S
and because § is a local scheme. Hence, the composite map (P, Y)(S) — Q(S) is
surjective. For our purposes, it is enough to show that it restricts to a surjection
(P, Y)°(S) — Q°(S). Then, a fortiori, P°(S) — Q°(S) will be surjective. Therefore,
using the fact that (P, Y) is a smooth algebraic space (see 8.3/3 and 8.4/2) and that
(P, Y)(S)/(P, Y)°(S) can be viewed as a quotient of a subgroup of the Néron-Severi
group of the special fibre of X and, thus, is of finite type by 9.2/14, we have reduced
the problem to showing the following assertion:

Lemma 2. Let R be a complete discrete valuation ring with algebraically closed residue
field k. Let G— H be an R-morphism of smooth commutative algebraic R-group
spaces with the property that G(R)/G°(R) is finitely generated (in the sense of abstract
groups). Then, if G(R) — H(R) is surjective, the same is true for G°(R) — H°(R).

By means of the Greenberg functor, we will be able to reduce the assertion to
the corresponding one where R is replaced by the algebraically closed field k and
where we consider a k-morphism G —> H of smooth commutative k-group schemes
of finite type such that G(k)/G°(k) is finitely generated. Then, if G(k) — H(k) is
surjective, it is easy to see that the map G°(k) — H°(k) is surjective. Namely,
proceeding indirectly, assume that G° (k) — H°(k)is not surjective. Then G° —» H®
cannot be an epimorphism since we are working over an algebraically closed field
k. So the image of G° in H is a closed subgroup M such that H%/M is of positive
dimension. Its group of k-valued points may be viewed as a quotient of a subgroup
of G(k)/G°(k) and thus, by our assumption on G(k)/G°(k), is finitely generated.
However, then H°/M cannot have positive dimension as is easily seen by consider-
ing the multiplication on H°/M by an integer which is not divisible by char k. Hence
we have derived a contradiction and it follows that G°(k) — HO(k) is surjective as
claimed.
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Next let us recall some basic facts on the Greenberg functor from Greenberg
[1]; see also Serre [3], § 1. Let = be a uniformizing element of R and set R, := R/(n").
Then the Greenberg functor Gr, of level n associates to each R,-scheme Y, oflocally
finite type a k-scheme 9), = Gr,(Y,) of locally finite type in such a way that,
functorially in ¥,, we have Y,(R,) = 9,(k). For example, in the equal characteristic
case, R, may be viewed as a finite-dimensional k-algebra and the Greenberg functor
Gr, associated to R, is just the Weil restriction functor (see 7.6) with respect to the
morphism Spec R, —» Spec k. Weil restrictions are always representable by schemes
in this case, due to the fact that R, is an artinian local ring with residue field k.

In the unequal characteristic case, R, cannot be viewed as a k-algebra and the
notion of Weil restriction has to be generalized. Then, k being perfect, R is canon-
ically an algebra of module-finite type over the ring of Witt vectors W (k) and W(k)
is a complete discrete valuation ring of mixed characteristic, just as R is; see
Bourbaki [2], Chap. 9, §§1 and 2, in particular, §1, n°7, Prop. 8, and §2, n°5,
Thm. 3. So, in terms of W(k)-modules, R, is a direct sum of rings of Witt vectors
of finite length over k. Using the definition of Witt vectors, we can identify the set of
R, with a product k™ in such a way that the ring structure of R, corresponds
to a ring structure on k™ which is given by polynomial maps. Thereby it is immedi-
ately clear that we may interpret R, as the set of k-valued points of a ring scheme
R, over k where, as a k-scheme, £, is isomorphic to AF. .

Similarly as in the case of Weil restrictions, one defines Gr,(Y,) for any
R,-scheme Y, on a functorial level before one tries to prove its representability by a
k-scheme. Namely, consider the functor h* which associates to any k-scheme T the
locally ringed space h*(T) consisting of T as a topological space and of #’os(T, %,)
as structure sheaf. Then

h*(Spec A) = Spec(R, ®wy) W(A))

for any k-algebra A. In particular, taking A = k, we see that h*(T) is a locally ringed
space over Spec R,. It is shown in Greenberg [1] that, for R,-schemes Y, of locally
finite type, the contravariant functor

Gr,(Y,) : (Sch/k) — (Sets) , T+ Homg (h*(T), Y,)

is representable by a k-scheme 9, which, again, is locally of finite type. So 9, =
Gr,(Y,) is characterized by the equation

Hom,(T,9,) = Homy, (h*(T), Y,)

and, in particular, setting T := Spec k, we obtain 9,(k) = Y,(R,), the property of the
Greenberg functor Gr, we have mentioned at the beginning.

The canonical projection R,; — R, gives rise to a functorial transition mor-
phism Gr,,, — Gr,. Furthermore, the Greenberg functor Gr, respects closed
immersions, open immersions, and fibred products. In fact, by establishing the first
two of these compatibility properties, the representability of 9, = Gr,(Y,)is reduced
to the trivial case where Y, = A% and where 9, = (%,)". Furthermore, it can be
shown that the Greenberg functor respects smooth and étale morphisms. So this
functor extends in a natural way from schemes to algebraic spaces. Working with
group objects in the sense of algebraic spaces, we see that 9, will be an algebraic
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group space and, thus, by 8.3, a group scheme over kif Y is an algebraic group space
over R,. Moreover, for smooth group objects, the Greenberg functor respects
identity components. |

After this digression, let us turn to the proof of Lemma 2. Let R, = R/(x") be as
above. Applying the base change R —> R, and then the Greenberg functor of level
n, we can associate to G — H a morphism of k-group schemes of locally finite type -
®, — 9, such that the maps

GR)—HR,), 6,00 50

can be identified. Since G(R) — H(R) is surjective by our assumption and since
H(R)— H(R,)is surjective by the lifting property 2.2/6 characterizing smoothness,
we see that G(R,) — H(R,) and, thus, ®,,(k) — 9,(k) is surjective. Furthermore, it
follows that ®,,(k)/G2(k), as a quotient of G(R)/G°(R), is finitely generated. Thus, as
we have explained before, B2(k) — H7(k) and therefore also G°(R,)— H°(R,)
must be surjective. 3

The map G°(R)— H°(R) can be interpreted as the projective limit of the
surjective maps G2(k) — H2(k), n € N. In order to show the surjectivity of

fim 6200 — im 570

it is enough to show that the system (9,), where R, is the kernel of the morphism
®2 — 92, satisfies the Mittag-Leﬂler condition. However, this is clear since each
®? is a k-scheme of finite type and, thus, satisfies the noetherian chain condition.
So we have finished the proof of Lémma 2 and thereby also the proof of Theorem 1.

a

The assertion of Theorem 1 reduces the computation of the group of connected
components J(R)/J°(R) to a problem of linear algebra. In the remainder of the
present section, we want to give some formulas for the order of J(R)/J°(R) as well
as determine this group explicitly in some special cases. Let us start with some easy
consequences of Theorem 1.

Corollary 3. Assume that the conditions of Theorem 1 are satisfied. Set I={1,..,r}
and let ny,...,n,_y, 0 be the elementary divisors of the modified intersection matrix
A = (7Y (X;* X)) jer- Then the group of connected components J (R)/J°(R) of the
Néron model J of Jg is isomorphic to Z/nZ @ ... ® Z/n,_,Z. Its order is the greatest
common divisor of all (r— 1) x (r—1)-minors of A.

Proof. Since the image of f: Z" — Z has no torsion and, thus, is free of rank 1, it
follows that ker B is a direct factor in Z', free of rank r — 1. We know from 9.5/10
that the submodule im o < ker 8 is of rank r — 1 also and, thus, can be described
by non-zero elementary divisors ni,...,n,—. Butthenn, ..., n_4, 0 are the elemen-
tary divisors of im o viewed as a submodule of Z* and the assertions of the corollary

|

are clear.

If, in the above situation, all geometric multiplicities e; are trivial, ie. if ¢; = 1
for all i, then the modified intersection matrix A coincides with the intersection
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matrix ((X;- X)), jer- Considering the associated intersection pairing on the group
D =~ 7 of all Cartier divisors on X which have support on the special fibre X}, we
know from 9.5/10 that the pairing is negatijve semi-definite and has a kernel A-7
of rank 1, where A = Y d,d !X, as a divisor in D; the element 4 is the ged of the
multiplicities d;. Dividing out the kernel, we get a quadratic form on D/AZ ~
7' /ker « whose discriminant yields the order of the group of connected components
J(R)/J°(R). 1

Corollary 4 (Lorenzini [1], 2.1.2). Assume that the conditions of Theorem 1 are
satisfied and that, in addition, all geometric multplicities e,, i € I, are equal to 1. Let
I=1{1,...,r}. Then, for all indices i, j € I, the absolute value of

a;.‘; (ng(dl 3enes dr))zdi_l dj—l 4

where a} is the (r—1)x(r— 1)-minor of index (i,j) of the intersection matrix
A = ((X;- X)), is independent of i and J- 1t equals the order of the group of connected
components J(R)/J°(R). |

The proof is by establishing a lemma from linear algebra (see Lemma 5 below)
which allows to compute the ged of the (r—1) X (r—1)-minors of the intersec-
tion matrix 4. To apply it, set d:=d,d™. Thén the assertion of Corollary 4 follows
from Corollary 3. For the purposes of the lemma, we will use an exponent “t” to
denote transposition of matrices.

Lemma 5. Let 4 = (ay) € Z7*" define a semi-c?eﬁnite quadratic form of rank r — 1.
Let its kernel be generated over 7 by the vectord’ = (d.,..., d)) € 7" and let A* = (af)
be the adjoint matrix of A. Then there exists a positive integer v such that

A* = +v-d'-q" .
Furthermore, v is the ged of all(r— ) x(r— 1)—fninors of A.

Proof. Since ged(dy,...,d!) = 1, the assertion on the greatest common divisor of
the (r—1) x (r— 1)-minors of A4 follows from the formula for 4*. So it is enough
to establish this formula. To do this, note thath the kernel of 4 as a semi-definite
quadratic form on Z" coincides with the kernel of A as a Z-linear map 7" — 7".
Then, using the equation 3

A+ A* = det(A)- unit Iﬁatrix =0,

we see that all columns of A* belong to the kernel of A. So there is a vector
c=(cy,...,¢,) € Z" satisfying A* = d-¢'. Since A* is symmetric, we have ¢-d"" =
d’-c' and, thus, A-¢-d" = 0. This implies 4 - ¢ = 0 since d’ # 0 so that ¢ belongs to
the kernel of 4. Hence there is an element v & Z satisfying c = v-d'. Replacing v by
its absolute value if it is negative, we have 4* = tv-d’'-d" as required. O

If one wants to prove more specific assertions on the group of connected
components J(R)/J°(R), it is important to have information on the configuration

-of the components X; of the special fibre X,. The latter can be described using

graphs. There are several possibilities to associate a graph to X, depending on how
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multiple intersections of components as well as multiplicities of intersection points
are treated. We will deal with two cases, the one where the graph of X, in the
weakest possible sense, is a tree and the one where X is a semi-stable curve. As a
general assumption, we require that we are in the situation of Theorem 1 and that,
in addition, the multiplicities e;, i € I, are equal to 1. For example, the latter is the
case if k is algebraically closed. The index set I will always be the set {1,...,7}

The case where the graph of X, is a tree (cf. Lorenzini [1]). The graph I" we
want to associate to X; is constructed in the following way: the vertices of I are the
components X; of X,, and a vertex X; is joined to a vertex X; different from X; if
the intersection number (X;- X;) is non-zero. In particular, the precise number of
intersection points in X; N X; is not reflected in the graph I'. We define the multi-
plicity s; of X;, as a vertex of I', as the number of edges joining X;; so

s;=card{jel;i#j and (X, X;)+#0}.
Furthermore, we need the multiplicity d; of X;in the special fibre X, (which coincides

with the geometric multiplicity J; of X, in X, since ¢; = 1), the number d =
ged(dy,...,d,), and the quotients d; = d,d ! which are relatively prime.

Proposition 6. In the situation of Theorem 1, assume that the graph I is a tree and
that the geometric multiplicities e; are equal to 1. Then, writing a; = (X;- X;), the group
of connected components J(R)/J°(R) has order
[T a-T]@y.

a;;#0,i<j i=1

Furthermore, if all d; are equal to 1, we have
JRYIR) ~ ] Z/a;Z .
ay;#0,i<j

The assertion will be reduced to Corollary 3 by means of the following result:

Lemma 7. Let A = (a;;) € Z"*" be a symmetric matrix, which is negative semi-definite
of rank r — 1, and let the vector (d1,...,d.) € Z" with positive entries d; generate the
kernel of A. Furthermore, let T be the graph associated to A in the manner we have
described for intersection matrices above. Then, if T is a tree, the greatest common
divisor of all (r — 1) x (r — 1)-minors of A is given.by the product

a; -] @diy2.

a;;#0,i<j i=1

Furthermore, if d; = 1 for all i, the elements a;; occurring in the first factor constitute

the non-zero elementary divisors of A.

Proof. Let us first assume d] = 1 for all i. Then, since the vector (d},...,d!) belongs
to the kernel of the intersectio: matrix A = (ay), it follows that the sum of all
columns of A is zero. The same is true for the sum of all rows of A since 4 is
symmetric. Consider a terminal edge C of I'; i.e., an edge with attached vertices, say
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QLb-,
X, and X,, such that 5, = 1 and s, =}./Thcn the intersection matrix A has the
following form where a;; = a;; and where empty space indicates zeros:

aj; G2
dyy Ay * ° ° %
£ % *
| O

Now add the first column to the second column and, likewise, the first row to the
second row. Using the fact that the sum of the columns or rows in A vanishes, we
have a,; = —a,;, = —a,;. Thus, we see that this operation kills the entries a,, and
a,, so that the resulting matrix is of the form

—Qqi2
! . . .
az, * *
£ ok otk
P

where a}, = a,, + a,;. Let I be the graph obtained from I' by removing the
terminal edge C we are considering as well as the vertex X ;. Then I is a tree again
and it can be viewed as a graph which corresponds to the lower bloc, call it A', of
the above matrix, where 4’ has again the property that the sum of its columns or
rows vanishes. Thus we can proceed with A’ and I'"" in the same way as we have
done before with A and I". Since T is a tree, the procedure of removing terminal
edges and vertices stops after finitely many steps with a graph which is reduced to
a single vertex and with an associated (1 x 1)-matrix which is zero. At the same time
we have converted A by means of elementary column and row operations into a
diagonal matrix; the diagonal elements, except for the last entry which is. zero,

consist of all elements —ay;, i < j, such that X; is joined to X; by an edge of I'. This

verifies the assertion of the proposition in the case where all d; are equal to 1.

