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Example (3.9) Assume S to be artin and let G be a Barsotti-’![‘a'te
group on S. Then for each n, we have an extension: 0 —> G(n)o —
G(n) — G(n)ét ~—> 0 where G(n)o is the disjoint union of the connected
components of the various fibers of G(n). By reducing to the case when
we are over a field we easily see that the various sequences:

0 = Gla-1)° = G(n)° B3 6(1)° — 0

ét & pi é
0 — G(n-i)5 — G(n)* = G(I)" — 0

are exact [see S.G.A.3 VIA 5.5]. Thus in passing to the limit we have

an extension 0 —> G® —> G —> Get —>0 with G° having connected fibers
é . .,

(and hence, if p is nilpotent on S, a formal Lie group) and G ind-étale.

*

s . o
Applying Cartier duality to Go, taking the étale quotient of G and

applying Cartier duality again we have a filtration:
t [}

{elcG cG cG

with Gt, toroidal. As shall be seen later such representations of G as

an extension of an ind-étale by a group with connected fibers do not in

general exist.

Chapter II. The Relation Between Barsotti- Tate

and Formal Lie Groups

§1. (1.0). Let S be ascheme, and X and Y with Y > X two

sheaves on S for the f.p.p.f. topology. We make the following definition.

Definition (1.01): Im’l‘;(X) is the subsheaf of X whose sections over an
S-scheme T are given as follows: I'(T, Infl;.(X)) = {t ¢ I(T, X)| there is
a covering {Ti —> T} and for each T, a closed subscheme Tfl defined
by an ideal whose k+15t power is (0) with the property that tTf € HT; X)
is actually an element of I'('I’;, Y)1. \’(T‘:\ﬂc__.}r(’r'/'x) !

Thus for each integer k> 0 we have defined the Kth infinitesimal

neighborhood of Y in X. We first observe the following simple lemma.

Lemma (1.02) If X and Y are schemes and Y <> X is an immersion,
then the above definition coincides with the usual one of [E.G.A. IV §16].
——e

(k) the kP infinitesimal neighborhood of Y

Proof: Let us denote by Y
in X inthe sense of E.G.A, We can obviously assurne that Y is a
closed subscheme of X defined by a quasi-coherent ideal I c Ox. Thus

(k) k
~—->1an (X).

OY(k) = Ox/lk*l and we certainly have 2 monomorphism Y
To show this is an isomorphism we must show th;t for any affine scheme
T (over S) the map IVT, Y(k)) —> I'(T, Ini’:; (X)) is surjective. Thus we
are reduced to showing that if T = Spec (A), T'= Spec (A’) with A —> A’
faithfully flat, J EA' is an ideal with Jk+1 = (0), and ¢: T —> X is such

that the composite Spec (A'/J) > T’ —> T 2+ X factors through Y,
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then ¢ factors through Y(k).

corresponding to T’ —> T. Then the h

But A —> A’ being faithfully flat impli

Let ) denote the morphism A —> A’

-1
ypothesis tells us that 1- AcCy (J).

es that it is injective, and hence

z[)-l(J) has its k+15! power equal to (0). But this certainly implies that

¢©: T —> X factors through Y(k).

Lemma (1.03) (Compatability of the fc
hoods with base change.) If S'—> S i

(inty (X)g-
oty s

Proof: Let T' —> S’ be given and let
Then by definition there is a covering {

. ’ ’
immersions of order k Ti > 'I‘i su
o

rmation of infinitesimal neighbor-

k
s a morphism then In.fY

(X)) =
s’ s

t'eT(T', InfS (X))
Y., S
S
amily {T/—> T’} and nilpotent
1

ch that t/

.
T/ (r(Tio, Ysl)c But

1
o

considering T, T;, T'i as S-schemes via S’ —> S we see that this

[e]

this t’ belongs to I'(T’, (In.f}; (X))Sl)-

in this last set and hence have Tli’ T;
°

then T;’ can obviously be viewed as an

T(T}, Xg) = T(T{, X). Thus sucha t'
i
which completes the proof.

(1.1) Let X be a sheafon S and e

X

Conversely, if we begin with a t

S-schemes as in the definition

S'-scheme in such a way that

must belong to T(T', (Infl; (XS'”
Sl

:S —> X be a section. Ifitis

understood that X is given together with a section, then we will write

Infk(x) rather than InIlS((X), the latter having been defined in (1.01) via

our section ex: S =—> X.
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Definition (1.1.1) A pointed sheaf (X, e'X) as above is ind-infinitesimal

if X =lim InfN(X).
=

Remark (1.1.2) It follows immediately from the definition that Infk(X) =
(X)) for any is0.  <checlé Hais!

Recall (1.1.3) Let X be an S-scheme and e_:5-— X a section, then if

X
Q. denotes the conormal sheaf of the immersion ey’ S = X, we have
X
~ %
Eexz’ e (QJX/S). This is seen by checking that both Gs-modules repre-

sent the same functor: namely F t—> Ders(ox, e (¥)) or else as in

X
[G.A.184,2.2]). Also recall that associated to such an immersion we have

a graded quasi-coherent sheaf of Os-algebras [E.G.A.IV 16.1.5].

The following basic definition can now be made.

Definition (1.1.4) A pointed sheaf (X, eX) on S is said to be a formal
Lie variety if the following conditions are satisfied:

1) X is ind-infinitesimal and Infk(X) is representable for all k> 0.

ok _
2wy = ey Wnpxyss = °x @nfk(m/s’
—
is locally free of finite type.

3) Denoting by grmf(X) the unique graded Gs-algebra, such that
gr;n;(}{) = gri(lnfl(X)) holds for all i>0 (see remark 1.1.3), we have an
isomorphism Sym (_Lgx) s grmf(X) induced by the canonical mapping
inf

1 (X).

Wy —> gr

We proceed to translate this definition into more down to earth terms.

First condition 1) and remark (1.1.2) tell us that for each k lnfk(X) is an

S—

affine S-scheme and that both S and Infk(X) have the same underlying
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koo . -
topological space. Thus Inf (X) is given by a quasi-coherent OS algebra

Q. which is augmented:
0 —> 1k - ak —> OS

k+

and furthermore Ik

makes obvious how we define the algebra
imply that locally on S we have
a\‘ <= 0g [Tl,...,TN]

these isomorphisms being compatible [4;
locally on S, X is given by a power sezx

sense that for an S-scheme S°, I'(S,X) =

where Nil(GS,) denotes the locally nilpo

—> 0

k+l ~ R
1 = (0). We are also told that ak+l/l = Clk, which

k+l

grinf(X). Conditions 2) and 3)

k+1

(T T ,

1’7 N
Chap. 1II, §2,#8 Cor.3]. Hence

ies ring Os[[Tl, e, TN]] in the

2 Nil(Og,) x*** x Nil(Gg)

N factors

ent sections of OS,. These

correspond exactly to the continuous homomorphisms

GS[[TI"" ,TN]] — I'(s’,

OSI)

when the latter is given the discrete topo

Definition (1.1.5) A formal Lie group o

category of formal Lie varieties.

logy.

ver S, (eG, G) is a group in the

As usual we consider only commutative formal Lie groups and this

will be always implicitly assumed in the

Lemma (1.1.6) Let G be a groupon a

is also a group.

following without further mention.

