Conventions

"p'" denotes a prime number fixed once and for all.

(commutative) groups on the site (SCh/S)f.p.p.f. .

"'group over S, S-group,...

"group'' always means commutative group.

" will always mean a f.p.p.f. sheaf of

Groups which

are representable will be referred to as such or via a modifying

adjective (i.e., flat, finite, and locally-free,... ) which makes

clear that they are group-schemes.

text are referred to as:

a)
b)
c)

d)

The references [8], [9], [12], [13] which are frequently cited in the

[8] G.aA.
[9] S.G.A.3
[12] E.G.A.

[13] S.G.A.

Following standard conventions E.G.A.IV denotes a particular

reference in the 4t chapter of E.G.A, Similarly S.G.A. & ¥%, ... Tefers

to a particular place in expose ** of th

e *#th seminar held at Bures.

Chapter I. Definitiocns and Examples

§1. (1.0). Let S be a scheme and G agroupon S (i.e., following the

conventions introduced above, C is a commutative f.p.p.f. sheaf of

groups on the site Sch/S) such that pnG = (0). Then we have the following

lemma:
Lemma (1.1). The following conditions are equivalent
(i) G is a flat Z/p % -module
.. n-i i . )
(ii) Ker(p ) =Im(p) for i=0,...,n
Proof: First we show (i) implies (ii). From (i) it follows that
gr’ (Z/pnz) 4 gro(G) T gr'(G) (the associated graded group being

Z/pZ
taken with respect to the filtration defined by powers of p). Because of

this we know that p1 induces an isomorphism from G/pG to plG/pIHG
for i <n-1. Thus Ker(pn-l) C Im{p) and hence Ker(pn—l) [ Ker(pn_l)
C Im(p) which implies that Ker(pn-l) =p- Ker(pn-lﬂ) = p(pl-lc) = plG
(by induction on i).
To prove that (ii) = (i), we observe by taking izl that pG= Ker(prl
n-1 . . . ~ n-1 .
and hence that p induces an isomorphism G/pG —> p 'G. Since

this map factors as G/pG —=> pG/pZG —_ . —> pn-IG we see that

each of these maps is an isomorphism. Thus, since

gr’(Z /p"Z) 8y /p%. gr(G) = gr°(G),

we have gr’ (Z/pnz) ®Z IpZ gro(G) > gr'(G).

To complete the proof we want to utilize a version of the "criterion of
flatness."

By [16;11 §4] to prove the flatness of G it suffices to show
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n
'I‘():!':LZ/p z

[4; Chap. III §5 #3 remark 1 and prop. 1]

applies in the general context. Consider

n n
z
Me Torlzlp Z (@p, G) — Torlz/P

(M, G) —> Tor

(M,G) =0 for any Z/an-mc dule M. DBut the reasoning of

is completely formal and hence

the exact sequence:

Z/pZ

1 (M, G/pG) — 0

which arises from the terms of low degree in the spectral sequence for

‘'associativity' of Tor.

n
Tt:u-IZ/p Z

- r]z/pz

To (M, G/pG) = 0 since Z/pZ is

n
Tor Z[p Z
1
the proof.
Definition (1.2) If n >2, a truncated E

an S-group G such that:

(Z/pZ, G) = 0 by hypothesis (as noted above) .

a field. This shows that

(M, G) is zero for any Z/pZ-module M and thus completes

arsotti-Tate group of level n is

1) G is a finite locally-free group scheme

2) G is killed by pn and satisfies the equivalent conditions of

lemma (1.1).

Remark (1.3) For completeness let us define a truncated Barsotti-Tate

group of level 1 (on a scheme S where p is locally nilpotent) as a group G

which satisfies:
1) G is finite and locally free and

2) Denoting by SO the closed subs

killed by p.

cheme Var(p. ls) of S and

G =G xS ,imv. =Kerf_ ,im{f_ =Kerv (see [II 3.3.11, 3.3.12]).
o o’ G G

S Go Go ©

Notation (1.4) If G is a group, we will

If G is killed by p~, we write G = G(n

)

n
write G(n) for the kernel of p .
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Lemma (1.5) a) If G(n) is a flat Z/pnz-module then Gin) is a finite
locally-free group scheme if and only if ‘G(1) is and then all the G(i) are.
b) If G(n) is finite and locally free then pi:G(n,) —> G{n-i) is an
epimorphism if and only if it is faithfully flat,
Proof: We prove b) first. Clearly if pi: G(n) —> G(n-i) is faithfully
flat it is an epimorphism. ;Convers ely if it is an epimorphism, then by
using the criterion for checking flatness fiber by fiber [E.G.A.IV 11.3.11]
we are reduced to the case ‘when S is the spectrum of a field and here the
result is standard. [G.A. 1II, §3, 7.4]
To prove a) we observe that if G(n) is flat over Z/pnz and G(1)
is finite and locally free, then we have exact sequences:

00— G(1) — G(2) —L>G(l) —> 0

0 —> G(1) — G(3) l:’ﬁ(}(Z) —> 0,... . Therefore by induction we see
that all the G(i) are finite locally-free (since an extension of two such
groups is another one by descent theory [G.A. III §4, 1.9]). Conversely,
if G(n) is finite and locally-free, then each G(i) is certainly finite of
finite presentation over S [E.G.A. II 6.15, {iii) and (v) for 'finite, "
E.G.A, IV 1.6.2. (iii) and (v) for "of finite presentation’]. From part b)

(proved above) we know each G(i) is flat over S. Hence each G(i) is

finite and locally-free.

82. (2.0) Let S be a scheme and G a group on S. Denote by Gi{n)
the kernel of multiplication by pn on G. G is said to be of p-torsion if

lim G(n) =G. G is said to be p-divisible if P «'dG: G—> G is an
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epimorphism.

Definition (2.1): G is a Barsotti-Tate |group if it satisfies the following

three conditions:

(2.1.1) G is of p-torsion
(2.1.2) G is p-divisible
(2.1.3)

Notation (2.2): We write B.T.(S) for the category of Barsotti-Tate groups

on S, whose objects are the Barsotti-T

0

are simply homomorphisms of S-groups.

G(1) is a finite, locally-free group scheme

ate groups and whose morphisms

Remarks (2.3): Let G be a Barsotti-Tate group

1) G(n) = G(n+l)(n)

n-i

2) For any i suchthat 0 <i<n, p induces an epimorphism

G(n) —> G(i) (because multiplication by pn-

'is an epimorphism of G).

3) From remarks 1) and 2) and the fact that G(1) is finite and

locally-free it follows from 1.5 that the

G(n) for n>2 are truncated

Barsotti- Tate groups and that we have exact sequences:

2.3.1) P

4) It follows from the elementary
over a field that the rank of the fiber of
form ph(s)
from remark 3) that the rank of the fibe
1V §3,5].

5) Assume we have a system of g

locally-free such that:

n-1i
0 —> G(n-i) —> G(n) ——> G(i) — 0

theory of finite group schemes

G(l) at a point s¢S is of the

where h is a locally constant function on S. It also follows

Pnh(s)

r of G(n) at s is [G.A.

roups G(n) with G(n) finite and

=
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a) G(n) = G(n+i)(n)

b) The rank of the fiber of G(n) at s is p %)

where h is a
locally constant function on S.

We consider the exact sequence

pn-i
0 —> G(n-i) = G(n) — G(i) .

By looking at each fiber and using the multiplicativity of the ranks,

n-i
p . . .
G(n)s > G(l)s is faithfully flat. Therefore since G(n) is flat over S,
it follows
Pn-i
that G(n) —— G(i) is faithfully flat

and hence an epimorphism. Thus we see that G = Eg G(n) is a Barsotti-
Tate group and therefore {using also remarks 1) and 4)) it follows that our
definition of Barsotti- Tate group is equivalent to that of Tate [30].

6) From remark 5) it follows that our definition of Barsotti- Tate
group is essentially independent of the fact that we choose to work with
f.p.p.f. sheaves. Nevertheless it will be quite convenient to view the
category B.T.(S) as a full sub-category of the category of abelian sheaves
(for the f.p.p.f. topology) on S.

Sorites (2.4)
(2.4.1) 11 8’ i->~ S is a morphism and G is in B.T.(S), then f*{G) is
in B. T.(S).

That f*(G) is of p-torsion and p-divisible follows immediately from

% *
the fact that f is exact as does the formula f (G)(n) = f*(G(n)). But

- * ‘
since f (G(1)) = G(1) éS , it is immediate that f*(G)(l) is finite and
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* L ,
locally-free and hence f (G) isin B.T. (S°). )
(coming from the exact sequences) give us a Barsotti- Tate group G* the

— B.T.(S) gives a fibered categoTy

Remark (2.4.2): The assignment S ¢ ) ’ . .
Cartier dual of G, with G (n) = G(n) . The assignment G > c*

fact a stack when (Schemes) is

over the category of schemes. It is in .
extends to morphisms so that we obtain a duality on the category of

"his follows easily from the definitions

endowed with the f.p.q. c. topology. 1 )
Barsotti-Tate groups. Just as with ordinary Cartier duality, this duality

3.2]. .
sod desceat theory 1, 1 ] is compatible with all base changes.