In order to verify the remaining assertion on the greatest common divisor of
all (r—1)x (r—1)-minors of A in the general case, we consider the matrix
B = (ayd;d;). It is negative semi-definite of rank r — 1 again and has the property
that the sum of its columns or rows is zero. So, using the graph I', we can determine
its elementary divisors as before. In particular, the ged of all (— 1) x (r— 1)-minors

-of B equals the product

p= T ey T1@

a;;#0,i<j i=1
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Let v be the ged of all (r—1) x (r—1)-minors of A. Writing A,, and By, for the
matrices obtained from 4 and B by removing the first column and the first row, we
see from Lemma 5 that

det A,y = £v(d1)*, detB;; = *tu.
Thus
u= +detB;; = +(dy...d)*det Ay, = +(dy...d)*v,
and the desired assertion follows from the above equation for p. O

Remark 8. The graph I" associated to the special fibre X, of a curve X as above is
a tree if the Néron model J of the Jacobian Ji of Xg has potential abelian reduction
or, more generally, if the special ﬁbie J, does not contain a non-trivial torus. Namely,
using the notation of 9.5/4, we have J, = Pi/Ey, where EP is a unipotent group by
Raynaud [6], 6.3/8. So if J; does not contain a non-trivial torus, the same is true
for P, and, thus, for Picxk,k.Thenﬁthe configuration of the components X; of X, is
“tree-like” by 9.2/12. However, it should be noted that the graph I' as we have
defined it can be a tree also in some cases where the configuration of the components
of X, is not “tree-like”. For example, X, can be a semi-stable curve consisting of
two components which intersect each other in several points. In this case, it follows

from 9.2/10 again that J; contains a non-trivial torus.

We want to apply Proposition 6 in order to show that the order of the group
of connected components J(R)/J °(R) is bounded if Jx has potential good reduction.
See Lorenzini [1] for more precisé bounds and McCallum [1] for a generalization
to abelian varieties. !

Theorem 9. Let R be a strictly henselian discrete valuation ring with algebraically
closed residue field k and with field of fractions K. Furthermore, let Xg be a proper
smooth curve over K, which is geometrically connected, has a Jacobian Jy with
potential good reduction, and admjits a regular minimal model X over R.

Then, for each integer g > 0, there exisis a bound M(g) such that, for each choice
of R, K, and k, and for each curve X of genus g as above, the order of the group of
connected components J (R)/JO(R) of the Néron model J of Jg is bounded by M(g).

Proof. We will use the methods of Artin and Winters [1]; the notation is as before.
The connected components of X; . are denoted by X;, and d; is the multiplicity of X
in X,. Furthermore, let d be the ged of the d; and set d; = d;d~*. Let X; be the scheme
given by Y d; X;, the latter being viewed as a Cartier divisor on X. Then

®) HOX;, Ox) =k
by Artin and Winters [1], Lemmia 2.6, since the ged of the d; is 1.

~ We want to compute the arithmetic genus of X;. Let R be a relative canonical

divisor on X. Then we can comﬂute the Euler-Poincaré characteristic of Uy, as

—1(Og) = X~ (X + N2 = X K2 = (X, R)/2d = (g — V/d;
the last equality is due to the fact that the degree of & is the same on the generic
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and on the special fibre of X. So, using the ejquality (*), the arithmetic genus g’ of
X, is given by
9=1-xOx)=1+ X R)2=1+(g—1)d.

In particular, g’ coincides with the abstract genus introduced by Artin and Winters
[1], 1.3, and we have g’ < g. If HO(X,, Ox,) # k, which may be the case if > 1, and
if we compute the arithmetic genus of X, it can happen that the latter is greater
than g. This is the reason why one has to introduce the curve X

Now, in order to determine the order of the group of connected components
J(R)/J°(R), one applies Corollary 3 and deternj)ines the greatest common divisor of
all (r — 1) x (r — 1)-minors of the intcrsectionﬁmatrix ((X;- X))); let us denote it by
v. The intersection matrix is the same for X, and for X;. Thus, also the graph T is
the same for both curves, and it follows from our explanations given in Remark 8
that I" is a tree since Ji has potential good reduction. We want to show that the
integer v remains invariant if we contract an exceptional curve C of the second kind
in the sense of Artin and Winters [1], 1.4, in X,. Such a curve C corresponds to the

middle edge of a chain
Xa Xb Xr,:

in T such that d] = d; = d’ and (X,*X,) = (X, X.) = 1 and such that s, =2; e,
there is no ramification at the vertex X, »- Contracting X, modifies I" to the extent
that we have to replace the above chain by ‘

Xy X,

*—D
where now d;, = d;, d.. = d’, and (Xa X)) =1, all other intersection numbers
remaining untouched. It follows from the formula in Lemma 7 that the integer v
remains unchanged under such a contraction process. In a similar way one shows
that contractions of exceptional curves of the ﬁr%st kind, as considered in Artin and
Winters [1], Lemma 1.18, cannot cause v to increase.

We now use the fact proved in Artin and Winters [1], Thm. 1.6, that, up to
contraction of exceptional curves of the first and|second kind, there are only finitely
many possible types of graphs and intersection matrices for a given genus g’ and,
thus, for the finitely many genera g9’ < g. So there are only finitely many possible

values for the integer v and, hence, for the order of the group of connected compo-

nents J(R)/J°(R). O

The case of semi-stable curves. In the following we will assume that all geometric
multiplicities 6; = d,e; are equal to 1. So, in addition to e; = 1, we have d;=1for
alli e I. We do not require from the beginning that the special fibre X « of the curve
X is semi-stable; we will restrict ourselves to this case later. The graph we want to
consider here is the so-called intersection graph% I" of X,. Its vertices are given by
the irreducible components X; of the special fibre X, as before, whereas, different
from the graph used above, its edges correspond to the intersection points of such
components; i.e., X;and X;,i # j, are joined by as many edges as there are irreducible
components in the intersection X; N X;. |
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We want to compute the group J(R)/J(R) of connected components of the
Néron model of the Jacobian J; of X, by describing the group ker f/ima of
Theorem 1 in terms of the graph I'. To do this, choose an orientation on T and
consider the (augmented) simplicial homology complex

0— G2 Tz 7

of I with coefficients in Z. Then im d, = ker 0 since I is connected. Identifying
Co(I’,Z) with Z', the map 8, coincides with B:Z'—Z. Thus, if M is any
Z-submodule of C,(T, Z) lifting im «, i.e., whose image under @, coincides with
ima < Z* ~ Cy(T, Z), we see that

J(R)/JO(R) = ker ffime =~ C,(T, Z)/M + H,(T, 2)),

where the first cohomology group H, (T, Z) is the kernel of the map 0;.

A canonical lifting M of im « can be obtained by choosing canonical liftings {;
of the generators &; = ((X; "X;))jer, i € I, of im o. Namely, define ¢ as a sum Y0 CipMlip
where the c;, are integers which will be specified below and where the 7;p Vary over
all edges joining the vertex X, with a second vertex X;. Up toiits sign, the multiplicity
¢;, is the local intersection number of X; and X; at the irreducible component x
of X; n X; which corresponds to fip- The sign of c;, is “+” or “—” depending on
the orientation of 7,,. We use “+7” if #;, originates at X; and ends at X; and
“—7 otherwise. Then, since X, as a Cartier divisor on X , is principal, we have
Yjer(X;"X;) =0 for all i e I and we see that M = Yier$iZ is a lifting of im « so
that

() JR)/I°R) ~ C,(T, Z)/(M + H,(T, Z)) .

We want to give an explicit example.

Proposition 10. Let X be a proper and flat curve over S, which is regular and has a
geometrically irreducible generic fibre Xy as well as a geometrically reduced special
fibre X,. Assume that X, consists of the irreducible components X,,..., X, and that
the local intersection numbers of the X; are 0 or 1 (the latter is the case if different
components intersect at ordinary double points). Furthermore, assume that the inter-
section graph I is of the type :

X1 X,

L e, T consists of I arcs of edges starting at X, and ending at X,. For each ) = 1,...,1
let the A-th arc consist of the edges,,,. .., Nam,» Where m; is its length. Then the group
J(R)/J°(R) has order
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1
Op—q (M- ) = > I m-
i=1 p#a
More precisely, J(R)/J°(R) is trivial if 1 = 1. For 1 > 2 it is isomorphic to the group
(2/9,2)® (2/9,9:")®...® (Z/gl—zgl_—13z) ® (Z/oy-1(my,.- .. R YA

where g, is the greatest common divisor of all summands occurring in the i-th elemen-
tary symmetric polynomial

o,(my,...,m), i=1,...,1—2.

Proof. We use the formula (¥). A basis of C,(I', Z) is given by the elements

11> e M
Ni2 — M1t cers N2 — M
Him, — Nimy—15 == Him, — Nim—1

Next we write down generators for the canonical lifting M of im a:

i
Z a1 »
i=1
M1z — N1t » cees M2 — M
Nim, — Nimy—1> <> Nim, — Nimy—1
1
- Z rl}.ml H
i=1

and for Hy(I", Z):
Z”U—Z'TU; A=2....1.
J=1 j=1

Using the above generators for C,(I,2), M, and H(T,Z), as well as the fact
that

Mg ="M + a2 — M) + - F (125 — N2j-1) »

if follows that J(R)/JO(R) ~ C,(T’, )M + H,(T, 2)) is isomorphic to the quotient
of the free Z-module generated by 11,511, divided by the submodule generated
by the relations

1
/121 Ha1 > myfa — Mt s A=2,...,1.

. L3 Lo thn mantriv
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1
1
1

1

L

—-m; —my - _rnl_1
m, 0 vee 0

0 ms .e- 0

0 0 m;

Computing the determinant of A by developing it via the first column, we get

detA = o,_y(my,...,m) -

Thus, by the theory of elementary divisors, this is already the group order of
J(R)/J°(R). To determine the elejmentary divisors of 4 explicitly, we use the criterion

involving the ged of minors; cf.
The ged of all coefficients o

Bourbaki [1], Chap. 7, §4, n°5, Prop. 4.
f A is 1; so this is the first elementary divisor. For

1< A<l the ged of all (A x A)-minors is the ged of all products occurring as
summands in the (4 — 1)-st elementary symmetric polynomial Oag(my,. ..,

hence it is g;—, . Therefore the €

15 di1» g2g;1a'

and, consequently, J(R)/J°(R) i

Corollary 11. Let X be a flat pr
is smooth and that the special fi

ementary divisors of 4 are
-1 -1
«os J1-291-3> o1 (my, .- )G

s as claimed. O

oper curve over S. Assume that the generic fibre Xg
bre Xy is geometrically reduced and consists of two

irreducible components X and X, which intersect transversally at | rational points

Xq,.--» % Thus, for each A=1

..., 1, the curve X is, up to étale localization at x;,

described by an equation of type uv = n™. If X has no other singularities, then, just
as in the situation of Proposition 9, the group of connected components of the Néron
model J of the Jacobian Jy of Xi is isomorphic to the group

Z/g. D)® (Z/gzg;ll) ®...0 (Z/g,_zgl__lal) @ (Z/oy—1(my,- .- m,)g,"_l,_Z)

where g, is the greatest common
tary symmetric polynomial

(Ti(mla o

divisor of all summands occurring in the i-th elemen-

~

.,ml)9 i=1,-..,l—‘2.

The assertion is a direct consequence of the preceding proposition since the

minimal desingularization of X

is of the type considered in Proposition 10. Curves

of this type occur within the context of modular curves; see the appendix by Mazur
and Rapoport to the article Mazur [11.

Remark 12. If in the situation of Proposition 10 the graph T of the special fibre of

X is of type
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i, consists of [loops of length m, , ..., m, starting at X, each, the group of connected
components of J can be computed as exercised in the proof of Proposition 10. One

shows
JRWR) =ZImZ®...®Z/mZ

Thereby one obtains an analogue of Corollary 11 for curves X whose special fibre
is irreducible and has at most ordinary double points as singularities.

9.7 Rational Singularities

Let S = Spec R be a base scheme consisting of a discrete valuation ring R. As usual,
K is the field of fractions and k is the residue field of R. Starting with a proper and
flat S-curve X which is normal and has geometrically irreducible generic fibre, we
want to relate the fact that a Néron model J of the Jacobian Ji of X, exists and
that the canonical morphism Pic3 s — J® is an isomorphism to the fact that X has
singularities of a certain type, namely rational singularities. To explain the latter
terminology, assume that X admits a desingujlarization f: X' — X (which, by
Abhyankar [1] or Lipman [1] exists at least in the case where R is excellent). There
are only finitely many points where X is not regular. X is said to have rational
singularities if Rf, (@) = 0. It can be shown that the latter condition is indepen-
dent of the chosen desingularization. |

Theorem 1. Let X be a flat proper curve over|S which is normal and which has
geometrically irreducible generic fibre Xy. Let Xl, ..., X, be the irreducible compo-
nents of the special fibre X,. Assume that X admits a desingularization f: X' — X
and, furthermore, that the following conditions are satisfied:

(i) The residue field k of R is perfect or X admlts an étale quasi-section.

(ii) The greatest common divisor of the geometnc multiplicities 8; of X; in
X, (cf.9.1/3)is 1.

Then, by (i), the Jacobian Jy of Xy admits a Néron model J of finite type and by

(ii), the identity component Pic%s of the relative Picard functor is a scheme. Further-
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more, the canonical morphism Picy,s — J° is an isomorphism if and only if X has
rational singularities.