- k
scheme S. Then G =lim Inf (G)
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Proof: Since G is closed under taking inverses it suffices to show it is
closed under addition. Since G is a sheaf it suffices to check that if
f,ge (T, Infk(G)) then there is a k’ >k such that f+ge IYT, Infk,(G)).
But since f belongs to (T, Infk(G)) there is a covering family

{Ti —> T} and nilpotent immersions of order k, ?ii — Ti such that

£|T. = 0. Similarly there is a covering family {T/ —» T{ and nilpotent immer-
~—— J

sions of order k Ej’ - 'I:i' corresponding to g. But {Ti X Tj'—> T} isa
' T

covering family, -’i:l X ?j’ - '.I'i X Tj' is a nilpotent immersion of order 2k
T T

and obviously f + gITix T; =0. Thus G is indeed a group.
T

§2. (2.0) 1n this paragraph we assume that S is of characteristic p

and then associate to any G in B.T.(S) a subgroup G which is a formal
Lie group. Later we will, by reducing to the case when S is of character-

istic p, be able to extend this result to the case where p is locally

nilpotent on S.

(2.1) Recall that if G is a flat S-group scheme there are defined two

homomorphisms:

. (p)
fG. G—G

VG: G(P) — G
satisfying vee fG = pidG and fGo Vo T pidG(P).
Here G(P) = G ; S when S is viewed as an S-scheme via the

absolute Frobenius F:S —s S, For the definition of ‘VG see [G.A.IV §3
—_— &

4] or [S.G.A.3 VII A 4. 2]. Note that the definition of fG has nothing to
M\

’

do with G being either representable or a group but applies to any
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o |
contravariant functor from Sch/S to Sets. C.\'\'QC/K AL

Notation (2.1.1) G[n] will denote the k

Frobenius homomorphism:

5 P

h

ernel of the nP iterate of the

) ®"

Proposition (2.1.2) Assume G is a finite, locally-free S-group such that

G = G[n]. Then the following conditions

-.—>G

are equivalent:

. i DI
1) For all i=0,...,n f_:G —> G[n-i] is flat.

G
2) For all i=0,...,n £:6—>G

f.p.p.f. sheaves of groups.

i
[1_-1-i](p ) is an epimorphism of

3) Locally on S we have an isomorphism of pointed S-schemes

G = Spec (OS[TI’ .. I\

n n
P P
.,'rN]/(T1 yeeo, T

) -

Proof: Since we have the following diagram

G
(o, o
O B B
F_ wl
s—2>—5

in which the square is cartesian it follows that iG is certainly bijective

on the topological space level. Thus 1

implies that each f‘G is in fact

faithfully flat. Since it is also certainly locally of finite presentation by

[E.G.A. IV 1.4.3(v)] it is covering for

epimorphism of groups. Conversely if

the f.p.p.f. topology and hence an

we assume 2) then we can check

29

that fz: is flat by looking fiber by fiber, since to be faithfully flat or an

epimorphism for groups over a field is equivalent by {G.A.III §3, 7.4].

3) implies 2) because being an epimorphism is a local condition and fG on

n

G then corresponds to the map G_® O[T.,..., T ]|/(TP ) —>
' G e A8 g Csi N

local\y (som b G =X s

n
- P . P . .
GS[ Tyoeees TN]/(T ) given by Ti — Ti . Hence fG is obviously an

epimorphism. Finally it remains to see that 1) or 2) implies 3). First,
—-"-'—-_-—

if 8§ = Spec (k) where k is a perfect field, then we can write G =
n

1
P P
Specl-z[T],...,'II'.‘N]/(T1 yeeo, T

N
N ) with O<n <n by [G.A. 111 §3 6.3].

But if nl (say) is strictly less than n and if we consider the ring homomor-

-1 pn-l
phism corresponding to fg we will have 1@ T1 = '.1'1 whi<ch is

n
JrP ! p N
zero in k[Tl, . TN] (’I‘l yeea, TN ). But this violates the hypothesis

n-1
that fn‘l : G —>G[1] e ) is faithfully flat since the corresponding ring

G
mapping would then be injective.

To prove the general implication we proceed to reduce to the special
case just treated. ea S:‘S‘)QVM\

Since G is by hypothesis finite over S we can certainly assume
G = Spec (B) where B is some S = Spec (A) augmented algebra of finite
rank. Furthermore, if ESA is any prime ideal, any isomorphism of

~ [irP" P
augmented algebras BP—-> Ap [Tl,...,TN] (Tl ’“.'TN ) will

certainly extend to a neighborhood of p_Hence we can assume S =Spec(A)
where A is alocal ring.

Let us consider w_ and then look at w_ ® k where k is the residue
-G =G A
mm——
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field. This is a finite dimensional vecto

r space over k and hence we can

find elements t_,... ’tN in I, the augmentation ideal of B, which generate

1
w_ ® k. Let us then define a map
G,

n .
P
..,TN]/(T ., T

AlT TERREY

17
via T, r—> ti. Note the hypothesis that
i

hence the mapping is defined. By Nakay

n
p
N

)——>B
n

G = G[n] insures that tf =0 and

ama the elements tl’ e, tN have

2 -
residue classes which generate 1/I and since 1 is finitely generated

(being a direct summand of the A-module B) it is nilpotent because the

th s s
p" power of any element in it is zero.

1 and hence the above mapping is surjec

Thus tl’ PR tN in fact generate

tive. Thus to conclude that the

mapping is an isomorphism it suffices to observe that both source and

target are free finitely-generated A-modules and that rankA(B) =

nN

rank (B® k) = rank_ (B® k) =p = rank, (A[T T /T TR
kTR T T =P A e B ey

k A
Remark (2.1.3) It follows from the pro

tion are equivalent to the conditions

fn-l ](Pn-l)

(1pis) G-—>a[1
-1 -1
(2bis) ¢ £ o™

of that the conditions of the proposi-

is flat.

is an epimorphism.

Remark (2.1.4) It is immediate from condition 3) of the proposition that

s is locally free of finite type.