(2.4.3) If 0'—>G1—> GZ-—->G3—>J is exact and

Remark (2.4.5). The category B. T.(S) is not abelian. Kernels do not

a) G1 and G2 are in B. T.(S)
exist in this category since the kernel of the morphism G £+ G must be

b) Gl and G3 are in B.T.(S),
. B killed by p and hence can not be a Barsotti-Tate group (unless G = 0).

then in either case the third group is in B. T.(S) also.

he serpent lemma that the sequence 83. (3.0) We give in this paragraph several examples of Barsotti- Tate

Proof: In both cases it follows from t!
0— Gl(l)—> Gz(l)—'> G3(1)9 0 is exact. The reEresentability of G3(1) (in

case a)) is given by [G.A. 111, §2 3. 2] while the representability of Gz(l) (in

1.2 Pk
q,gll is
o~ S

ok sk A
“s\r\s:g: Wgﬂ\'

groups. First though, we recall some terminology about finite, locally-
free group schemes, -G, on an arbitrary base S.

case b)) is given by [G.A.11, §4, 1. 9] which also tells us Gz(l) is finite and

locally-free. The fact that G3(1) is fi
somewhat more involved. By [E.G.A

G2(1) is a proper monomorphism of fi

closed immersion [E.G.A. IV 8.11.5].

(xifi)] Gs(l) is separated, flat, quasi
That G3(1) is finite and locally-free n

v 8.11.1, 1.4.7).

nite and locally-free (in case a)) is
115.4.3(i), E.G.A.IV 1. 6.2(v)] G,{1) <
nite presentation and hence it is a

By [S.G.A. 3VIB9.24x), (xd), (xii),
_finite and of finite presentation over S.

ow follows from [E.G.A. II, 5.4.3 (i),

In either case a) or b) it is immediate that the relevant group is of

p-torsion and p-divisible and thus a Barsotti-Tate group.

(2.4.4) By considering the exact se

quences (2.3.1) we see that the family

* * * *
of Cartier duals G(n) together with the maps p : G(n) —> G(n+l)

(3.1) G is said to be of multiplicative type if the following three equiv-

alent conditions hold:

(3.1.1) Locally on S for the étale topology, G is isomorphic to a group

f the £ i i

of the form Spec (OS[M]) where M is an ordinary finite abelian group.
*

(3.1.2) G, the Cartier dual of G, is étale.

(3.1.3) Locally, for the Zariski topology, there is a monomorphism
G —> T where T is a torus (i.e., a group which locally for the étale
topology is isomorphic to an).

That (3.1.1) implies (3.1.2) is obvious. The reverse implication is
an immediate consequence of [S.G.A. 3 X 4.5, 4.8]. To see that (3.1.1)

implies (3.1.3) we can, since the question is local on S, assume S to be
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affine and then by the standard arguments assume S to be Noetherian

[E.G.A. 1V 8.9.1, 8.5.5, 8.10.5(x), 1

7.7. 8(ii)]. We decompose S into

a disjoint union of open sub-schemes S, such that for all s belonging to

a given S G, the geometric fiber

N =’

A
is isomorphic to Spec(i_(;)[Mx])

for a well-defined finite group M, . Replacing S by S)L and then by a

A

connected component of S)\ (which is open since S is locally noetherian)

we reduce to the case where S is conn

see that to give G is equivalent to giv

ected. Then by{S.G.A3 X 7.2] we

ng a finite w-module M where =

is the "enlarged" fundamental group corresponding to the choice of some

geometric point of S. But now writing
operates on Z[M] in the obvious way,
to the abelian group Z[M] is a torus a
embedding.

Finally to prove that (3.1.3) impl
implication when S is the spectrum of
closed sub-group of a torus, the implic

[C.A. IV 81 2.4(a)].

M as a quotient of Z[M] when =
we see that the group corresponding

nd hence we achieve the desired

ies (3.1.2) it suffices to check the
a field. But now as G is a finite

ation follows immediately from

(3.2) G is said to be infinitesimal if the structural morphism G —> S is

radiciel. This is of course a condition
ppibisttebdahd=lN

We shall see in [II 4.4], that this use o

which is verified fiber by fiber.

f the word "infinitesimal'' is con-

sistent with a later meaning we shall give it in connection with formal Lie

groups.