Proof. It is easily seen that conditions (i) and (ii) carry over from X to X’. For
example, if X admits an étale quasi-section over S, the same is true for X’ by the
valuative criterion of properness since f: X' — X is proper. Thus it follows from
condition (i) and from 9.5/4 that Jy, which is also the Jacobian of X}, has a Néron
model J of finite type. Furthermore, the canonical morphism v: P'//E' — J is an
isomorphism where P’ is the subfunctor of Picy.s given by line bundles of total
degree 0 and where E’ is the schematic closure of the generic fibre of the unit section
of Picys. '

On the other hand, using 9.4/2, condition (ii) implies that Pic} s and Picy,s are
represented by separated schemes. So we get canonical maps between S-group
schemes

PicY,s —> PicY,s < J°,

the latter map being an isomorphism by 9.5/4. So Picg,s — J® is an isomorphism
if and only if PICX/S—) Pic}. s is an 1somorphlsm and the latter is the case if
and only if Lie(Pic3,s) — Lie(Picg,s) is an isomorphism. Writing R[¢] for the
algebra of dual numbers over R, we can interpret Lie(Picy;s) as the subfunctor of
Homg(Spec R[], PICX/S) consisting of all morphisms which modulo ¢ reduce to the
unit section of Picgs. Then, as we have seen in the proof of 8.4/1, it follows that
Lie(Picy/s) can be identified with the cohomology group H (X, 0y). Proceeding in
the same way with X", we see that Lie(Picg,s) — Lie(Pic%.s) is an isomorphism if
and only if the canonical map H'(X, Oy) — H*(X’, 0y.) is an isomorphism.

Now let us look at the Leray sequence associated to f: X' — X. It starts as
follows:

0— H'(X, 0x) — H'(X', Ox) — H°(X, R'f,(0x)) — H*(X, Oy)

Since X is a curve, we have, in fact, a short exact sequence
0— H'(X, Ox) — H'(X', 0x.) — H°(X, R'f,(0x)) — 0.

So H(X, Ox) — H'(X', O) is an isomorphism if and only if H(X, R'f, (0x)) =

Since R'f,(0y) is concentrated at a finite number of closed points of X, the latter
is equivalent to R'f, (0Ox) = 0; ie., to the fact that X has rational singularities. This
establishes the desired equivalence. O

For semi-stable curves over S (cf. 9.2/6), assumptions (i) and (ii) of Theorem 1
are automatically satisfied. So, using 9.2/8, we see:

Corollary 2. Let X be a semi-stable curve over S which is proper, flat, and normal,
and which has a geometrically irreducible generic fibre Xy. Then the Jacobian Jy of
Xy has a Néron model J and the canonical morphism Picy,s — J° is an isomorphism.
In particular, J has semi-abelian reduction.
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In the situation of the theorem we can say that Pic} s is independent of the choice
of the S-model X of X as long as we limit ourselves to proper, normal, and flat
S-curves which have rational singularities. Namely, then Picg,s coincides with the
identity component of the Néron model J of the Jacobian Jy of Xy.

We want to give an application to the modular curve X,(N). To recall the
description of this curve, let N be a positive integer and write Uy for the open
subscheme of Spec Z where N is invertible. Then X,(N)|y, is a proper and smooth
curve over Uy; it is the compactified coarse moduli space associated to the stack of
couples (E, C) of the following type: E is an elliptic curve over some Uy-scheme S
and C is a subgroup scheme of E which is finite, étale, and cyclic of order N. For
N = 1 one obtains the projective line P over Z, to be interpreted as the compactifica-
tion of the affine line where the j-invariant of elliptic curves serves as a parameter.

Writing X,,(N) for the normalization of P in X(N)|y,, the curve Xo(NN) is proper
over Z and extends the curve we had already over Uy. For example, if p is a prime
strictly dividing N, the curve X,(N) has semi-stable reduction at p. More precisely,
the fibre of X,(N) over p consists of two smooth components which intersect
transversally at the supersingular points; cf. Deligne and Rapoport [1], Chap. VI,
Thm. 6.9, or the appendix by Mazur and Rapoport to Mazur [1], Thm. 1.1.

If p? divides N, the geometry of fibres is more complicated and certain compo-
nents have non-trivial multiplicities. In this case one can use the modular interpreta-
tion 4 la Drinfeld which yields information on X, (N), particularly at bad places.
Namely, X,(N) is the coarse moduli space associated to a certain modular stack
. which is relatively representable and regular over Z; cf. Katz and Mazur [1], 5.1.1.
Then, if x is a closed point of X,(N), the henselization at x is a quotient of a regular
local ring by a finite group whose order divides 12. From this one deduces by means
of a norm argument that the singularities of the fibres of X,(N) over any prime
p > 3 are rational. Furthermore, over each prime p, there are irreducible compo-
nents which have geometric multiplicity 1 in the fibre over p; cf. Katz and Mazur
[1], 13.4.7. So, using 9.4/2, and Theorem 1, as well as a globalization argument of
the type provided in 1.2/4, we obtain:

Proposition 3. The modular curve Xo(N) is cohomologically flat over Z and Picg wyz
is representable by a group scheme. Furthermore, outside p = 2 and 3, it is the identity
component of the Néron model of the Jacobian of Xo(N) ®z Q.

Chapter 10. Néron Models of Not Necessarily
Proper Algebraic Groups

For this last chapter we introduce a new type of Néron models, so-called Néron
Ift-models. To define them, we modify the definition of Néron models by dropping
the condition that they are of finite type. Then, due to the smoothness, Néron
Ift-models are locally of finite typej. This is the reason why we use the abbreviation
“Ift”. For example, tori do admit Néron Ift-models whereas, for non-zero split tori,
Néron models (in the original sense) do not exist.

We begin by collecting basic pjroperties of Néron Ift-models and by explaining
some examples. Then, for the local case, we prove a necessary and sufficient condi-
tion for a smooth algebraic K-group G to admit a Néron model (resp. a Néron
Ift-model). In the special case wHere the valuation ring is strictly henselian and
excellent, it states that G, admits a Néron model (resp. a Néron Ift-model) if and
only if G does not contain a subgroup of type G, or G,, (resp. of type G,). In the
last section, we attempt to globalize our results for excellent Dedekind schemes. An
example of Oesterlé shows that one cannot expect a local-global-principle for the
existence of Néron models. However, in the case of Néron Ift-models, we feel that
such a principle is true and formulate it as a conjecture: Gy admits a Néron Ift-model
if Gy does not contain a subgroup of type G,. Finally, admitting the existence of
desingularizations, we are able to show that the existence of Néron models (in the
original sense) is related to the fact that Gg does not contain a non-trivial unirational

subvariety.

10.1 Generalities

If R is a discrete valuation ring with field of fractions K, the set of K-valued points
of the multiplicative group G, x is not bounded in G, ¢. Thus G, x does not have
a Néron model of finite type over R. We will see, however, that there exists a unique
R-model of G,, ¢ which is a smooth R-group scheme and satisfies the Néron
mapping property, but which is not of finite type. This is one of the reasons why we
want to generalize the notion of Néron models.

Definition 1. Let S be a Dedekind scheme with ring of rational functions K. Let Xy
be a smooth K-scheme. A smooth and separated S-model X is called a Néron lft-model

of Xy if X satisfies the Néron mapping property; cf. 1.2/1.

Since we do not require X to be of finite type over S, such models are just locally
of finite type (Ift) over S. As in the case of Néron models, it follows from the Néron
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mapping property that Néron Ift-models are unique and that their formation is
compatible with localization and étale base change. In particular, the analogue of
1.2/4 remains valid: an S-scheme X which is locally of finite type is a Néron Ift-model
of Xy over § if and only if X ®s 0, is a Néron Ift-model of Xy over Spec s ; for
each closed point s € . The Néron Ift-model X of a group scheme Xk is a group
scheme again. In this case the identity component X 0 is of finite type. Namely,
locally on S, there exists an S-dense open affine subscheme U of X° and the map
U x5 U — X°induced by the group law is surjective. Furthermore, it follows from
6.4/1 that any finite set of points of a fibre of X is contained in an affine open
subscheme of X.

In the following we want to generalize certain results on Néron models to the
case of Néron Ift-models. Let us start with the criterion 7.1/1.

Proposition 2. Let R be a discrete valuation ring and let G be a smooth and separated
R-group scheme. Then the following conditions are equivalent: )
(a) G is a Néron lft-model of its generic fibre.|
(b) Let R—> R’ be a local extension of discrete valuation rings where R’ is
essentially smooth over R. Then, if K' is the field of fractions of R, the canonical map
G(R') — G(K') is surjective. (Recall that R’ is said to be essentially smooth over R
if it is the local ring of a smooth R-scheme).

Proof. The implication (a)=>(b) is a consqquence of the Néron mapping
property. For the implication (b) = (a), consider a smooth R-scheme Z and a
K-morphism Z, — Gy of the generic fibres. Due to the assumption, this map
extends to an R-rational map Z ---» G and, hence, to an R-morphism Z — G by
Weil’s extension theorem 4.4/1. Thus we see that G satisfies the Néron mapping
property. ‘ O

Note that, in Proposition 2, it is not suﬁicien;t to ask the extension property for
étale integral points, as it is in 7.1/1 in the case of Néron models. Next we want to
formulate 7.2/1 (ii) for Néron Ift-models; the second proof we have given in Section
7.2 carries over without changes.

Proposition 3. Let R be a discrete valuation ring and let R — R’ be an extension of

ramification index 1 with fields of fractions K and K'. Assume that Gy is a smooth

K-group scheme. If G is a Néron lft-model of Gy over R, then G ®g R’ is a Néron
Ift-model of Gy ®x K’ over R'.

Moreover, there is an analogue of 7.2/4.

Proposition 4. Let S'— S be a finite flat extension of Dedekind schemes with rings
of rational functions K’ and K. Let Gy be a smooth K-group scheme and denote by
Gy the K'-group scheme obtained by base change. Let Hy be a closed subgroup of Gg
which is smooth. Assume that Gy admits a Néron lft-model G’ over S'. Then the Néron
Ift-model of Hy over S exists and can be constructed as a group smoothening of the
schematic closure of Hy in the Weil restriction Ry s(G'). :
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Proof. Since any finite set of points of G’ is contained in an affine open subscheme
of G/, the Weil restriction Ry, 5(G') is represented by an S-scheme which is separated
and smooth; cf. 7.6/4 and 7.6/5. By functoriality it is clear that R, ;s(G')is the Néron
Ift-model of R x(Gg:) over S; cf. 7.6/6. There is a canonical closed immersion

1: Hy — R x(Gie) -

Denote by H the schematic closure of H in Rg5(G"). Then H is flat over S. Similarly
as exercised in Section 7.1 by applying the smoothening process to the closed
fibres of H, we get a morphism H — H from a smooth R-group scheme H to
H by successively blowing up subgroup schemes in the closed fibres. Indeed,
Hn f.’lis,,s(G’)0 is of finite type over S, since the identity component R, 5(G')° of
Rs.s(G) is of finite type over S. So HnRss(G')° has at most finitely many
non-smooth fibres over S. Using translations, one sees that the same is true for H
and, furthermore, that the non-smooth locus of H is invariant under translations.
Then it is clear that the process of group smoothenings will work as in the finite
type case, since it suffices to control the defect of smoothness over H N Ry 5(G')°.
As in 7.1/6, one verifies that H is the Néron Ift-model of Hx over R.

Example 5. Let S be a Dedekind scheme with ring of rational functions K. The
multiplicative group G, x over K admits a Néron Ift-model G over S. Its identity

component is isomorphic to G, s.

Proof. In order to give a precise description of G, one proceeds as follows.. Let s be
a closed point of S and let 7, be a generator of the ideal corresponding to the closed
point s € S over an open neighborhood U(s) of s. So, for each v € Z, we can view T,
asa (U(s) — {s})-valued point of G, 5. Then, let 7y Gy s be a copy of G, 5 x5 Ul(s),
viewed as the translate of G,, s by @ in the Néron lft-model we want to construct.
The translations by the sections x}, v € Z, define gluing data between G, s and the
12+ G,y 5 over U(s) — {s} in a canonical way. So we can define

G=U U @ Gpuys)

sels| veZ

as the result of the gluing of G,, s with the copies (z; - G,, 5) where |S| is the set of
closed points of S.

In order to show that G is a Néron Ht-model of G,, x over S, note first that G is
a smooth and separated S-group scheme with generic fibre Gy, k- So we have only
to verify the Néron mapping property for G. Since the construction of G is com-
patible with localization of S, we may assume that S consists of a discrete valuation
ring R; cf. the analogue of 1.2/4. Due to Proposition 2, it suffices to show for any
extension R — R’ of ramification index 1 that each K'-valued point extends to an
R'-valued point of G. Since the construction of G is compatible with such ring
extensions, we may assume R = R’. But then it is clear that the canonical map
G(R) — G(K) is bijective, so that we are done. O

The example we have just given can be generalized to tori over K.
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Proposition 6. Let S be a Dedekind scheme with ring of rational functions K. Any
torus Ty over K admits a Néron lft-model over S.

Proof. We may assume that S is affine and that it consists of a Dedekind ring R. If
the torus is split, the assertion follows from the above example. In the general case
there exists a finite separable field extension K'/K such that Ty, = Ty @ K’ is split?
If R is the integral closure of R in K, then Ty. admits a Néron 1ft-model over R’
Now the assertion follows from Proposition 4. O

Also we can handle the case of extensions of certain algebraic K-groups by tori.
_For technical reasons we will restrict ourselves to split tori, although this restriction
Is unnecessary as can be seen by using 10.2/2.

Proposition 7. Let S be a Dedekind scheme with ring of rational functions K. Let Gy
be a smooth connected algebraic K-group which is an extension of a smooth algebraic
K-group Hy by a split torus Ty. Assume that Hom(H, G,, x) = 0; for example, the
latter is the case if Hy is an extension of an abelian veriety by a unipotent group.
Then, if Hy admits a Néron Ift-model over S, the same is true for Gy.

Proof. Since Ty is a split torus, say of rank r, the extension Gy of H by Tg is given
by primitive line bundles %,,..., %, on Hy; cf. Serre [1], Chap. VII, n°15, Thm. 5.
Although Serre considers only the case where Hy is an abelian variety, the result
extends to our situation, since each homomorphism of Hy to G, x is constant. A
line bundle £ on a group scheme G is called primitive if there is an isomorphism

M =pt L Qpi¥

where m is the group law of G and where p;: G x G — G are the projections, i =
1, 2. Since the local rings of the Néron model H of H ¢ are factorial, the line bundles
&, p=1,...,1, extend to primitive line bundles on the identity component H° of
H. Thus, they give rise to an extension

1—-T°—>G°~—>H'—1
whose generic fibre is the extension we started with. Then G° will be the identity

component of the Néron Ift-model G of Gy whereas G itself has to be constructed
by gluing “translates” of G°.