Corollary (2.1.5) The hypotheses being

the three conditions of the proposition a3

y as in (2.1.2) and S being affine,

>

re equivalent to

4) s is locally free of finite type and G is isomorphic as pointed
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n n
scheme to Spec {Sym , {w ]/wb(p ) ), w(p ) denoting the ideal generated
OS -G -G

by the pnth powers of sections of [

Proof: That 4) implies the conditions of the proposition is obvious.
Conversely if G = Spec (B) where B is a finite quasi-coherent Gs—algebra,
then the conditions of the proposition imply that s = I/Iz is locally free

where 1 is the augmentation ideal of B. Thus we can choose an A-linear

section of the morphism I—> (A being the ring of S). This defines a

ug
morphism SmA(gG) —> B which factors through the algebra

n
SymA(EG)/EC(}p ). From the proof of the proposition it follows

immediately that localizing the above homomorphism at any prime ideal

e}

of A we obtain an isomorphism. Thus the constructed mapping is an
isomorphism.

Using the corollary we can prove the theorem (2.1.7) below which
gives an alternative definition of a formal Lie group when S is of char-

acteristic p.

Definition (2.1.6) A sheaf of groups G on S is said to be of f-torsion

if G=lim G[n].
. e

Definition (2.1.7) A sheaf of groups G on S is said to be f-divisible if
(p)

f :G—>G

o is an epimorphism.

Theorem (2.1.7): In order that the sheaf of groups G on S be a formal

Lie group it is necessary and sufficient that the following three conditions

hold:
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1) G is of f-torsion.
2) G is f-divisible.

3) The G[n] are finite and locally free S-group schemes.

Proof: The proof is essentially that of proposition 1 in Tate's paper [30].
From the fact that, locally on S, a formal Lie group is given by a power
series ring, the necessity follows immediately. Since the definition of a
formal Lie group is clearly local on S| we can assume S is affine, say
S = Spec (A). Then conditions 2) and 3} imply (via proposition (2.1.2) and
its corollary (2.1. 5)that G[n] = Spec Bn) when Bn is a finite locally-
{ree A-algebra. From the fact that G[l] is the kernel of fG[n]: G[n] —
](p)

G[n](p), we deduce from the cartesian diagram G[n] £ Gln

that B /I = B where 1 is the ] ]
n n 1 n A
(p)

n is the G[l]] ——— s

augmentation ideal of Bn and 1
ideal generated by the pth powers of elements in In. But this certainly

2 2
implies that the naturalmap 1 /I —1 /1
n''n

14 is an isomorphism. By

to be free of finite rank.

taking S to be smaller we can assume “601] .
s s . . ; (")
But now it is obvious that we can choose isomorphisms Sym(‘—“c[l])/-“fc,{l]

— Bn in a compatible way (via corollary (2.15) this simply amounts to
choosing inductively liftings of generators of In to In+l)' Passing to the
inverse limit we find that B = lim Bn is isomorphic to a power series
ring. Hence, for any A-algebra C, the points of G with values in Spec(C)
are the elements of llﬂ Hom (Bn, C) = Nil(C) x--- x Nil(C) and hence G

is a formal Lie variety and therefore a fformal Lie group.
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Theorem (2.1.8) Let G be a Barsotti-Tate group over S; then

def.

lim &n] is a for@al Lie group and is equal to G lim Infk(G).

Proof: By theorem (2.17) it suffices to show lim G[n] is of f-torsion,
f-divisible and that the G[n] are finite and locally free. By its very
definition it is obvious that lim G[n] is of f-torsion. Since by hypothesis

p: G(p) - G(p) is an epimorphism and since we have a factorization of

{
(p) —I$ G — G(p) it follows that f: G —#G(p) is an

this morphism G
epimorphism. But now it is clear that f-ll(lirn —G[n])p] is contained in
lim G[n] and hence that f: lim G[n] — (lim G[njl)(p) is an epimorphism.

Thus it remains to show that the G[n] are finite and locally free. Since

we have the exact sequences

)

In- ( n-i
0 — G{i] = G[n] =—> G[n-i]F? ' — o

Wwe are reduced to showing that G[1] is finite and locally free. Notice
first that because p = vge fG we have G[1]<©G(1) and thus G[1]=G(1)[1]
is certainly representable. Using the usual references [E.G.A.11 6.1.5(v),
E.G.A.IV 1.6.2(v), 1.6.3, 1.4, 7] we see that the morphism G(l) £->G=(1)(p)
is finite and of finite presentation and hence it is the same for the mor-
phism G[1]—>S. Thus to show G[1] is finite and locally free it remains
to show it is flat over S. But VG‘(I): G(l)(p) —> G[1] since fov =p, and
we must have vé'l (G[1]) c G(l)(P, for the same reason. But just like f,

Ve s also an epimorphism, and hence the morphism vgl (G[1]) — G[1]

induced by v is an epimorphism. Thus we have an exact sequence:

0 —> Ker v — G(1)'P) Yu g[1] — 0 .
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Passing to the fibers we see that for all seS, Ve is faithfully flat and
hernce as G(l)(p) is flat over S, it follows that v: G(l)(P) — G[1] is
faithfully flat [E.G.A. IV 11.3.11]. This of course implies that G[1] is
flat over S and hence we have shown that _l_i_rg> G[n] is a formal Lie group.
To prove the last statement of the theogrem we observe that G’ =1_ir_n_> G{n]
is ind-infinitesimal since this was part of the definition of a formal Lie

n
group. On the other hand for any n >0 we have Inff -1 (G) < G[n]. To
see this we observe that for any T over S, fG: T, Gl) — (T, G(P))
is simply the maéping arising because G is a contravariant functor from
the commutative diagram:

F
rT—L, T

I

F
S——§—~)S

Finally we observe that if T’ “—> T is a nilpotent immersion of

n .
order <p , then we have a commutative diagram:

Fr
T —
A
\\T//
rd k, .
Thus we have G’ = G’ = lim ank(G') < lim Inf (G) < G’ which completes

the proof.

§3. (3.0) 1In this section we show that if p is locally nilpotenton S and

<S _
o \KOQ—(,\M\( r,G is in B.T.(S), then G = lim In.fk(G) is a formal Lie group. In order
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to do this we make a detailed study of the G(n) making use of the relative

cotangent complex LC.’v(n)/S.

(3.1) We begin by studying smoothness properties of pointed schemes.

For the next proposition no hypothesis on the base, S, is necessary.

Proposition (3.1.1) Let (G, eG) be a pointed scheme, locally of finite
presentation on S; that is eG is a section of the structural morphism
G —> S. Then the following two conditions are equivalent:

1} Locally (for the Zariski topology) on S, ImE:(G) is isomorphic
to a pointed scheme of the form Spec (OS[Tl, e, Tn]/(Tl' e, Tn)k+l );
i.e., s = eé(Q’"G/S) is locally free of finite type, and Symi(c_oc)gﬁ
gri(G, eG) for i <k. Here the term gri has the obvious meaning coming
from [E.G.A. IV §16].

2) For any affine scheme Xo over S, an S-infinitesimal neighbor-
hood X' of Xo of order k, a sub-scheme X of X' containing Xo and
any S-morphism f: X —> G such that f|XO factors through S:G—> G,
there is a prolongation of f to an f’: X' —> G.