(3.3) Recall finally the following definition.

iy

R
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Definition (3.3.1) An abelian scheme A —!-7 S is a commutative group
scheme such that:

1) £ is proper

2) f is smooth

3) f{ has geometrically ‘connected fibers.
Example (3.4). 1f A/S is an abelian scheme then ‘1_1_1'& A(n) is a Barsotti-
Tate group of rank 2d where d is the relative dimension of A/S and
hence a locally constant function on S. Since the group I_AE> A{n) is
obviously of p-torsion, we must show it is p-divisible and A(l) is finite
and locally-free of rank pZd To know it is p-divisible it obviously
suffices to check that p:A —> A is an epimorphism. Thus it suffices to
know p: A —> A is faithfully flat and hence we are by {E.G.A IV 11,3, 11]
reduced to the case when we are over an algebraically closed field. But
as is well known, multiplication by p on an abelian variety is surjective,
and hence by the lemma of generic flatness [21; 6.12] we are done.
Finally, since A(l) has zero-dimensional and hence finite fibers and
since A(l) —> S is proper (being obtained by the base change § —> A
from the map p: A —> A which is proper by [E.G.A. II 5.4.3(i)]), it
follows that A(l) —> S is finite {E.G.A. IV 8.11.1]. Since A(l)—> S
is flat, finite and of finite presentation it is finite and locally free
[E.G.A. IV 1.4, 7]. Finally the statement about the rank follows imme-
diately from [22; §6]. Later we shall have much more to say about

Barsotti-Tate groups of this type which we denote by A or A(«).
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|
Example (3.5) Let T be a torus on S and consider lim T(n) 9__e-é T(=).
Jemiiiontiel b b bl —_

Then T{(») is a Barsotti-Tate group of rank d when d is the relative
dimension of T/S. That T(®) is of p-torsion is obvious. To see that T(x)iis
p-divisible and T(1) is finite and locally-free of rank d, we are by descent

reduced to the case where T = Gxi where both are completely trivial.

Example (3.6) We assume in this example that p is locally nilpotent on

S. Also, this example will be treated in more detail later. Let G bea

formal Lie group on S. We will verify in [1I 4. 2], that G is automatically

of p-torsion. Assume that multiplication by p is an epimorphism of G
and that G(l) is finite and locally-free This last condition follows from
the hypothesis that G -—p*; G is an epimorphism when the base S is
artin. These assumptions imply that G is a Barsotti-Tate group with
G(1) and hence all G{n) infinitesimal. | As we shall verify in detail later
[11, 4.5] we have an equivalence of catpgories between the category of

Barsotti-Tate groups on S with G(l) |infinitesimal and that of formal Lie

P
groups G such that G —> G is an epimorphism and G(l) is finite and
locally-free.

Example (3.7) Let G be a Barsotti-Tate group on S such that G(1),
and hence all G(n), is étale. We call such a group ind-étale. Associated
to G is the projective system TP(G): G(1) <—P— G(2) £ G'(3) ...
By the very definition of the phrase, TP(G) is a "faisceau p-adique

constant tordu sans torsion." [S.G.A. 5 V1 1.2] It is immediately checked

that any homomorphism between Tp(C:) and Tp(H) must come from a

21

ho . e
momorphism from G to H. Thus it is essentially a tautology that the
category of Barsotti-Tate groups on S which are ind-étale is equivalent
{via the functor G —>
TP(G)) to the category of "faisceaux p-adique con-
stant tordu sans torsion.'" If S is connected and s is a geometric pointv
of . . .
S, this last category is equivalent to that of continuous representations

of 1r1(S, s) in finite free Zp-modules.

Example (3.»8) A Barsotti-Tate group G on S is said to be toroidal if
G(1) is of multiplicative type. Of course this implies that all G(n) are of
multiplicative type. From 3.1 we know that G*, the Cartier dual will be
ind-étale and hence that the functor: G —> Tp(G*) induces an anti-
equivalence between the category of toroidal Barsotti- Tate groups on S and
that of 'faisceaux p-adiques constant tordu sans torsion." To obtain a

covariant equivalence between these two categories, let us first introduce
the following notation.
(3.8.1) o Sk =l
i Gm(en) = lim ppn .
Consider the functor on toroidal groups defined by

G +—H def.
Homg or (¥, G) ==

the inv
erse system (Homs_gr (ppn, G(n))n>1 . But this last inverse

system is identified via Cartier duality with the inverse system

* n *
(HLs_g, (G(n) , Z/p Z))nzl =T (G )

[see 5.G.A.3 X 5.8].