In order to do this, let us start with the construction of the local Néron Ift-model

at a closed point s of S. Let R$" be a strict henselization of the local ring R, and let
K% be its field of fractions. Then set.

As = GKM/GO(RY) = I, = T(KS)/ TR,

where I is isomorphic to Z". Due to Hilbert’s Theorem 90, the quotient A./L, is
canonically isomorphic to the group H(K%*)/H(R*). In the case where A, can be
represented by a set {4} of K-valued points of G, we can, similarly as in Example
5, define-a smooth and separated R-group scheme

6= (U (46

AseAg
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as the result of a gluing where the gluing data are concentrated on the generic fibre
and are given by the translations with the sections A,. Then each K-valued point of
Gy extends to an R-valued point of G. Since this construction is compatible with
any extension R — R’ of ramification index 1, each K'-valued point of G extends
to an R'-valued point of G where K’ is the ring of fractions of R". Then, using
Proposition 2, one shows that G(s) satisfies the Néron mapping property. Hence, it
is the Néron Ift-model of Gy over R,. If the sections {1,} are not defiued over R,,
one shows by means of descent that the group G(s) which can be defined over a
strict henselization R of R, is already defined over the given ring R, and, hence, is
a Néron Ift-model of G over R,. In the global case, the Néron lft-model G of Gy is
given by gluing the local models G(s), s € | S|, where | S| is the set of all closed points
of S; hence 3
G=J G@).
‘ sels]

In order to explain the gluing procedure, consider a “component” G(s) of G(s);
thereby we mean an open subsclgeme consisting of G and of a connected component
of G(s). Then G(s) is of finite type over R, and, hence, it extends over an open
neighborhood U(s) of s. Since Gy is connected, we may assume that G(s)’ coincides
with G° over U(s) — {s}. So this way we obtain gluing data between G° and each
component G(s)’ of G(s) and, hence, between G® and G(s). It is clear that these data
give rise to gluing data for the family (G(s); s € |S|). In particular, the pull-back of
G to the local scheme Spec Us , is isomorphic to G(s). Thus, it is clear that G satisfies
the Néron mapping property ajnd, hence, is a Néron Ift-model of G, over S. [

Unipotent K-groups may contain a subgroup of type G,. So they do not
necessarily admit Néron Ift-models as we will see by the following proposition. But
we mention that, if K is not peﬁfect, there are smooth connected unipotent groups,
so-called K-wound unipotent groups, which do not contain the additive group G, .
In Section 10.2 we will discuss the existence of Néron models for such groups.

Proposition 8. Let S be a Dedekind scheme with ring of rational functions K. If Gg
admits a Néron lft-model, then Gy does not contain a subgroup of type G,.

Proof. Since Néron Ift-models are compatible with localizations and étale extensions
of the base scheme, we may aséume that S consists.of a strictly henselian discrete
valuation ring R with uniformizing parameter . Proceeding indirectly, we may
assume by Proposition 4 that Gy = G, x and that G admits a Néron Ift-model G.

Let us fix a coordinate functioh &, for G, say Gy = Spec K[£,]. Then set G" =
Spec R[£,] for n € N, where the; &, are indeterminates, and consider the morphisms

G" = SpecR[£,] —> G"*! = Spec R[£,41]

induced by sending &,., to n-¢,. These morphisms induce the zero map on the
special fibres. We regard each G" as a smooth R-model of Gk via the isomorphism

 G"®r K— Gy
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induced by the map K[¢,] — K[¢£,] sendihg o to 77"¢,. Thus, we get commuta-
tive diagrams

\,/

Due to the Néron mapping property, these diagrams extend to communtative

diagrams
G"\‘——>
G

The morphisms induce-the zero map on special fibres. So we see that each S-valued
point of G specializes into the zero section, since such a point can be regarded as
an S-valued point of some G*. Hence, we arrive at a contradiction. O

n+1
. GK

Gn+1

Next we will discuss a criterion relating the existence of global Néron Ift-models
to the existence of local Néron Ift-models.

Proposition 9. Let S be a Dedekind scheme with ring of rational functions K. Let Gy
be a smooth connected algebraic K-group. Assume that, for each closed point s of S,
the local Néron lft-model of Gy over Os, exists. Then the Jollowing conditions are
equivalent: |

(@) Gk admits a global Néron Ift-model over S.

(b) There exists a dense open subscheme U of S and, over U, a smooth group
scheme with connected fibres which coincides w}ith the identity component of the local
Néron Ift-model Gy for each closed point s of U.

(c) There exists a coherent (locally free) Osrmodule & which, over each local ring
of S, coincides with the Lie algebra of the local Néron lft-model of Gy.

Proof. The implication (a)=>(c) is trivial. To show the implication (c) =>
(b), let G(s)°, for any closed point s of S, be the identity component of the local
Neéron Ift-model of Gy over Us ;. Since G(s)° is quasi-compact, there exist an open
neighborhood U(s) of s and a smooth U(s)-grmflp scheme G, with connected fibres
such that G, induces G(s)° over the local ring 0s,;. Furthermore, due to the
assumption (c), we may assume that the Lie algebra of G coincides with the Lie
algebra of the local Néron Ift-model at each point ¢ of U(s). Then, for each ¢ & U(s),
the canonical map 3

G Xy Spec Os , — G(1)°

is étale and, hence, an isomorphism, since it is an isomorphism on generic fibres.
So condition (b) is clear. :

For the implication (b) =>(a) we will first construct the identity component
of the Néron Ift-model. So let G be the U-group scheme given by condition (b). If s
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is a closed point of § not contained in U, the identity component G(s)° of the Néron
Ift-model of Gy over U  is of finite type over U5 , and, hence, extends to a smooth
group scheme Gg, with connected fibres over an open neighborhood U(s) of s. Since
GY and Gg(s) coincide on the generic fibre, they coincide over an open neighborhood
of sin U n U(s). So we get gluing data and, hence, a smooth S-group scheme G°
with connected fibres which coincides with the identity components of the local
Néron Ift-models at closed points of S. Now, a Néron Ift-model G of Gy is obtained
by gluing the local Néron Ift-models G(s), s € | S|, where |S] is the set of all closed
points of S; i.e.,
G=J G@s).
sels|

The procedure is the same as in Proposition 7. Also the Néron mapping property
is verified as exercised in the proof of Proposition 7. O

Since a smooth group scheme with connected fibres over a Dedekind schel_nfa is
quasi-compact, the proof of the implication (b) =>(a) of the above proposition
shows the following fact:

Corollary 10. Let S be a Dedekind scheme with ring of rational functions K. Let Gy
be a smooth connected algebraic K-group. Assume that there exists a global Néron
Ift-model of Gy over S. Then Gy admits a Néron model over S if and only if the groups
of connected components of the local Néron lit-models are finite and, for almost all
closed points of S, are trivial.

Finally, we want to give an example showing that the existence of local Néron
models does not imply the existence of a global Néron model. )

Example 11 (Oesterlé [1]). Let R be an excellent Dedekind ring with field of fractions
K of positive characteristic p, let K'/K be a radicial field extension of order p", and
let R’ be the integral closure of R in K'. Let Gy be the Weil restriction of the
multiplicative group G, x- with respect to K'/K. Consider the quotient Uy =
Gy/G,,x where G, ¢ is viewed as a subgroup of Gy via the canonical closed
immersion

Gm,x—" GK = mx'/K(Gm?K') .

For each closed point s of Spec R, we will see that the local Néron model exists and
that its group of connected components is a cyclic group of order e, where e, is the
index of ramification of the extension R}/R,. Moreover, Uy admits a global Néron
Ift-model over R which, in general, will not be of finite type over R if R has infinitely
many maximal ideals.

As a typical case, one may take for R the ring of an affine normal curve over a
perfect field. In this case, the ramification index at each closed point coincides with
the degree of the radicial extension [K': K]. In particular, Uy does not admit a global
Néron model if the extension K'/K is not trivial.
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So let us justify the fact on Uy we have claimed above. Due to Hilbert’s Theorem
90, we have

Ux(K) = (K')*/K* .

If R is a discrete valuation ring and R — R’ is of ramification index e, the group
Ug(K) can be written in the form

(K')*/K* = (R')*/R* x (Z/eZ) -
Similarly as for the generic fibre, we have a canonical map

Gur— Gy = ERR'/R(‘G’m,R') s
which is a closed immersion. Thus, we can define the quotient
U° = Gg/G,, & -

which is a smooth separated algebraic space; cf. 8.3/9. Due to 6.6/3, it even is a
smooth R-group scheme. Moreover, we have

U(R) = (R)*/R* .

For each closed point s of Spec(R), the local Néron model U (s) is obtained by gluing
U® @y R, with e, copies of it along the generic fibre where the gluing data are given
via the translation on the generic fibre by representatives of U(K)/U°(R,). Then, as
in Example 5, it is easy to see that Uj satisfies the Néron mapping property. By
Proposition 9, we see that there exists a global Néron 1ft-model of Uy over R.

One can show that the global Néron Ift-model of Uy is isomorphic to the
quotient of the Weil restriction of the Néron model of G,, x- by the Néron model
of G, k- . O

10.2 The Local Case

In the following, let R be a discrete valuation ring with field of fractions K and let
Gy be a smooth commutative algebraic K-group. So, in particular, Gy is of finite type
over K. We want to discuss criteria for the existence of a Néron model (resp. of a

Néron Ift-model) of G over R depending on its structure as algebraic group. To fix '

the notations, let R be the strict henselization of R with field of fractions K, let
R* be the strict henselization of the completion R of R, and let K be the field of
fractions of R*". Since certain parts of our considerations will require an excellent
base ring, recall that the strict henselization of an excellent discrete valuation ring
is excellent again by 3.6/2. So R** is excellent. In particular, the extension R*/K is
separable. Furthermore, if R is excellent, R®" is excellent and the extension K*/K is
separable.

We will first concentrate on Néron models. We know already that G admits a
Néron model if and only if the set of its K**-valued points is bounded in Gx. Now
we want to formulate a necessary and sufficient condition for the existence of a
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Néron model for Gy in terms of the group structure of G. Let us begin with some
definitions. If X is a separated K-scheme of finite type, a compactification of X is an
open immersion X —» X of X into a proper K-scheme X such that X is schemati-
cally dense in X. The subscheme X — X will be referred to as the infinity of the
compactification. Due to Nagata [1], [2], compactifications always exist. If, in
addition, X and X are regular, we will call X a regular compactification of X. For
a regular K-scheme X, there exists a regular compactification if the characteristic
of K is zero or if the di‘mension of X is <2; cf. Hironaka [2] and Abhyankar [1].

Theorem 1. Let R be a discrete vqluation ring with field of fractions K, and let G
be a smooth commutative algebraic K-group. Then the following conditions are
equivalent: |
(a) Gy has a Néron model over R.
(b) Gx ®x R** contains no subgroup of type G, or G,
(c) Gx ® R** admits a compactification without a rational point at infinity.
(d) Gg(R*)is bounded in Gg.
(e) Gx(K™)is bounded in Gg.
If, in addition, R is excellent, the above conditions are equivalent to
(t') Gy ®x K** contains no subgroup of type G, or G,
(¢') Gx ®k K™ admits a compactification without a rational point at infinity.

For example, a K-wound commutative unipotent algebraic K-group admits a
Néron model over R if R is cx¢ellent. Namely, such a group does not contain
subgroups of type G, or G,, and this property remains true after any separable field
extension; cf. Tits [1], Chap. IV, Prop. 4.14.

If Gy is the Jacobian Jy of a normal proper curve Xy over K assumed to be
geometrically reduced and irreducible, then, due to 9.2/4, there is no subgroup of
type G, or G,, in Jx ® L, for any separable field extension L of K. So, if K is the
field of fractions of an excellent discrete valuation ring R, our theorem implies that
Jg admits a Néron model over R; cf. 9.5/6. Furthermore, there is a natural compacti-
fication of J without a rational point at infinity; cf. Example 9.

Before starting with the proof of Theorem 1, we want to deduce a criterion for
the existence of Néron lft-models.

Theorem 2. Let R be a discrete valuation ring with field of fractions K and let G
be a smooth commutative algebraic K-group. Then. the following conditions are
equivalent: |
(2) G admits a Néron lft-model over R.
(b) Gk ® R contains no subgroup of type G,.
If, in addition, R is excellent, these conditions are equivalent to
(b') G contains no subgroup of type G,.

Let us first deduce Theorem 2 from Theorem 1. The implications (a) = (b) and
(a) => (b") follow from 10.1 /3 and 10.1/8. Next let us show the implication (b') =>
(a) under the assumption that Ris excellent. Let Ty be the maximal torus of Gg; cf.
[SGA 3,], Exp. XIV, Thm. 1.1. Then we have an exact sequence of algebraic
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K-groups
l— TK—’GK‘—’HK"—>1 >

where Hy is an extension of an abelian variety by a linear group and where the
latter is an extension of a unipotent group Uk by a finite multiplicative group; cf.
9.2/1 and [SGA 3,], Exp. XVII, Thm. 7.2.1. Due to [SGA 3], Exp. XVII, Thm.
6.1.1(A)(ii), the K-groups Hy and, hence, Uy do not contain a subgroup of type G,
since the same is true for G. Then it follows from Tits [1], Chap. IV, Prop. 4.1.4,
that Uy ®¢ K’ and, hence by [SGA 3,1, Exp. XVII, Lemme 2.3, that Hy ®y K’ does
not contain a subgroup of type G, for any sjeparable field extension K’ of K.
However, there exists a finite separable field extension K’ of K such that Tx ®x K’
is split. So, if R’ is the integral closure of R in K, the K'-group Hy ®j K’ admits a
Néron model over R’ by Theorem 1, since R’ is|excellent. Hence, Gx @k K’ admits
a Néron lit-model over R’ by 10.1/7. Then it follows from 10.1/4 that Gy admits a
Neéron lft-model over R. For the proof of (b) == (a), we may assume R = R* by
10.1/4. In particular, R is excellent now and, hence, the assertion follows from the
implication (b’) = (a) which has just been proved. O

Now we come to the proof of Theorem 1. Some parts of it have already been
proved:
(a) =>(b) Néron models are compatible with base change of ramification index
1; cf. 7.2/2. Hence Gx ®x K admits a Néron model of finite type over R*". So the
set of K*-valued points of Gy is bounded in Gy and, hence, Gy ®g K" cannot
contain a subgroup isomorphic to G, or G,,.
(b) =>(b') is trivial. ‘
() =>(d) follows from 1.1/10, since R*" is excellent.
() =>(e) follows from 1.1/10, since R*" is excellent.
(d) =>(e) is trivial.
(e) =>(a); cf. Theorem 1.3/1.
The remainder of this section is devoted to the proof of the implications
(b) =>(c) and (b') =>(¢').
Let us first explain the meaning of conditions (c)|and (c')

Proposition 3. Let X be a smooth and separated K-scheme of finite type. Consider the

Jollowing conditions:
_ {a) There exists a compactification X of X such that there is no rational point in
X—-X.
(b) For any affine smooth curve C over K with arational point s, each K-morphism

C — {s} — X extends to a K-morphism C — X

(¢) The canonical map X(K[[£]]) — X(K((£))) is bijective, where & is an in-
determinate and where K((£)) is the field of fractions of K[[£]].