Before giving the proof we exhibit the diagram which (hopefully) makes

condition 2) clearer:



Proof: We first show that 1) implies 2

us in the above diagram. We can form
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). Thus consider the daLa given to

the new diagram
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this map takes ™ into J::H = (0) and thus we obtain a map f: B —> A’

which lifts f: B —> A.

We now turn to the proof that 2) implies 1). Observe that only Infk(G)

X s x - X’
/
°© P enters into condition 2) since the given map f certainly factors through
v
joi .7 k : ‘ nfk
L, Inf (G) and any prolongation to an f’ must also factor through Inf {G).
¢ N «
X GX To prove that 2) implies 1) we can assume S is affine and hence Infk(G)

: . : , .
Here X —> Gy, is the morphism (f,j) and X c—-—>GX, is e x1l...

It is immediately checked that the left-hand square ccmmutes and

and that if we find an X’-morphism to make the diagram commute

g: X' —> GX" then composing g with the projection GX' —> G we find

an S-morphism which solves our origi.rjal problem. Since hypothesis 1)
for G —> S evidently implies the analogous statement for Gx,-—> bl
we have reduced ourselves to the following situation: X' =S and hence S
is affine. Notice also that the morphism f: X —> G factors through the
kth infinitesimal neighborhood of S in| G. Thus translating into commu-

tative algebra we have: rings A’, A A with A = A1, A= .A'/.’Jo ,
k

J 27,7 + = (0), and an A’ algebraB| and a map of A’-algebrasf:B —> A.

o~ o

Furthermore B is an augmented A’-algebra. Let its augmentation ideal

be I. Then under the composite map B —> A —> Ao' I is mapped to (0).

Hence under the map f: B —> A, f{(I) = Jo/J' By hypothesis 1)
k+1 .
B = SymA, [EG]/I and hence we have an A’-linear map LT JO/J.

Since w_. is projective, we can lift this to a map

—> J . This allows
G [}

G

us to define a map SymA,[gG] — A’ which takes I into Jo' Hence

is also affine. Let the respective rings be A and B where B is an
augmented A-algebra whose augmentation ideal 1 is such that Ik+1 = (0).
In order to show that 1/12 is locally-free, we are led to the case k=1
since condition 2) implies that B/I2 satisfies the same hypotheses for
first order immersions, as B does for kth order immersions. Let us
choose, in the notation of condition 2), X°= S = Spec (A). For any two
A-modules M and M’ and any surjective homomorphism M —> M’ we
can look at the two rings DA(M) and DA(M') (i.e., the ring DA(M) =

2
ASDM with M =(0),...). Then we find surjective homomorphisms:
’
DA(M)—ﬁDA(M)——>A

But now by definition B = DA[gG] and condition 2) now says that any

A-linear map 8 T M’ can be lifted to a map w. —> M. This says

that 5 is projective. But G being locally of finite presentation on S

implies that w_. is of finite presentation [E.G.A. IV 16.4.22] and hence

-G

that s is locally-free of finite rank.

It remains to prove that Syml-[gG]-% grl(G, e) for i <k. Inorder

sk+l

to do this let B’ = Sym [EG]/I where I’ is the augmentation ideal in
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Sym[-n_:G]. Consider the map 1—> u_

choose a section “e —> 1. This secti

w: B’ —> B because 17V = (0). Wew

is projective
and because Lo proj

on allows us to define a map

i11 show that this map is an isomor-

phism, which will complete the proof that 2) implies 1). Let us apply

hypothesis 2) to X = Spec (B’), X = Spec (B) and XD = Spec {A). Notice

that u: B’ —> B is surjective modulo

squares of the augmentation ideals

and hence is surjective. Then by 2) the identity morphism B-—> B can

be lifted to a homomorphism of A-alge

But now from the case k=1, we know Vo u induces the identity on /17,

Hence vou induces the identity on gr

vou is an automorphism of B’ and he

bras v: B——=> B’ such that uov:lB.

2

v (B'). Thus as 1’ is milpotent,

nce u is an isomorphism.

Definition (3.1.2) G is said to be smooth along the section eg P to

order k if G satisfies the equivalent

conditions of proposition (3.1.1).

(3.2) In this section we define the "nTve" relative cotangent complex in

the special context in which we shall need it. The word ''naive'’ is used to

distinguish the complex which we defin
Illusie [17], although in this special ca

one which we will adopt.

(3.2.1) Let G be a finite and locally
on S is necessary). Thus G = Spec (@
free Os-algebra. To say G is a grou
(i. e., we have algebra homomorphism

satisfying well known identities). Thu

e, from that defined in general by

se his definition agrees with the

-free S group scheme (no hypothesis
where Q is a finite and locally-
p amounts to saying @ is a bi-algebra

s A:Q—>Q®C and e:a—-—>os

s @, thelinear dualof G, is
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equipped with an algebra structure via the transpose of A and that of €.

Definition (3.2.2) The situation being as in (3.2.1) the hyperalgebra,

U(G), of G is by definition @ endowed with its algebra structure.

Remark (3.2.3) As is well known @ is in fact a bi-algebra and Spec (d) =

E-3
G , the Cartier dual of G.

(3.2.4) Since U(G) is a finite locally free Os-algebra we obtain a smooth
group scheme U(G)x whose points with values in the S scheme T are by

definition the invertible elements in the ring T(T, U(C ))=I‘<T, ag. o )
T OS T

Also we have a natural monomorphism G > U(G)X which is defined by

viewing a T-valued point of G as a homomorphism of OT-algebras
O@OSOT — GT and hence as a global section of I(T, é®GSeT>' The fact

that such a homomorphism when viewed as an element of I'(T, U(GT)) is
invertible and that the morphism G <— U(G)X thus defined is indeed a

homomorphism of group schemes, results easily from the definitions.

Lemma (3.2.5) The natural monomorphism G > U(G)x is a closed

immersion.

X
Proof: Observe U(G)” is of finite presentation and affine over S. Then

by applying {S.G.A.3 XVI (1.8)] with G’ = S (the trivial S-group) and

. .
G”=G and H = U(G)" we see that G —> U(G)X is proper. Since it is also

2 monomorphism we use [E.G.A. IV 8.11.5] to finish.

Lemma (3.2.6) The morphism G < U(G)X is a regular immersion.
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Proof: By [S.G.A.3114.15], G islo

cally a complete intersection.

Hence by [S.G.A. 6 VII 1.2, 1.4], we see G —> U(G)” is a regular

immersion.

(3.2.7) The notation being as above, let I be the ideal defining G in

G/S

U(G)X; then the definition of §.G.A. 6 for L. which we adopt is:

Definition (3.2.8) The relative cotangent complex, L?ls, is the complex

2 4
of OG-modules /17 — QU(G)X/S G.