Then one has the following implications: (a) =>|(b)<=>(c). If, in addition, X admits
aregular compactification X', conditions (a), (b), (c) are equivalent and, moreover, they
are equivalent to

(d) (X' — X)(K) is empty.
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Proof. (a)=>(b) is trivial, since such a morphism C — {s} — X extends to a
morphism C — X and since the image of s gives rise to a rational point of X.

(b) =>(c). Let R be the localization of K[&] at the origin and let a € X (92
If X is a compactification of X, one can view a as a K[[¢]]-valued point of X. Since
R is excellent, it follows from 3.6/9 that there exists a local étale extension R’ of R
with residue field K and an R'-valued point a’ of X inducing the given point a on the
closed fibre. Furthermore, we may assume that the generic fibre of a’ is contained
in X. Rewriting the situation in terms of curves, it means that there are an étale map
@ : C — Ay of an affine curve to the affine line, a rational point s of C lying above
the origin, and a morphism « : C — X such that the local ring of C at sis isomorphic
to R’ and such that a induces the R'-valued point a’. Due to (b), the image of « is
contained in X. Thus, we see that a is a K[[£]]-valued point of X and the
implication (b) =>(c) is clear.

(c) =>(b). The completion of the local ring of C at s is isomorphic to a formal
power series ring K[[£]]. Hence the assertion follows as in 2.5/5.

(b) =>(d). Let x be a rational point of X' — X. By taking hyperplane sections,
one can construct an irreducible subvariety C of X’ of dimension one such that C
isnot containedin X’ — X, such that the point x lies on C, and such that Cis smooth
at x. We may assume that C is smooth over K. Hence, the inclusion C — X yields
a contradiction to (b).

(d) =>(a) is evident. O

In order to complete the proof of Theorem 1, it suffices to show that a commuta-
tive algebraic K-group G which contains no subgroup of type G, or G,, admits a
G-equivariant compactification G without a rational point at infinity. A compactifi-
cation G is called G-equivariant if G acts on G and if the action is compatible with
the group law on G. Let us start with some technical definitions.

Definition 4. Let G be an algebraic K-group which acts on a K-scheme X ‘of finite
type. A subscheme Z of X is called a K-orbit under the action of G if there exist a
finite field extension K’ of K and a K'-valued point x’ of Z ®g K' such that Z @y K’
is the orbit of x' under G ®y K'.

Definition 5 (Mumford [1], Chap. 1.3). Let G be an algebraic K-group with an action
o on a K-scheme X. Let n: L— X be a line bundle on X. A G-linearization is a
bundle action A of G on L which is compatible with the G-action on X ; i.e., the diagram

GXKL—A> L

idenJ l n

GxgX —2 - X
is commutative.

For example, look at the canonical action of GL ,,, on P" and at the canonical
ample line bundle Op.(1). There is a canonical GL,,,-linearization on @p.(1), but
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the action of the projective linear group PGL, cannot be lifted to a PGL,-
linearization of Opn(1).

Now consider a scheme T and a flat T-group scheme G of finite presentation
which acts on a T-scheme X of finite presentation. Let P be a torsor under G over
T. Then G acts freely on X x5 P by setting

go(x,p)=(gox,gop).

Denote by (X x P)/G the quotient (in terms of sheaves for the fppf-topology) of
X x g P with respect to the G-action. The quotient commutes with any base change
T' —> T. If P — T admits a section, there is an isomorphism (X xp P)/G — X.
So, (X xg P)/G becomes isomorphic to X and, hence, is representable after a
base change with an fppf-morphism, since P — T'is of this type. If L is a line bundle
on X with a G-linearization, then M = (L x, P)/G gives rise to a line bundle on
(X x P)/G provided that (X xg P)/G is a scheme. Due to 6.1/7, we have the
following lemma.

Lemma 6. If L is T-ample, then (X xp P)/G is a T-scheme and M = (L xr P)/G is
T-ample.

Now let T be the affine scheme of a field K and let G be a smooth K-group
scheme. If, in addition, X is projective, the quotient (X x P)/G is always a scheme.
Namely, after a finite Galois extension K'/K, there exists a K'-valued point of P.
So, the quotient is representable after the extension K'/K. Since finite Galois descent
is effective for quasi-projective schemes, we see that (X xg P)/G is represented by a
quasi-projective K-scheme.

The proof of the implications (b) =>(c) and (b') =>(c’) in Theorem 1 will be
provided by Theorem 7 below. Namely, if G is not connected, then (G° x G)/G°
yields a compactification of G as required, where G° is a compactification of the
identity component G° as in condition (d) below.

Theorem 7. Let K be a field and let G be a connected (not necessarily smooth)
commutative algebraic K-group. Then the following conditions are equivalent:

(a) G contains no subgroup of type G, or G,,.

(b) G admits a compactification G without a rational point at infinity.

(c) G admits a G-equivariant projective compactification G such that, for each
K-torsor P under G, there is no rational point in (G x ¢ P)/G — (G x¢ P)/G.

(d) G admits a G-equivariant projective compactification G such that there is no -

K-orbit of G under G contained in G — G.

If, in addition, G is linear, these conditions are equivalent to

(d') G admits a G-equivariant compactification G together with a G-linearized
ample line bundle such that there is no K-orbit of G under G contained in G — G.

Remark 8. (i) For a smooth K-wound unipotent algebraic group, the existence of
an equivariant projective compactification without rational points at infinity has
also been established by Tits (unpublished).

(ii) Presumably, the commutativity of G in Theorem 7 is not necessary. In
particular, one can expect that a smooth algebraic K-group which does not contain
a subgroup of type G, or G,, admits an equivariant projective compactification
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without rational points at infinity. The latter is mainly a question of linear groups.
It can be answered positively if G is semi-simple; cf. Borel and Tits [1].

Before starting the proof of Theorem 7, let us have a look at Jacobians where, in
certain cases, canonical compactifications exist; cf. Altman and Kleiman [1] and [2].

Example 9 (Altman and chimfan [1], Thm. 8.5). Let X be a proper curve over a
field K, assumed to be geometrically reduced and irreducible, and let J = Pic%x be
its Jacobian. Let J be the fppf—$heaf induced by the functor which associates to a
K-scheme S the set of isomorphism classes of modules on X X § which are locally
of finite presentation and S-flat, and which induce tors_ion-free modules of rank 1
and degree 0 on the fibres of X xg S over S. Then J is a projective K-scheme
containing J as an open subscheme. If, in addition, X is normal, there is no rational
point contained in J — J.

Indeed, we may assume that K is separably closed, so X has a rational point.
Then a rational point of J represents a torsion-free rank-1 module of degree 0 on
X. Since X is a normal curve, such a module is invertible and, hence, represents a
point of J. Moreover, since J is smooth, any K-orbit of J under J is smooth, too.
So, by the same argument as above, it is clear that there is no K-orbit of J contained
inJ —J.

Let X be locally planar (ie., the sheaf of differentials is locally generated by at
most two elements); for example, this is the case, if X is normal and if K admits a
p-basis of length at most 1. Then J is schematically dense in J and, hence, J is a
compactification of J in our sense; cf. Rego [1]. The canonical action of J on iFself
by left translation extends to an action of J on J and, hence, J is a J —equi‘ia‘rlant
compactification of J. In the general case, the schematic closure of Jin J is an
equivariant compactification in our sense.

Now let us prepare the proof of Theorem 7. The implications
@)=>d)=(©)=>b)=()

are quite easy whereas the proof of (a) => (d) (resp. of (a) =>(d)) will be explained
in the remainder of this section. If G is smooth over a perfect field K, it is an extension
of an abelian variety by a smooth connected linear group L which is a product of
a torus and a unipotent group, cf. 9.2/1 and 9.2/2. Furthermore, the unipotent part
is a successive extension of groups of type G,; cf. [SGA 3,1, Exp. XVII, Cor. 4.1.3.
Thus, condition (a) implies that the unipotent part of L is trivial and, hence, that G
is an extension of an abelian variety by a torus in this case. So, when we are given
a smooth K-group G, the later donsiderations concerning unipotent groups are only
of interest in the case where the base field K is not perfect.

Due to the structure of commutative algebraic groups, we will reduce the general
situation by “dévissage” to thejfollowing special cases:

—K-wound unipotent (no# necessarily smooth) algebraic K-groups; ie., con-
nected unipotent K-groups which do not contain subgroups of type G,.

—anisotropic tori; i.e., tori which do not contain subgroups of type G,,.

We will begin by discussing the K-wound unipotent case. If the group under
consideration is smooth and killed by multiplication with p, one has a rather explicit

description of it.
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Proposition 10 (Tits [1], Chap. ITI, Section 3). Let K be a field of characteristic p > ()
with infinitely many elements. Let G be a smooth connected commutative algebraic
K-group of dimension n — 1 such that p- G = 0. Then G is K-isomorphic to a closed
subgroup of G} defined by a p-polynomial

S

P eK[T;,....T,].

-

Il
it

F(Tla---:q;;)= Cij'T;

0

il

=1y

If, in addition, G contains no subgroup of type G,, one can choose F (Ty,...,T) in
such a way that the polynomials |

m;
Z ¥ e K[T]
are non-zero, i = 1,...,n, and that the principal part

f(Tli"'S 7;:) = Z cimi. Ep""
i=1

of F(T,,..., T,) has no non-trival rational zero in A%.

Using the specific situation of Proposition 10, it is easy to find an equivariant
compactification for smooth unipotent commutatlve groups which are K-wound
and are killed by multiplication with p.

Proposition 11. Let K be a field of characteristic p > 0. Let G be a smooth connected
commutative algebraic K-group which is killed by multiplication with p. If G is
K-wound, then G admits a G-equivariant compactlﬁcatlon G together with a
G-linearized ample line bundle such that there is no K-orblt of G under Gin G — G.

Proof. We may assume that K has infinitely many elcments otherwise G is trivial.
Keep the notations of the last proposition and assume that the exponents occurring
in the principle part of the p-polymonial satisfy

m<my<..<m,.
Let P be the quasi-homogeneous space over K with coordinates
Y, i=01,...,n,
having weights

w; = p"eT i=0,..,n,

where we have set m, = m,. The open subspace U, of P where Y, is not zero can
be viewed as the group G” with coordinates

T, =Y/Yy, i=1,...,n.
The action of U, on itself extends to an action on P by setting

Uy xk, P— P, () o, y)) > (o, ¥i + 15 57 .
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We regard G as a closed subscheme of U, given by a p-polynomial F(T;,..., T,).
Now, let X,,,..., X, be the coordinates of the projective space P% and let

u:P— P}

be the morphism sending X; to (¥;)*™. Denote by ¥, the open subscheme of Pk
where X, does not vanish. We can view ¥, as the group G; with coordinates ‘

S,=X/Xy, i=1,...,n
The morphism u induces a morphism
uy:Ug— Vg

of algebraic K-groups and the morphism u is equivariant. In terms of coordinates
of rational points the equivariance means the commutativity of the following

diagram
Uy xg P —— P ((t:), (D0, ¥)) ¥ (Yo, ¥i + " (¥0)™)

)

Vo x Pg ——— Px ((s0)s (X0, X)) > (%05 X; + 5;° Xo)
where s; = tF™ for i = 1,...,n and where x; = (y;)*"" for i = 0,..., n. The canonical
sheaf Opy (1) has a V,-linearization. Hence, u*(0p;(1)) is an ample invertible sheaf
on P which has a Up-linearization. :
The schematic closure G of G in P is given by the polynomial
(o)™ F(Y1/Yg",..., Y./ Y5™)

which can be viewed as a weighted homogeneous polynomial in the variables
Yg,-.., Y,. Due to the choice of the weights, the principal part f(Y;,...,Y,) of
F(Y,,...,Y,) is a weighted homogeneous polynomial and describes the set of the
points at infinity of the compactification G. So, we have

G—G={yeP, f(»)=0}.

Due to Proposition 10, there is no rational point in G —G. Moreovcr G acts
trivially on G — G. So G cannot contain a K-orbit under G at infinity. O

In order to generalize Proposition 11 to smooth unipotent commutative
K-wound groups which are not necessarily killed by multiplication with p, we will
need the following lemma.

Lemma 12. Let G be a connected unipotent commutative algebraic K-group. Assume
that G is smooth and K-wound. Then there exists a filtration

0=GycG cG,c...cG, =G

such that the successive quotients have the same properties as G, and, in addition, are
killed by multiplication with p.
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Proof. Let n be the smallest integer such that G is annihilated by p". We will proceed
by induction on n. Let N (resp. I) be the kernel (resp. the image) of the p-multiplica-
tion on G. Then I is a smooth connected subgroup of G and, hence, K-wound. The
group N is not necessarily smooth. So, consider the largest smooth subgroup M of
N. Then M is K-wound as a subgroup of G and, since M is the largest smooth
subgroup of N, the quotient N/M is K-wound, too. Since theimage of the multiplica-
tion by p"! is contained in N and is smooth, the quotient G/M is killed by
multiplication with p"~*. Moreover, G/M is K-wound, since it is an extension of I
by N/M both of which are K-wound. Then we can set G; = M and the induction
hypothesis is applicable to G/M. O

Proceeding by dévissage, we are now able to prove Theorem 7 for unipotent
groups which are smooth. But when treating general commutative groups, we will
also be concerned with unipotent groups which occur as unipotent radicals. Such
unipotent groups do not need to be smooth. Therefore, we need the following
lemma.

Lemma 13. Let G be a connected unipotent commutative algebraic K-group which is
not necessarily smooth.

(a) There exists an immersion of G into a connected unipotent commutative
algebraic K-group G' which is smooth.

(b) If G is K-wound, one can choose G' to be K-wound, too.

Proof. (a) We will first show that G can be embedded into a smooth unipotent
commutative group. Denote by F, the kernel of the n-fold Frobenius morphism on
G. Due to [SGA 3,1, Exp. VII,, Prop. 8.3, there exists an integer n € N such that
the quotient G/F, is smooth. Thus, it suffices to show the assertion for the group F,.
So we may assume that G is a finite connected unipotent group. Hence, itisa
successive extension of groups of type a,; cf. [SGA 3;], Exp. XVII, Prop. 42.1.
Consider now the Cartier dual G* of G, which is a successive extension of groups
of type a, also. Hence, the algebra 4 = I'(G*, ®g+) is local. The algebraic group U
representing the group functor

(Sch/K)® — (Groups) , T+ T(T xgx G*, 0%, cv)

is smooth. Interpreting the points of G as characters of G*, one gets a morphism

G —> U which is an immersion and which is closed, since G is finite. Since Aislocal,
U is a product of the multiplicative group G,, and of a smooth connected unipotent
group G'. Since G is unipotent, the morphism G — U yields an embedding of G
into G'.

(b) Let us start by collecting some facts on extensions of commutative unipotent
algebraic groups by étale groups.

(1) If N is an étale K-group and H is an algebraic K-group, the canonical map

Ext(H, N) — Ext(H ®¢ K', N ® K')

is bijective for any radicial field extension K'/K; of. [SGA 1], Exp. IX, 4.10.
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(2) Let

1—G,—G,— Gy —1

be an extension of smooth commutative unipotent algebraic K-groups. Then the
canonical sequence of quasi-algebraic commutative group extensions

1 —> Ext(Gs, Q,/Z,) — Ext(G,, Q,/Z,) — Ext(G{,Q,/Z,) —1
is exact. If G, is killed by multiplication with p", one can replace Q,/Z, by Z/p"Z.

Now, due to (1), we may assume that K is perfect. In this case, the result is provided

by Bégueri [1], Prop. 1.21.
(3) If K is not perfect, there exists for each smooth connected commutative

unipotent K-group G a commutative extension
1—-N—G—G—1
of G by a finite étale group N such that G is K-wound.
Namely, we may assume that G is an extension
1—G,—G—G—1
of a smooth connected unipotent K-group Gy by G,. Proceeding by induction on
the dimension of the group, we may assume, that there exists a commutative
extension G, of G, by a finite étale group such that G, is connected and K-wound.
Then, one is easily reduced to the case where G, is K-wound. For the group G, and
each element x € K — K?, consider the extension
1 — Z/pZ —> G (x) — G, — 1
where G ,(x) is defined as a subgjroup of G, x G, by the p-polynomial
T+ xTY - Th
and the map G, (x) — G, is the second projection. Then, due to (2), there exists an

extension G — G by a finite étale group which induces G,(x) — G, by restriction.
Thus, G is K-wound as an extension of K-wound groups.

Using these results, the proof of assertion (b) is easily done. Assume that K is
pot perfect and let G be connect;cd, unipotent, commutative, and K-wound. Due to
(a), there exists an immersion of G into a smooth unipotent commutative connected
group G, . Let H be the quotient of G, by G, so we have the exact sequence

1—G— G, — H—1.

Since G, is smooth, H is smooth also. Due to (3),. there exists a commutative

extension ; N
1—N—H—H—1.

of H by a finite étale group N chh that H is K-wound and connected. Pulling back

this extension to G,, one gets a commutative extension
1—+N—G,—G,—1.

Note that G, is smooth and unipotent. Denote the identity component of G, by G

Hence, one gets an exact sequence

16— G —H—1.
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So the group G’ is smooth, unipotent, commﬁtative, and connected, and, as an
extension of K-wound unipotent groups, it is K-wound, too. O

Next we want to discuss the compactification of tori. Let T be a torus, denote
by M the group of characters of T and by N the group of 1-parameter subgroups
of T. Then

M = Homg(T,G,) and N = Homg(G,,, T)
are Gal(K/K)-modules, where K is an algebraic closure of K. There is a perfect
pairing

MxN-—Z.

Hence, N and M are canonically dual to each other. Recall that T is anisotropic if
one of the following equivalent conditions is satisfied:
(i) T does not contain a subgroup of type G,,,
(ii) T does not admit a group of type G,, as a quotient.
(iii) M does not contain the unit representation.
(iv) N does not contain the unit representation.

Proposition 14. Let T be an anisotropic torus over K. Then T admits a T-equivariant
compactification T such that T is normal and pr&jective, such that T — T does not
contain a K-orbit under T, and such that there is an ample line bundle on T with a
T-linearization on it. ‘

Proof. Equivariant compactifications of tori are closely related to rational poly-
hedral cone decompositions of Ng = N ®; Q. Over an algebraically closed field,
this technique is well documented in the literature; cf. Kempf et al. [1], Chap. I, §§ 1
and 2. So, we will only give advice how to proceed in the case of an arbitrary field.

Consider a finite rational polyhedral cone decomposition {a,} of Ng, which is
invariant under Gal(K/K). The vertex of each cone is the origin of Ng. Let T be the
associated T-equivariant compactification of T. The variety T is normal and projec-
tive. It has a finite number of orbits under T anjd these correspond bijectively to
the faces of the decomposition {a, }; cf. Kempf et al. [1], Chap. I, § 2, Thm. 6. Since
{0.} is invariant under Gal(K/K), the Galois group acts on the K-variety T and,
hence, by projective descent, T is defined over K.

We are going to show that T — T does not contain a K-orbit under T So assume A

that there is a K-orbit in T — T. It corresponds to a mon-zero face o of the
decomposition {g,} which is stable under Gal(K/K). Consider now the set of the
extreme edges of ¢ which consists of a finite number of half lines {L;,i e I}. This set
is invariant under Gal(K/K). Now we can choose non-zero points x; € L;,i € I, such
that the set {x;, i € I} is invariant under GaI(If/K); So the point x =) ;_,x;is a
non-zero point of ¢ which is invariant under Gal(K/K) and, hence, gives rise to a
non-zero element of N. Thus, we get a contradiction to T being anisotropic.

It remains to show that there is an ample T-linearized line bundle on T Let %
be the ample line bundle on 7. Since the Picard group of T is discrete (use Kempf
etal.[1]. Chap. 1, §2, Thm. 9), .% is invariant under T Hence, it is easy to see that a
power of % admits a T-linearization. |
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For the dévissage, we need a technique of constructing an equivariant compact-
ification of an extension of groups with given equivariant compactifications. This
part works also for not necessarily commutative groups.

So consider an exact sequence

l1—>G—E—H—1

of algebraic K-groups. In particular, E— H is a torsor over H with respect to the
H-group scheme Gy = G xx H. In order to avoid problems with representability
of quotients, we will work with projective equivariant compactifications admitting
ample line bundles with linearizations. We have to introduce some more notations:
Let X be a K-scheme with an action of G on X on the left and let L be an ample
line bundle on X with a G-linearization. Then Gy acts on X = X X, H as an
H-group scheme and Ly = L xx H is an H-ample line bundle on X, with a
Gy-linearization. Gy acts freely on X xg E = Xy x4 E by setting

go(xae)z(g°x7 ge)-

Denote by (Xy xg E)/Gy the quotient (in terms of sheaves for the fppf-topology
over H) of (X xy E) with respect to the Gg-action. Introduce similar notations for
L instead of X. Due to Lemma 6, (X X E)/Gy is an H-scheme and (Lg xg E)/Gy
is an H-ample line bundle on (X x g E)/Gy.

Furthermore, there is an action of E (on the right)

(X xg E) xg E— (X xgx E), ((x,e),e") —> (x, e¢') .

This action is compatible with the left action of G on X. So the E-action on (X xx E)
induces an E-action on (X x y E)/Gy in a canonical way. The projection

(Xg xg E)/Gyg— H

is E-equivariant where E acts on H by right translation. Similarly, the line bundle
(Ly xg E)/Gy on (Xg Xy E)/Gy has a canonical E-linearization with respect to the
E-action on (X Xy E)/Gy.

Lemma 15. Consider the exact sequence
1—-G—E—H-—1

of algebraic K-groups. Let G be an equivariant compactification of G and let L be an
ample line bundle on G with a G-linearization. Set Y = (Gy x5 E)/Gy and M =
(Ly xg E)/Gy. Then

(2) Y is a projective H-scheme which contains E as an open subscheme and the
canonical action of E on itself by right translation extends to an action on Y and is
compatible with the G-action on Y. The projection p: Y —» H is E-equivariant where
E acts on H by right translation. The line bundle M has an E-linearization and is
H-ample. Y is quasi-projective over K.

If G — G does not contain a K-orbit under the action of G, then Y — E does not
contain a K-orbit under the action of E.

(b) Let H be an equivariant compactification of H and let N be an ample line bundle
on H with an H-linearization. Then there is a commutative cartesian diagram
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Y

|

Hc

o |
3|

such that the following is satisfied: Y — Y is an E-equivariant compactification and
p is E-equivariant. Y is a projective K-scheme and has an ample line bundle with an
E-linearization.

If G-G and H-H do not contain K-orbits, then Y — Ydoes not contain a K-orbit
under the action of E.

Proof. Assertion (a) follows mainly from what has been said before. Y is quasi-
projective, since H is quasi-projective. It remains to show that there is no K-orbit
contained in Y — E. So consider a K-orbit Z of Y under the action of E. Its image
p(Z) is a K-orbit of H and, hence, p(Z) = H. The E-action on Y induces a right
action of G on the fibre over the unit element of H which is canonically isomorphic
to G. This action is related to the left action of G we started with by the relations
gf=f"g, §eG. JeG.

Thus we see that the intersection of Z with the fibre over the unit element of H is
a K-orbit of G under the action of G. So it must be G. Then we get Z = E.

(b) After replacing L by L®" for a suitable integer n, we may assume that L is
very ample and, hence, that M is very H -ample. Since H admits an ample line bundle
with H-linearization, it is affine. So, we may assume that M is very ample.

The K-vector space I'(Y, M) has an E-action induced by the E-linearization of
M. Now there is a finite-dimensional subspace W of the vectorspace T'(Y, M) which
defines an embedding of Y into its associated projective space P = P(W). Since the
smallest subspace which is stable under E and which contains W is also of finite
dimension, we may assume that W is stable under E. So E acts on P and there is
an E-linearization on Gp(1). Due to the choice of W, there is an E-equivariant
embedding Y — P such that the pull-back of ©p(1) is isomorphic to M. Now
consider the morphism

Y—PxgH

induced by Y — P and Y — H — H. Let Y be the schematic image of Y in '

P x4 H. Then Y is projective. Since Y is proper over H, the schematic closure Y
coinfides with Y over H. By continuity, the action of E on Y extends to an action
on Y. Let

p:Y—P, p:Y—H

be the projections. The restriction M of p(Up(1)) on Y has an E-linearization
extending the given E-linearization on M and is H-ample.

For n e N, the tensor product p5(N ®m) ® M has a canonical E-linearization
with respect to the E-action on Y and, for large integers n, it is ample on Y.

10.2 The Local Case | 309

It remains to prove the assertion concerning the orbits. So let Z be a K-orbit of
7 under the action of E. The projection p,(Z) is a K-orbit of H under the action of
H. Due to our assumption, p,(Z) must be contained in H and, hence, is equal to H.
Now we can continue as in part (a) in order to show that Z coincides with E. [

Proof of Theorem 7. We start with the implication (a) =>(d). Since G is linear, it
is an extension of a unipotent grbup U by a subgroup of multiplicative type M; cf.
[SGA 3], Exp. XVIL, Thm. 7.2.1. Due to [SGA 3,1, Exp. XVIL, Thm. 6.1.1 ({&) (i),
the unipotent group U is K-wound. The multiplicative group M is an extension of
a finite multiplicative group N by a torus T which is necessarily anisotropic since
G does not contain a subgroup %of type G,,. Hence, due to Lemma 15 (b), we are
reduced to prove the assertioni for the groups N, T, and U. 1t is clear for N.
Furthermore, Proposition 14 provides the assertion in the case of T. In the case of
U, we may assume that K has characteristic p > 0 and, due to Lemma 13, that U
is smooth. Using Lemma 15 a@d Lemma 12, we are reduced to the case v.vhe%'e
U is killed by the multiplication with p. However, this case has been dealt with in
Proposition 11. f

Next let us turn to the implication (a) =>(d). It follows from the theorem of
Chevalley (cf. 9.2/1) that there e)j(ists a connected linear subgroup H of G such tl'lat
the quotient G/H is an abelian variety. Namely, the kernel F, of the n-fold Frobel.uus
morphism on G is an affine subgroup of G and, for large integers 1, the quotient
G/F, is smooth, of. [SGA 341, Exp. XVII, Prop. 4.2.1. Then the assertion follows .by
Lemma 15 (a) from the implication (2) => (d"). This concludes the proof, the remain-
ing assertions being trivial. | O

The above verification of thje implication (a) =>(d') shows that a commuta.ltive
linear group G which does ndt contain a subgroup of type G, or G,,_, admits a
G-equivariant compactification G together with a G-linearized ample line bl_mdl‘c
such that there is no K-orbit contained in G — G. So, due to Lemma 15 which is

valid for not necessarily comm;utativc groups, the construction carries over to tbc
case of solvable groups G; cf. Remark 8. Namely, a K-wound solvable group admits

a filtration
G=GODGID...DGH={1}

such that G, is a normal subgrm;lp of G,_, and G;—,/G;is commutative and K-wound,
j=1,...,m;cf. Tits [1], Chap. IV, Prop. 4.1.4. .