G/S

s
Since both terms in this complex are locally-free we have LgG(L. )

G/

*
=e (L. S)_ Let w: G —> S be the structural morphism. We have the

G

following proposition (which we will need later):

¥ x GfS, _~ G/s

Proposition (3.2.9) = eG(L. )—>1L

To prove the proposition we use the following general lemma:

Lemma (3.2.10) Let T be a topos, G be a groupof T and P a torseur

under G. Assume we are given a fibered category € over T. Then the

category of objects ¢ in €_ given with de

P
gory of objects £ in GP on which G acts

scent data is equivalent to the cate-

in a manner compatible with its

action on P. The last condition means precisely the following: for any

object S' in T and @e¢G(S’) we are to be given a morphism
J ©

(;: gp — 5? lying over the mapping multiplication by ¢ on PS, in
s s’

such a way that it is compatible with multiplication in G and with restric-

tion morphisms.

Proof: Let data of the above type be giv

ven for an object ¢ g&P. First
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observe that an equivalent way of stating the condition is to say that for
any S in T and any morphism 7;: ' —> P we are to be given an
isomorphism n*(g) = (p- n)*xg). The fact that this map must be an iso-
morphism follows from the requirement that G 'acts as a group. "
Applying thisto S’ = PxP and n=p, we choose ¢ ¢ Hom{P xP, G) to
be the unique element such that - Py= P,- Thus we obtain an isomorphism
6: pl*(g) %p:(g). To check the cocycle condition we observe by the above
restriction and multiplicativity properties that since plz*(z,o) ° pl' = pz' B

* et ¥ B —_— ‘. i ith
pz3((,o) P, = P pls((p) P} =Py (where P;: PxPxP—> P is thei
projection), we must have p:3(9) ° p,;z(e) =,p’;3('9) by the multiplicativity
property. Now to check that morphisms between such objects give rise
to morphisms between oktjects with descent data is trivial. Since this is
all we actually need for the proposition we omit the easy verification that

we indeed have an equivalence of categories.

Proof of proposition (3.2.9) (continued): Take G = P = our finite locally-
A
free group scheme G, T = Sch/S with the Zariski topology (for example)
on Sch/S. Take € = fibered category of modules. Observe now that if we
consider G ;—>U(G)x, then sections of G induce commutative diagrams
via translation:
G — uc)*

Lo

G — ue)*

Therefore by functoriality they induce an action of the above type {i.e., as
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2 |
in the lemma) on the conormal bundle 1/I  and on QJU(G)X/S ]G. These
: . : 1
translations are obviously compatible with the morphism 1/12 — DU(G)X/S G
[E.G.A. IV 16.2 and 16.4]. Hence as| G—> S has a section it is a mor-

phism of effective descent and thus we can write:

£
G/S ~ %% 2w (v) * % o] ;
L7 = eG(I/I )—————>n e (QU(G)X/S‘G)

Q0

% 02 *
for a unique morphism v: eG(I/I ) — eG(QIlJ(G)X/S'G>' But as

* * ] G/S ~
'n*ezfr (v) =w (v) we must have v=e_ 7 (v) and hence L. —
=

* % _G/S
| 4 eG(L. ).
Lemma (3.2.11) The formation of LJ/S commutes with an arbitrary

base change S’ —> S.

Proof: Since the formation of U(G)x obviously commutes with all base
X .
changes we must only show that the ideal defining GS' in U(G) g s’ is
X : .

the inverse image of the ideal defining |G in U(G)". Since this problem
X

is local on S, "we can assume S’ = Spec (A), §= Spec (A), U(G) =

Spec (B), G = Spec (B/I). But since B/I is flat over A the following

sequence is exact: 0 —> I® A’ —> B® A’ —> B/I® A’ —> 0. Hence

A A A
1® A’ is identified with its image in B ﬁ A’ which is precisely what we
A

wanted to show.

Recall (3.2.12) The construction of U(G) being functorial in G it

follows that if u: G —> H is a homomorphism of finite locally-free groups

x
we have a commutative diagram: G > U(G)
u

H<— um)"

43

P
and hence deduce that there is a morphism u (L?/s) _— L.G/s corre-

sponding to u.

%
Definition (3.2.13) The co-Lie complex, L.G is by definition eG(LF'/S).

From (3.2.12) we see that G —> Jl.G is a contravariant functor.

(3.3) The following propositions give us the necessary results in order

to associate a formal Lie group to a Barsotti-Tate group.

Proposition (3.3.1) Let G{n) be an inductive system of finite locally-free
groups on an arbitrary scheme S. (The n is just an index which for
typographical is not written as a subscript .) Let J be a quasi-

coherent ideal of OS such that JN = (0). Let So= Var(J), Go(n) =G(n) x So
S

and in general let the subscript ""o'' denote the restriction to So. Assume
We are given a mapping ¢: IN —> IN such that ©(n) >n for all n.

Assume that whenever M is a quasi-coherent module on an affine open
set U cs, Ext! (2.C®™ |y | m)—s Ext'(2.%0@0 1y 0y s the
o~ o OU o o

o

zero map. (In the rest of the proposition we shall omit the & and IUo

U
o

and simply write So , or S depending on the ;:ontext. This will not lead
to any confusion.) Let X' be an affine scheme over S and X be the
subscheme defined by an ideal I such that 12 = (0). Assume we are given
an S-morphism f: X—>G(n). Then.there is an S-morphism fiX'—> G(mN(n))
such that the following diagram commutes:
X — x’
f l J, £

Gn) — Glo ()
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Proof: Let U €S be any affine open

set and let M be a quagi-coherent

module on U which is killed by J sp that M is in a natural way an

OU -module. By hypothesis the map
o

is zero. But now since Uo —> U is

Ext'(2.50) M) — Eyil (g Gololn))

a closed immersion (and hence an

affine morphism) it follows immediate ly from {S.G.A.4 XVII 4.1. 3(iii), 16;

16.4] that Ext’(z.S0(®)

G(n)

map Ext' (2.5 M) —s £yel(4.00@

1
; M) is isomorphic to Ext (2.
n))

G(n), M). Thus the

» M) is also the zero map.

By induction on the integer j we have M(q. coherent on U) killed

G(n)

by e implies Extl(ll. » M) —=> E

In fact writing the exact sequence

Glpd(n))

1
xt (L. , M) is the zero map.

0—>IM—>M— M/IM—> 0

and forming the commutative diagram:

G(n) G(n

, IM) — Extl(,e.

l !

Ext' (0 GO0 vy pyd Gl

1
Ext (4.

we see that the image of Extl(!;.G(n),

Ext](L.G((p(n”, JM). Therefore we can
the map Ext' (45" gap) — Exel(s

This tells us that for any quasi-c
Ext' (0.8®) vy —s Extl(z.c“"N(“”,

Now let us return to the situation

X & X

0!