10.3 The Global Case

Let S be an excellent Dedekind scheme with infinitely many closed p_oints and 1(_:t
K be its ring of rational functions. Let G be a smooth commutative algebraic

K-group.
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The existence of a Néron Ift-model (resp. of 2 Néron model) of G over S implies
the existence of a Néron Ift-model (resp. of a Néron model) over each local ring of
S. But, as we have seen in Example 10.1/11, the converse is not true when dealing
with Néron models. The example was given m the case where the charactenstlc of
K is positive.

If K has characteristic zero, we claim that the existence of a global Néron
Ift-model (resp. of a global Néron model) is equlvalent to the existence of the local
Néron Ift-models (resp. of the local Néron models) Namely, due to 10.2/2, the
existence of Néron 1ft-models over each local rmg of S is equivalent to the fact that
the unipotent radical of Gy is trivial. Then G i 1s an extension of an abelian variety
by a torus T and, hence, admits a Néron Ift-model over S; the latter follows from
10.1/7 by using 10.1/4. Moreover, when the local Néron Ift-models are of finite type
over each local ring of S, the subtorus T of Gy i is trivial. Indeed, T splits over a finite
separable field extension K’ of K. There exists a closed point of S at which K’ is
unramified. Since Néron models are companbl(; with localization and étale exten-
sions, there is a closed point s’ of §', where §' is the spectrum of the integral closure
of 05 , in K', such that Gy ®; K’ admits a local Neron model at s’. Then, it follows
from 10.2/1 that the torus T is trivial. Thus, we see that Gy is an abelian variety
and, hence, that Gy has a Néron model over S; cf. 1.4/3.

The existence of Néron Ift-models or Néron models over a global base is
still an open question when K has positive characterlstlc We conjecture that
Gy has a Néron Ift-model over S if and only if Gx has one over each local
ring of S. Using Theorem 10.2/2, we can state this conjecture in the following
way. ‘

Conjecture I. Let S be an excellent Dedekind scheme with ring of rational functions
K and let G be a smooth commutative algebraic |K-group. Then Gy admits a Néron
Ift-model over S if Gy contains no subgroup of type G,.

As explained before, the conjecture is true if }the characteristic of K is zero, but
in the case of positive characteristic it is still an open question.

For the remainder of this section we want to concentrate on the existence of
Neéron models (of finite type). We can give a criterion for the case where Gy admits
a regular compactification. Let us begin with some definitions.

A K-variety X (i.e., a separated K-scheme of finite type which is geometrically
reduced and irreducible) is called rational (resp. \unirational) if its field of rational
functions is purely transcendental over K (resp. contamed in a purely transcendental
field extension of K). In geometric terms, the latter means that there is a rational
map from A to X which is birational (resp. dominant). An algebraic K-group G¢
is called rational (resp. unirational) if its underlymg scheme is rational (resp. unira-
tional). It is easy to see that unirational groups are smooth and connected. For
example, tori are unirational; also the K-group of Example 10.1/11 is unirational.
Each unirational subscheme of Gy which contains the origin generates a unirational
subgroup of G. In particular, Gy contains a largesr umratzonal subgroup denoted
by uni(Gy). If Gy is an abelian variety, then um(GK)
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Theorem 1. Let Gy be a smooth. algebraic group over a field K, where Gy is connected
and commutative. Then the following conditions are equivalent:

(a) uni(Gy) =

(b) Each K-rational map from the projective line P} to Gy is constant.

(¢) For any smooth affine curve Cy over K and for any closed point x of Cg, each
morphism of Cg — {x} to Gk extends to a morphism from Cy to Gg.

(d) For any smooth K-scheme Xy, each K-rational map from Xy to Gy is defined
everywhere. B

If, in addition, Gy admits a regular compactification Gy, these conditions are
equivalent to

(e) The smooth locus of Gy coincides with Gy.

The implications

(@) = (b) == (c) ==(d) =>(e)-

are quite easy to verify and we leave them to the reader. Also it is not difficult to
show the implication (¢)=>(c) (if Gy admits a regular compactification) and
(c) =>(d). Finally the implication (a) => (c) requires more efforts.

To start the proof, let us begin with the verification of implication (e) =>(c).
Let ¢:Cg — {x} — G be a K-morphism. Due to the valuation criterion of
properness, ¢ extends to a K-morphism § : Cx — Gg. Now consider the Cy-scheme
G, = Gg xx Cx which is regular; cf. 2.3/9. Due to assumption (e), the smooth locus

of GC over Cy coincides with Gy x g Cy; cf. [EGA 1V, ], 17.7.2. By base extension,
@ gives rise to a section §¢, of G,. Now it follows from 3.1/2 that @, factors through
the smooth locus of Gc and hence ¢ maps to Gg.

For the implication (c) =>(d), consider a rational map @y : Xy ---+ G, where
Xk is smooth and irreducible of dimension n. Since we consider K-schemes of finite
type, @ is induced by a T-rational map ¢ : X ---+ G from a smooth T-scheme X to
asmooth and separated T-group scheme G, where T 'is an irreducible regular scheme
of finite type over the ring of integers Z. We may assume that K is the field of rational
functions on T. Due to 4.4/1, the complement F of the domain of definition of ¢ is
of pure codimension 1 and, hence, is a relative Cartier divisor. We have to show
that F is empty. Proceeding indirectly, let us assume that F is not empty. Then look
at the graph I'y of g in Xy xx G. It is clear that the image Qg of I'y under the first
projection p; cannot contain a generic point of Fx as seen by a similar argument as
used in the proof of 4.3/4. Since Qy is constructible, we may assume, after shrinking
Xk, that Qg is disjoint from Fy. Now we will derive a contradiction by constructing
a smooth curve Cy contained in X, but not in F such that Cy meets Fy at a closed
point. Namely, due to assumption (c), the curve Cx must be contained in Q. Since
F is not empty, there exists a closed point x in F. Let ¢ be the image of x in T. The
residue field of ¢ is finite and hence perfect. So k(x) is separable over k(z). Then it
follows from the Jacobi criterion 2.2/7 that there exist elements f,,..., f, in the
maximal ideal of the local ring of X at x which, in a neighborhood of x, define an
irreducible relative smooth T-curve C. We may assume that F induces a relative
Cartier divisor on C. In particular, C N F is flat over T. Hence, the generic fibre of
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C A F is not empty. Now, the induced morphism Cyx —> Gy yields a contradiction
to (c).

The proof of the implication (a) =>(c) is delicate. It will follow from Corollary
3 below which makes use of the theory of Rosenlicht and Serre on rational maps
from curves into commutative algebraic groups. In the following we want to sketch
the main ideas of this theory.

So let X be a proper irreducible curve over K, assumed to be geometrically
reduced. Denote by U the smooth locus of X, which is open and dense in X. Let G
be a smooth commutative algebraic K-group. We want to study rational maps

@:X--—G.

If V is the domain of definition of ¢, then, for any ne N, there is a canonical
morphism of the n-fold symmetric product V™ to G induced by @. We will denote
it by @ : V™ — G. By restriction to (U N V)™ we get a morphism of the set of
Cartier divsors of degree n with supportin U n ¥V to G; cf. Section 9.3. We denote
this map by ¢, too. A finite subscheme Y of X is called a conductor for ¢ if
o(div(f)) = 0for each rational function f of X which is defined on Y, which induces
the constant function with value 1 on Y, and whose associated divisor has support
inUnV.

Now let Y be a finite subscheme of X. If Y is non-empty, it is a rigidificator for
Picy/x. As introduced in Section 8.1, we denote by (Picy/k, Y) the rigidified Picard
functor. We set (Picy, Y) = Picy if Yis empty. Since, for a K-scheme T, any
section of (U — Y) xg T induces an effective relative Cartier divisor on U xg T
of degree 1 whose associated invertible sheaf is canonically rigidified along Y by the
function 1, there exists a canonical map (U — Y) — (Picy, Y) and, hence, a
rational map

1y: X - (Picyk, Y) -

By construction Y is a conductor for zy. If Y is empty, we will write ¢ instead of zy.
For the proof of the implication (a) = (c) we will use the following result.

Theorem 2. Keeping the notations of above, the following hold:

(a) A finite subscheme Yof X is a conductor for @ if and only if there exists a
K-morphism of algebraic groups @ : (Picyx, Y) — G making the following diagram
commutative:

Moreover, the map ® is uniquely determined.

(b) There exists a conductor for ¢ and there even is a smallest one. The latter is
called the conductor of .

(c) Let n: X — X be the normalization of X and let x be a closed point of X
such that n~1(x) is contained in the smooth locus of X If ¢ o wis defined at 17 (x),
then x is not contained in the support of the conductor of ¢.
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(d) If X is smooth at x and if x is not contained in the conductor of ¢, then @ is

defined at x.
() The conductor of ¢ commutes with finite separable field extensions.

Proof. If K is algebraically closed and if X is smooth, the result is classical and is
due to Rosenlicht and Serre, cf, Serre [1]; for (a) and (d) see Chap. V, n°9, Thm. 2,
for (b) and (c) see Chap. I11, n°3 Thm. 1. We want to give some indications on how
to proceed in the general case. We may assume that X is geometrically irreducible.
Namely, using assertion (€), onej can easily reduce to this case.

(a) The if-part is obvious. For the only-if-part, consider first the case where Y
is empty. Then the factorization follows from the construction of Picyx via sym-
metric products 4 la Weil as explained in Section 9.3. The uniqueness of the
factorization is due to the fact ﬁhat Picy is generated by the image of 2. Now let Y
be a non-empty conductor for ¢. There exists a finite birational morphism X — X’
which contracts Y to a rationajl point Y’ and which is an isomorphism outside Y
and Y’. One easily checks that the canonical map

Picy,x = (Picx, ¥') — (Picxyx, ¥)

is an isomorphism. Thus, the g;eneral case is reduced to the case discussed above.
(b) Let Y, and Y, be finite subschemes of X. Then the diagram

(Picy, U Y,) ——  (Picxx, 1)

(Picyk, Y1) ——— (Picxi, Y,nY)

is co-cartesian. Thus, by using the characterization given in (a), we see that the
intersection of two conductors is a conductor again. So the existence of a conductor
implies the existence of a unique smallest one. Furthermore, one can see by the same
argument that the smallest conductor of ¢ is compatible with finite Galois exten-

sions of the base field; thus assertion (¢) is clear. So it remains to show that there is

at least one conductor for ¢ which satisfies assertion (c); hence the smallest one will
satisfy (c), too. By what we have said above, we may assume that K is separably
closed. Denote by 7 : X — X the normalization of X. Assume for a moment that
the base field is algebraically closed. Then, due to Rosenlicht and Serre, there exists
a conductor ¥ for ¢ o = whose support is disjoint from the domain of definition
of ¢ o m. Now let Y be the schematic image of ¥'in X. Then one shows easily
by using the very definition of iconductors that Y is a conductor for ¢ satisfying the
assertion (). When K is not necessarily algebraically closed, we can first work over
an algebraic closure K of K. So there is conductor Y of ¢ ®x K. We can replace
Y by a larger conductor, say ¥, without changing its support. Furthermore, we can

assume that Y is defined over K, since K is radicial over K. So Y fulfills assertion (c).
(d) follows from (a)." f a

Corollary 3. Let X bea proper; curve over a field K and assume that X is normal and
geometrically reduced. Let G be a smooth commutative algebraic K-group. Let
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@ : X -—-> G be a rational map and let Y be the cohductor of o.

(a) If G does not contain a subgroup of type Ga, then Y is reduced.

(b) If uni(G) = 0, the conductor of ¢ is empty and @ decomposes into a composi-
tion ¢ = @ o 1where @ : Picyx — Gisa morphzsm of algebraic groups. In particular,
@ is defined on the smooth locus of X.

Proof. Denote by Y the largest reduced subscheme of Y. Then, we get an exact
sequence

1 —U— V*——»Vy*——»l
of algebraic groups where V;* and Vi are the algebralc groups representing the
functor of global units on Y and on Y; cf. 8.1/10. The kernel U is a unipotent group

which is a successive extension of groups of type G . Now look at the exact sequence
of 8.1/11

0— V¥ — V¥ — (Picy, Y)f—» Picyx —0
In the case of assertion (a), the canonical map
®: (Picyx, Y)— G
induced by ¢ sends the image of U in (Picy/, Y) to zero. Hence, @ factors through
(Picxx, ¥) —> (Picxg, ) .

Thus, due to Theorem 2, Y is also a conductor for ¢, hence Y = Y is reduced. In
the case of assertion (b), the kernel of the map

(Picyx, Y)—> Picy ¢

is the group of global units on ¥ modulo K* whicljl is unirational. Thus, we see that
@ factors through Picy x and that the conductor of ¢ is empty. Then the assertion
follows by Theorem 2. (]

Corollary 3 yields the proof of the implication (a) = (c) of Theorem 1 and thus

Remark 4. Using the characterization (c) of Theorem 2, one sees immediately that
the condition uni(G) = 0 is stable under finite separable field extensions.

Conjecture II. Let S be an excellent Dedekind scheme with ring of rational functions
K and let Gy be a smooth commutative algebraic K-group. If uni(Gyg) = 0 then Gy
admits a Néron model over S. :

If one admits Conjecture II, Conjecture I is mamly a problem of unirational
groups; use the technique of 7.5/1 (b). Conjecture | II is true if K has characteristic
zero. Indeed, if K is an algebraic closure of K, one has uni(Gy ®x K) = 0 due to
Remark 4. Then G, ®; K cannot contain a subgroup of type G, or G,, and,
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hence, Gy is an abelian variety. In the case of positive characteristic, some parts
of the conjecture can be proved, provided it is known that Gy admits a regular
compactification.

Theorem 5. Let S be an excellent Dedekind scheme with ring of rational functions K
and let G be a smooth commutative algebraic K-group.

(2) Assume that Gy admits a regular compactification Gy. If uni(Gg) = 0, then Gy
admits a Néron model over S.