G(n) J—> G(wN(n))

G(n)

l

,M)—> Ext}(¢ @)

, M) — Extl()’;. , M/IM)

) , M/IM)

M) is contained in that of

apply the inductive assumption to

J
Glo (n)), JM) to conclude.

oherent module M on U the map

M) is zero since by hypothesis JN: (0).

of the proposition:

s
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We cover X’ by affine open sets V; such that the image of each

V; in S is contained in an affine U as above. Denote by Vi the affine
open subscheme of X having Vi' as its underlying space. If we could
prolong i[Vi toan f’ on V'i as desired in the conclusion of the proposi-
tion, then because X is affine we could prolong f to X' itself. This

follows from the standard obstruction theory, which tells us once we have

local solutions of the problem, that the obstruction to having a global solu-

1 * %
tion is an element of H (X, Homcx(f j QlG((pN(n))/S’ I)) and this group is

zero since QlG(cpN(n))/S is of finite presentation. [E.G.A.IV 16.4.22].
Thus we see that we can assume S to be affine. But now we know from
[14;11.1.5, 11.1.7] that the obstruction to lifting jo f: X —> G(caN(n)) to

%
X' is the image of the "obstruction element" in F..xtcl9 (Lf L.G(n)/S’ I) in
X

N
*
Exté (L(jo f) .G(go (n))/S’ I) - But now it follows from (3.2.9) that if
X

G{(n)

G)/s, | L'n‘:( (£.

3
Ty X —> S is the structural map Lf (L. ) and

% Glo" (n)/S ;
similarly of course for L(jo f) (L. ). Thus we want to know that

%
the image of an element in F..xtcl9 (L‘I'IX (E.G(n)), I) under the map
X
1. % Gn) * . Gl (n)
Ext (Luy(2."™), 1) — Ext(Lnx (2! ) 1) is zero. But by

adjointness (same reference to Hartshorne and S.G.A. 4 as above) this map

is the same as the map

0,

N
Ext. (250, Tex ()= Exté (1500 =), L))
s s

which we've seen is the zero map. This completes the proof.
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Corollary (3.3.2) G =1lim G(n) is, under the hypotheses of the proposi-

—_—

tion, formally smooth.

Proof: 1f X is any affine scheme over S IIX,G) = lim> T'(X, G(n)), since

X is quasi-compact.

G
Definition (3.3.3) Writing the cotangent complex L. s

is in degree 0 and I/IZ is in degree
G
Hl(l. ). Notice this use of the symbol

our previous notation.

Proposition (3.3.4): Consider an exac
groups: 0 —> G’ — G — G” — 0.

derived category, D(S):
7
z.G\
LR}
Z.G —_—

giving rise to an exact sequence of OS

(3.3.5) 0—>£G/l—>EG—'>EGI—>

so that QIU(G)X/SIG
. _ G -
1, we define wo=H (2.7), . =

5 is of course consistent with

t sequence of finite locally-free S

Then there is an exact triangle in the

2.8

rmodules:

QGI/‘_‘>2G—>EGI'$O

Proof: Let us first observe that by [E.G.A. IV 19. 3. 9(ii)] the morphism

G —> G” makes G locally a complet

because after a f.p.q.c. base change

. . . ”
e intersection relative to G

G is as G“-scheme isomorphic to

G'_. . Since G is a finite and locally-free G“ scheme we can certainly

G

embed G in a smooth G”-scheme; fo

r example if G is defined by the

O -algebra O then we canuse WV (0). [E.G.A.II 1.4.10]. Thus the

G
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4

relative cotangent complex L.G/G is defined [S.G.A. 6 VIII 2.3]. But

now by [14; 10.5.21] we have an exact triangle in the derived category

D(G)
I_.G/G
)4
—
L(.:' /s,G . LSS/S

which comes from the commutative diagram

I > G
\\S/

——T e "
and where L.G /8,G = L'n* (L.G /s
*_G”/S G
Hl(Lfr (L. ) —> HI(L' /S) But now if S’ C S is any affine open

G

) /K[l] with K the kernel of

then it is immediate that the diagram

Tt
Gxs — G” x 8

S S
\s’ /
satisfies the hypothesis of [S.G.A. 6 VIII 2.6]. Thus we find an exact
triangle in D(G xS’)
S
LG x8'/G" x5

”" J s J /
er;,(L.G xS /S") L.st /S

Taking the corresponding homology sequence we see that when restricted

to GéS' the map



HI(L-rr*(LG /8 —— u_ (LG5

1 )

is injective (i.e., K|Gx S’ =(0)) Since S’ was any affine open subset of
S

"758,G G" /s
S it follows that K = (0) and hence L,G /5,6 _ La*(L. ) and thus we

obtain an exact triangle:

IE/G&\
r
Lo C /S) — > 0.Of8

Let &gt S —/> G be the unit section. Then applying Leé to the above

exact triangle we obtain an exact triangle:

Leé(L.G/S)

”
4 '\
G" G

L, —> 4.

But using that w: G —> G” is flat and [S.G.A.6 VIII 2.2] we see (just as

in 3.2.11) from the cartesian diagram:

LG /G" G'/s

that Li* ( )= L.

7

/s

GI G Gl/
= Lel, (L") = Lef (L. /

and therefore z,G ).

This gives us our desired exact triangle and completes the proof of the

proposition.
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Lemma (3.3.6) Suppose G is finite and locally-free on S. Then 95 is
locally free if and only if it is flat. If this is the case then EG is also

locally free (of finite rank) and rank (EG) = rank (P'G)'

Proof: Let us write z_G = .'L1 —_ Lo. Then with obvious notation we have

exact sequences:

0 — ﬁLl-*,-im—#O

]
—> im —> g —> 0
0 im Lo Y
Hence, since O is of finite presentation,if it is flat, then it is locally-
free which implies the image of the morphism Ll —> LO is locally-free

of finite rank. But certainly this implies n

s is locally-free of finite rank.

In this case we have rank (Lo) - rank (LI) = rank (Q‘,:) - rank (QG).
Because the relative dimension of G over S .is zero it follows that
rank (EG) = rank (BG)'

The following are corollaries of 3.3.4.

Corollary (3.3.7) Given 0 —G' — G — G’ —> 0 as in (3.3.4) then:
a) The following conditions are equivalent and if S is of characteristic

P, they are implied by G'c G[1]

1) o — g is an isomorphism
2) SG” —_ EG is the zero map
3) EG' —_ EG" is surjective

b) Suppose Yo is locally-free and . is of finite type and that

rankk(s) (EG, ® k(s)) < rankk(s) (EG” ® k(s)) holds for all se¢S. Then the

above conditions of a) are equivalent to
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3 bis) n., —>w_, is an isomorphism and in this case n_ —>n_,

Sl

is the zero map.

—G

Proof: That the three conditions of ja) are equivalent is immediate from

(3.3.5). If S is of characteristic p, then G’ € G[l1] implies GIV[1]=G[1]

1
and hence since Inf (G) € G[1] (see the end of the proof of 2.1.8) we have

e = w5 which is condition 1).

b) Assume the additional conditions and that EGI —> w_« is surjective.

Then because w_, is locally free we

e

must (locally on S) have a splitting

=G
a5 = Ker x Qe where Ker denotes the kernel of EG/ —>SG,,. By

our assumption on the ranks we must

Ker is of finite type because . is.

have Ker ® k(s) = (0) for all se¢S.
O,

Therefore by Nakayama we must

have each stalk of Ker is zero and therefore Ker = (0). This completes

the proof since the last assertion is obvious.

Remark (3.3.8) From (3.3.6) it fol

corollary can be written rank (QG, ) <
s

Corollary (3.3.9) Assume given the

ows that the inequality in the last

« rank (QG,;) for all seS.

exact sequence 0—> G'—> G—> G

—> 0 as above and assume further that:
1) SG —_ EG' is an isomorphism
2) [ and ©en are locally free
3) rank (EG’) < rank (QG”) holds for all s¢ S

s s

Then for any affine open U CS and for any quasi-coherent module M on

U, the map

1 G’
Exto (2.7 |u, M) — | Ex

U

t; «Slu, M)
U
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-is the zero map. In particular for any quasi-coherent M on S the map

7

Ex_tl(!,_c , M) —— I‘_;Ltl(,e,c, M) is zero.
Proof: Because %luc_, M) is the sheaf associated to the presheaf
Uk Extl(l_GI u, M| U) it follows that the last assertion follows from the
preceding one. We can obviously assume S is affine. Let I' be an

G

injective resolution of M. By inspecting the complex Hom" (£, , I")

whose component of degree m is
-1 -
Hom (L, ™) & Hom (L°, I™)

G -1
(£ being L ~—> L® of course), we find a functorial exact sequence:

0— Extl(w , M)—> Extl(l_G, M)—> Hom (P'G' M) — z‘E))(f:2 (EG' M)
and a similar sequence for G’. Hence because s and Y,s are locally

free we have isomorphisms:

1 ~
Ext (LG, M) —— Hom (I_IG, M)

1, G’ -
Ext (£, , M) —/—> Hom (EG" M)
But now we know from (3. 3. 8) that our hypotheses insure that EG,—> n

is the zero map and hence we are done.

Corollary (3.3.10) Let S be a scheme such that pN+l kills S, and G

be a finite locally-free S-group satisfying the equivalent conditions of
lemma (1.1) of Chapter 1for an n > N+l. Then for any affine open subset

G(n-N-1)

1
U of S, the mapping (defined for any q. coherent M) Ext (£ M)

1
—> Ext (2?, M) is zero.
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Proof: Just as in the proof of (3.3.1) we are immediately lell, via the
adjointness relation recalled there,|to the case when N = 0, i.e., when
S is of characteristic P- Thenif n=1, G(n-N-1)= G(0) = (0) and there
is nothing to prove. If n>2 we must verify the conditions of the previous
corollary for G’ = G(n-1), Condition 1) is clear as G’[1] = G[1] and hence
EG - @ is an isomorphism. Condition 3) is also trivial as G* =G(1).
To verify that condition 2) holds we use the following proposition.
Proposition (3.3.11) Let S be a scheme of characteristic p and
G =G(n) a trun'cated Barsotti- Tate groupon S, or if n =1 assume
there is a truncated B. T. group G(2) giving rise to G. Then

a) Forall i suchthat0<i<n we have

. n-i
74 G[n] —> G[i]p is an epimorphism

b) Ke:rfn=i;mvn and Kervn=i;m.t'n
¢} G[n] is finite and locally free on S
Proof: Let us first observe that c) allows us to appeal to [1,(2.1.4)] to

conclude the proof of (3.3.10). Condition a) is trivial if n=1. If n>2

we have (for each i) the following commutative diagram:

. n-i id_ (p™~1) n-i
" el ) < oy )

n-i n-i
v f

G[n]

As the morphism pn-l.idG(pn-l) is an epimorphism, it follows that £

53

is also. To prove b) let us first assume that G(n) comes from a G(2n)
which is a truncated Barsotti- Tate group. But then we have an exact
sequence:
n
0 —> G(n) —> G(2n) —B— G(n) — 0

Therefore G[n] < Gi{n) and the map (pn)".l (G[n]) —> G[n] is an epi-

. . . n n . .
morphism. But once again we can write P = Vo 7 and since obviously

-1 n (pP
I (pn) (G [n])— G(n)(p ) we see v': G[n](p ) G[n] is an epi-
morphism. That im £ = ker vn, is of course handled analogously.
Thus we have in particular proved b) if n= 1. We proceed to establish

its truth in general by induction on n. Consider the diagram:

n n
G ——Y . G[n]
P f
\I/Pn
G(n-1) ————— G[a-1JP
v

n
By the induction hypothesis oL G[n-1P — G[n-1® is an epi-
morphism. Therefore fov" is an epimorphism. Hence if we can show
G[llc im v it will follow that v> is an epimorphism. But by the case
n=1 settled above G[1] = v(G(1)P) = vo p™} (G(n)P) = Vi emP)) c
n (") . .
v (G(n) ). The other case is of course handled in the same way. To
prove c) we observe that G[n] is certainly finite and of finite presentation
over S. Therefore to conclude it is locally free it suffices to show it is

flat. But this follows immediately from b) because we have a commutative

diagram:



n vn
G(n)? —— G[n]

./

n
and v© being an epimorphism is faithfully flat while G(n)p is certainly

flat over S.

Remark (3.3.12) The condition that G(1) comes from a G(2) can not be
dropped. To see this consider the following example. Let k be a field
of characteristic p, S = Spec(k[[t]]) and G = Spec(k[[t]] '[X]/(Xp—tX))

with addition as group law. Then at the generic point G is étale while

at the closed point G becomes ap. But this implies @ has rank 0 at

the generic point and rank 1 at the closed point. As S is connected,

w_ certainly can not be locally free.

Theorem (3.3.13) If p is locally nilpotenton S and G is in B. T. (S),
then G is formally smooth.

Proof: Let X' be an affine scheme over S and X a closed subscheme

defined by an ideal of square zero. Let f: X—> G bein (X, G). We

must show f can be lifted to an f': X' —> G. As X is quasi-compact

we have T'(X, G) = }ﬂ T'(X, G(n)) and hence can assume f{:X—> G(n)

for some n. We cover X by a finite number of affine opens Ui isL...,m
such that the image of Ui in S is contained in an affine open Vi. Since
p is nilpotent on each Vi there is an integer N such that pN is zero

on U V.. Replacing S by S8’ =y Vi and G by GS, we are led to the
i .
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case when p is nilpotent on §, pN+1' 1.= 0. But now by (3.3.10) and

s
(3.3.1) we see f can be lifted to an f and the theorem is proved.
The following example shows that if p is not locally nilpotent on §

B

a Barsotti-Tate group need not be formally smooth.