(b) If S is a normal algebraic curve over a field and if Gy admits a Néron model

over S, then uni(Gg) = 0

Proof. (a) Let us first show that the local Néron models exist. So, we may assume
for a moment that S is the affine scheme of a local ring R. Since uni(Gy) = 0, it
follows by Remark 4 that uni(Ggx ®x K**) = 0 where K*" is the field of fractions of
a strict henselization of R. Then Gy ®y K™ cannot contain a subgroup of type G,
or of type G,,. Since § is excellent, it follows from 10.2/1 that a Néron model of Gy
exists over S. Now let us return to the general situation. It remains to see that there
exists a dense open subscheme U of S such that a Néron model of ' G exists over
U; cf. 1.4/1. There exists a dense open subscheme U of S such that GK extends to a
proper flat U-scheme Gy, Since S is excellent, the regular locus of Gy is open by
[EGA1V,], 7.8.6. So we may assume that Gy is regular. Let G, be the smooth locus
of Gy. Since uni(Gy) = 0, we see by Theorem 1 that the generic fibre of Gy coincides
with Gg. After replacing U by a dense open subset, we may assume that Gy is a
group scheme over U. Now we claim that Gy, is the Néron model of G over U. Let
U(s) be the spectrum of the strict henselization of the local ring of U at a closed
point s of U. Since Gy, x U(s)is regular, the U (s)-valued points of Gy, factor through
the smooth locus Gy by 3.1/2. Then it follows from 7.1/1 that Gy x; Spec 0 , is the
local Néron model of G over U ; and the assertion follows from 1.2/4.

(b) Let us assume that uni(Gg) is non-trivial. Due to Theorem 1, there exists an
affine smooth curve Cy with a closed point x; and a morphism

(DK:-CK — {xg} — Gy

such that gy does not extend to Cg. Since we are free to replace S by an étale
extension (cf. 1.2/2), we may assume that the residue field k(xy) is radicial over K.
Since Cy is smooth over K, the extension k(xy) can be generated by one element
over K. So, after shrinking S, there exist an element, f e I'(S, ¢5) and a p-power p"
such that k(x) is generated by the p"-th root of f. Now C, —» Spec(K) is induced
by a smooth relative curve C — S. Denote by Z the schematic closure of the point
xg in C. We may assume, after shrinking S, that Z is a subscheme of A} defined by
(T — f). It is a general fact that there exist infinitely many closed points s of S
such that the polynomial (T*" — f) has a solution over the residue field k(s); cf.
Lemma 6 below. If G admits a Néron model G of finite type over S, the morphism
@k extends to a morphism

0:(C—2)—G.
Now look at the graph I, = C x4 G of ¢ viewed as a rational map C ---» G. So I,
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is closed in C x5G. Let Q be the image of I, under the first projection
py: C xg G—> C. Since G is of finite type over S, the subset Q is constructible. The
point x is not contained in @, because @ is not defined at xx. As Xi is the generic
point of Z, we may assume, after shrinking S, that @ is disjoint from Z. Now let z
be a point of Z such that the field extension k(z)/k(s) is trivial where s is the image
of zin S. So there exist an étale extension 8’ —» S and an §'-valued point x’ of C such
that z is the image of a point 5" of §’ under x’ and such that x, does not belong to
the image of x. Due to the Néron mapping property, X o g extends to an S’-valued
point of G. By continuity, x’ factors through the graph I, Thus, we see that the
point z must belong to Q and we get a contradiction. O

In the last proof we have used the following fact.

Lemma 6. Let k be a field of positive characteristic p and let A be an integral
k-algebra of finite type and of dimension d > 1. Let n be a positive integer and let f
be an element of A. Then, for any n > 1, there exist infinitely many prime ideals p of
A of codimension 1 such that the equation T”" — f = 0 has a solution modulo p.

Proof. 1t suffices to show that there is at least one such prime ideal. By standard
limit arguments, we may assume that k is of finite type over its prime field ky. Then
there exists a smooth and irreducible ko-scheme R, such that k is the field of rational
functions of Ry, and there exists an Ry-scheme S, of finite type such that the generic
fibre of S, is isomorphic to S, where S is the affine scheme of 4. We may assume
that S, is affine, irreducible, and reduced. Moreover we may assume that f extends
to a global section of s,. Now let x be a closed point of S,. Then k(x) is a finite
field and, hence, perfect. So we can write

f=g"+h

where g and h are global sections of Os, and where h(x) = 0. Since the relative
dimension of S over R, is d > 1, we can choose g and h in such a way that the
subscheme W(K) defined by h is dominant over R,. So there is a generic point s of
V(h) lying above the generic point of R,. Let p = I'(So, s,) be the prime ideal
corresponding to s. Then g is a solution of the equation T 7" _ f = O modulo p, and
p gives rise to a prime ideal of 4 as required. O

If we want to apply Theorem 5(a) to an algebraic K-group Gy, it has to be
known that Gy admits a regular compactification Gy, a question which is related
to the resolution of singularities in characteristic > 0. Since it is widely accepted
that the latter problem should admit a positive answer, we get strong indications
for Conjecture II being true. Also note that, for a K-wound unipotent group Gy,
Thm. VI.3.1 of Oesterlé [1] implies uni(Gg) = 0 if K is of characteristic p and if
dimGy<p-—L
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Subject Index

Abelian reduction 181-183, 186, 187. See also
Good reduction
Abelian scheme 15, 19, 99, 183, 187,234
and Néron model 15
mapping property 234
Algebraic group 98
largest unirational subgroup of 310
rational 310
structure theorems 243, 244
unirational 310 .
wound unipotent 174, 297, 301-304
Algebraic group space
representability by a scheme 164
Algebraic space  224-231
properness of 225,226
Amalgamated sum 144, 145
Ample divisor 153, 164
Ample line bundle 136-138, 153, 164
Approximation property 80, 81, 91, 93
Approximation theorem 91

Birational group law 107, 108, 112
associated group scheme 108, 114
solution of 113, 114, 157, 162, 163
strict 115,117, 163 )

Blowing-up 62, 63
and flattening 76, 77
E-permissible 71, 72

Bounded family of coherent sheaves 221

Boundedness 8-12, 106, 107
and properness 10
characterization of 11, 76

Brauer group 203

Cartier divisor
ample 153,164
degree of 237
effective 212
effective relative 213
linear equivalence of 238

Chevalley’s theorem 178, 243

Co-cartesian diagram 144

Cohomological flatness 206, 223
and arithmetical genus 259

Compactification 12, 297
equivariant 299

of a gr

up 300, 307

of a Jacobian 301
of a torus 306
of a unipotent group 302

regular

297

Conductor of a rational map 312
Contraction 167-171
Covering datum 129

Curve
relative
semi-sta

Dedekind

166
ble. See Semi-stable curve

§cheme 6,7

Defect of smoothness 65, 72

Deformati
Degree of
Degree of

on 227
1 Cartier divisor 237
1 line bundle. See Line bundle

Derivation 31

Descent
effective
example

29-147
132-136, 138, 141
s 138-147

non-effective  166—171

of modu

les 134

of Néron models 158

of schemes 135, 136

properties of morphisms 54
Descent datum 132, 135

cocycle condition 132

effective
on a gro

1132
up scheme 156

on atorsor 157
Desingularization 61

and smo

othening 61

Differential form 31, 32
invariant | 99-105
relative. See Relative differential form

Dilatation
Domain of

6264, 174
definition 55

and base change 58
Dual abelian scheme 234

E-permissible blowing-up 71, 72

Subject Index

E-permissible subscheme 71
Elliptic curve  20-26, 189, 190
minimal WeierstraB equation 22
Equivalence relation 218, 219, 220
effective 219
Etale morphism 36
and open immersions 36, 49
infinitesimal lifting property of 37
local structure of 46
properties of 49
Etale neighborhood 48, 49
Etale sections of smooth morphisms 43
Etale topology 200
Euler-Poincaré characteristic 216, 238
Excellent ring 78
Extension property for étale points 7
Exterior differential 31, 33

Final object 96
Finite part of a group scheme 179
Flat morphism 51
topological properties of 52
valuative criterion of 52
Flattening by blowing-up 77
Formal deformation 227
fppf-topology 200
Functor
closed immersion 192
effectively pro-representable 228
formally étale 228
formally smooth 228
formal modulus of 228
locally of finite presentation 227
of points of a scheme 94
open immersion 192
pro-representable 228
relatively representable 192
representability by an algebraic space 228, 229
representable 95
separated 265

Galois covering 139

Galois descent  139-141

Generic fibre 7

Geometric multiplicity of an irreducible
component 239

Good reduction 18, 181. See also Abelian
reduction
criterion of Néron-Ogg-Shafarevich 184

Graph of an S-rational map 56, 57

Graphs and curves 246, 279, 282

GraBmann functor 217

Greenberg functor 276, 277

Group object 96

Group scheme 97
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‘constant 187
finite part of 179
identity component of 154
semi-abelian 178-184, 186, 187
separatedness of 173
Group smoothening 174, 175, 178
and Néron model 175

Henselian local scheme 45
Henselian ring 45
and Hensel’s Lemma 47
characterization of 46
Henselization
characterization in terms of Galois actions 50
of a discrete valuation ring 50
of alocal ring 47, 48
properties of 50
Hilbert functor 215, 217
and symmetric product 254
Hilbert polynomial 216

Identity component of a group scheme 154
Infinitesimal deformation 227
Intersection matrix 272

modified 272
Intersection pairing 272
Invertible sheaf. See Line bundle
Isogeny 180

Jacobian 243,258

and Néron model 264, 266, 267, 274, 286288,
297

compactification of 301

of a curve over a discrete valuation ring 259,
260

of a semi-stable curve 246, 259, 287

torus part of 249

unipotent part of 248

via symmetric product 258

Law of composition 95

Line bundle
ample 136-138, 153, 164
degree of 238-240
linearization of 299
partial degree of 239-242, 251
relatively ample 136, 153
rigidified 204, 205, 211

Local coordinate 42

Minimal Weierstraf3 equation of an elliptic curve
22
Module
faithfully flat 51
flat 51
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Morphism

étale. See Etale morphism

faithfully flat 51

flat. See Flat morphism

of algebraic spaces 224, 225

of functors 94, 192

of group functors 98

quasi-finite. See Quasi-finite morphism

smooth. See Smooth morphism

strongly projective 211

strongly quasi-projective 211

unramified. See Unramified morphism
Multiplicity of an irreducible component 239
Mumford’s example 210

Néron Ift-model
and base change 290
characterization of 290
definition of 289
elementary properties of 290
existence 290-294, 297, 310
of a subgroup 290
of a torus 292
Néron mapping property 12
Néron model
and base change 13, 176-178
and closed immersions 186, 187
and group smoothening 175 ~
and regular minimal model 21
and Weil restriction 198
connected components of 273, 274, 277, 279,
281, 283-286
criterion 15,172, 173
defect of exactness of 189
definition of 12
exactness of 186, 187
existence of 15, 16, 18, 19, 110, 158, 184, 185,
297,314, 315
identity component of 183
local and global 13, 295
of a Jacobian 264, 267, 268, 286288
of an abelian variety 19
of a subgroup 175
outline of construction of 16-18
weak. See Weak Néron model
Néron-Severi group 234
finiteness of 234
Neéron’s symbols 22, 23

Openness of versality 229
Ordinary double point 246

Partial degree of a line bundle. See Line bundle
Picard functor
relative. See Relative Picard functor

Subject Index

rigidified. See Rigidified Picard functor
Picard group 199

relative 202
Potential abelian reduction 181
Potential semi-abelian reduction 181
Property (N) 67
Pro-variety 28, 29

Quasi-finite morphism 45
étale localization of 49
Quotient

categorical 219
effective 219
representability 220
sheaf-theoretical 219

R-model
equivalence of 105
w-minimal 104, 105, 106, 111
Ramification index 1  78-80, 176, 177, 290
Rational group 310
Rational map 55
Rational singularity 286, 287
Rational variety 310
Regular minimal model 20, 21, 24,26
and Néron model 21
Relative curve 166, 236
Relative differential form
module of 31
sheaf of 33
Relatively ample line bundle 136-138, 153, 164
Relatively representable functor 192
Relative Picard functor 148, 201, 202
and Néron mapping property 264
finiteness properties 232-234
properness of 232,234
representability of 210, 211,223,224
separatedness of 232
smoothness of 232
Relative Picard group 202
Representable functor 95
Riemann-Roch formula 238
Rigidification 204, 205
Rigidificator 205
existence of 205
Rigidified line bundle 204, 205, 211
Rigidified Picard functor 205
representability of 223, 224

S-birational map 55
S-dense subscheme 55
S-rational map 55, 109
Schematic closure 55
Schematic density 55, 67
Schematic image 55

Smooth scheme

Subject Index

Schematic image (cont.)
compatibility with flat base change 56
Scheme
geometrically normal 44
geometrically reduced 44
geometrically regular 44
of generic fibres 7
of generic points 6
quasi-affine 135
regular 43
smooth. See Smooth scheme
strictly henselian 45
Semi-abelian group scheme 178180, 186, 187
Semi-abelian reduction 181-184
Semi-stable curve 245, 246, 282
Jacobian of 259, 287
Semi-stable reduction theorem 246
Sheafification 201
Sheaf with respect to a topology 194, 199, 200
Smooth morphism 36
characterization in terms of fibres 53
étale sections of 43
infinitesimal lifting property of 37
Jacobi criterion 39,40

over a field 43, 44
over a henselian ring 47
properties of 49
Smoothening 60
and base change 79
and desingularization 61
Smoothening process 24, 28,29, 61
Smoothness
defect of 65,72
Strict henselization
characterization in terms of Galois action 50
construction of 48
of a discrete valuation ring 50
ofalocal ring 7,48
properties of 50
Strictly henselian local scheme 45
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Strictly henselian ring 45
Subgroup scheme 98
Symmetric product  252-258

Tate elliptic curve 25, 26, 189
Theorem of the square 148-152
Theorem on cohomology and base change 206
Torsor 152
ramified 158
trivial 152
unramified 158
Torus
anisotropic 301, 306
compactification of 306
Néron Ift-model of 291,292
Total space of a sheaf of modules 207, 208
Translation 99, 100

Unirational group 310

Unirational variety 310

Unit section 96

Universal line bundle 211

Universal point 95

Universal translation 100, 112

Unramified morphism 34
étale localization of 49
infinitesimal lifting property of 37

Weak Néron model 12, 17, 74, 104-107
and base change 75, 80

Weak Néron property 17,74

WeierstraB division theorem 84

WeierstraB divisor 84

WeierstraB polynomial 84

Weil restriction 178, 191-198
properties 195, 196

Weil’s extension theorem 15, 109

Wound unipotent group 174,297, 301—

304

Zariski’s Main Theorem 45, 46