Example (3.3.14) Let S = Spec (A) and consider the Barsotti- Tate
group g (I,3.8.1). To say | is formally smooth means that whenever
C is an A-algebra, I a nilpotent ideal of C (of square zero) and xe¢ C/I
n

is such that »* = 1, then there is an x’¢ C which reduces modulo I to
x and has the property that for some m >n, x’pm = 1.

Writing x'= u + y where u is some definite lifting of x and yel
we have x'P" = yP" p'y (since I has square zero) and since x P%= 1
we see uP = 1 +{ for some L¢l. Since *P7=1 this means

m-n
P m -
(1+%) +p y=1 and hence pm n{ + pmy =0, or equivalently
m-n n X .
P (L+py)=0. Since given x we have chosen u and thus £, we
see that we can find an x’ so as to lift the point of | with values in
Spec (C/I) to Spec (C) if and only if we can find a yel and integer m’
’
m n

such that p (£ + py) = 0. But this is true if and only if the element

(4

a in Ip belongs to the image of I. But now (n being fixed) we have
P pn 2
€=u" -1 and £ =0 and hence there is a homomorphism of the ring
/ p? 2 .
A[T]/(TY - 1)° into C which takes T > u and induces a homomor-
n
phism A[T)/(TP - 1) — c/1 taking T > x. Thus we see it suffices

T4z s n
to check our condition for the ring C= A[T]/(TP - 1)2 and the element

n
. . . . n
t= TP - 1 in this ring. Since C/(TF -1) is a free A-module we have



56 57

|

n n 2 . .
C= (TP -1 C/(Tp - 1) as A-module. Thus we see _§; is in the image 1" is zero and G is representable we know the group of sections of G

P

n
of the ideal (TP - 1) if and only if it is in the image of C in C,. But over X' whose restriction to X is zero is isomorphic to the group

H°mox(""c ®5s Oy 1) [5.G.A.31110.9]. But since p" kills 1, we
N

: n .
certainly have p (p f') = 0 which implies f'¢ G(n+N) (X).

since C is a free A-module with base 1,T,..., TZPn-1 we see this will
be true if and only if l—n belongs to the image of A in Ap (i.e., if and
only if L belongs to t}P;e image of A |in AP). Thus we can conclude that Corollary (3.3.16) Let pN Kill S andlet G be as in the proposition.
I I is formally smooth if and only if -]% belongs to the image of A in AP. Then the kth infinitesimal neighborhood of G(n) in G is the same as that
Therefore if A =2Z or Z_ (the p-adic integer and not the localization of G(n) in G(n+kN). In particular Infk(G) - lnfk(G(kN)) and is therefore
of Z with respect to the element p)we see p is not formally smooth representable.

over A.

Proof: If £: 7' — G belongs to the kth infinitesimal neighborhood of G(n)

Finally we shall prove that if p| is locally nilpotent on S then G .
in G, then there is a covering family {T; —> T’} and schemes T. such
i

is a formal Lie group. We begin with a lemma. ,
that T, = T is a nilpotent immersion of order k and £]T.: T—> G(n).
1 1

Lemma (32.3.15 Let G be a p-torsion group on S with all G(n) repre- cen
( ) P group P But then by the proposition f| T;: T; —> G(n+kN) and hence feI(T’, G(n+kN))

sentable. Assume we are given an S-scheme X  and a subscheme X

K+l |

which proves the corollary.

2
defined by an ideal I such that I (0) and pN - I/1" = 0. Then if"

N
Corollary (3.3.17) If p kills S and if k<pn we have In.fk(G)C

f': X —> G is such that f={'|X; X —> G(n), we have f:X’ —> G(n+kN). k X
G(n+N-1) and hence Inf (G) = Inf (G(n+N-1).

Proof: The problem is local on X’ and hence we can assume X’ to be ,
Proof: Let X' be an S-scheme and X ©— X’ be a nilpotent immersion

affine and thus quasi-compact. But then f' ¢ T'(X’, G) = lim (X', G(m))
> of order k. Denote with the subscript 'o" the object obtained by reducing

and hence we can assume f': X’ —> G(n’) for some n’. Therefore we )
a given object module p. Given f': X' — G whose restriction to X is

can assume that G is representable., We use induction on k. If we , , X
zero, then we have fo: X, ‘>-Go belongs to Inf (G_). By the reasoning

could show £’ IVar (Ik): Var (Ik) —> G(n + (k-1)N), then by the case k=1
at the end of the proof of (2.1.8) (where we show that lim G[n] =
am

we would know f': X’ —> G(n+kN). Thus it suffices to treat the case ) k k
limg Inf (G)) we know that Inf (Go) E‘Go[n] c Go(n). But this means that

k=1, i.e., I’= 0. Since f: X —> G(n) we have p"+ £= 0 and thus P
: " . ‘
€G(X') has its restriction to G(Xo) = Go(x;) belonging to G(n)(X;).

pnf' €G(X’) has the property that its restriction to G(X) is zero. Since
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If we now apply the proposition (3.3.15) with I = pOXI , k=N-1 and

N=1, we find ¢ G(n+N-1)(X')

Theorem (3.3.18) Let p be locally

Tate group on S. Then G = lim Inf

k

nilpotent on S and G be a Barsotti-

(G) is a formal Lie group.

Proof: By (1.1.6) we know G isa subgroup cf G and hence we must

show it is a formal Lie variety. By (3.3.16) In.fk(G) is, locally on S,

representable and therefore since it|is a sheaf it is representable.

By Theorem (3.3.13) we know

G is formally smooth and obviously

- k
this implies that G is formally smooth. This tells us that Inf (G)

satisfies the lifting condition 2) of (3.
k k

S Inf (G) = Inf (G(m)) for an appr

that locally on S ln.fk(G) satisfies ¢

now it is obvious that E satisfies co

hence is a formal Lie group.

1.1) and hence, since locally on
priate m, it follows from (3.1.1)
ondition 1) of that proposition. But

ndition 2) of Definition (1.1.4) and

Definition (3.3.19) We define for a Barsotti-Tate group G on S (p

locally nilpotent on S) ©5 tobe w_| .

G

Remark (3.3.20) It follows immediately from (3. 3.18) that ©5 is

locally-free of finite rank and from (
(3.3.17) that locallyon S w

N . _
p kills S, then QG -QG(N) as fol

Remark (3.3.21) Let p be nilpoten

on S. Let So = Var(p). The map §

-G = 1)G(rn)

3.3.16) or, for a better estimate,
if m is sufficiently large. If

ows from (3.3.17).

ton S and G,H two B.T. groups

lom (G, H) —> Hom (Go'Ho) is
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injective.

Proof: Let u: G—> H be such that u= 0. If pN kills S, this implies
N
im(u) El.nfp (H). By (3.3.17) im(u) CH(n) for n sufficiently large.

n . n_ .
But then wo p - ldG =p - 1dH° u =0. Since G is p-divisible, u = 0.

§4. In this section we study the relation between formal Lie groups and

Barsotti-Tate groups on a scheme S, with p locally nilpotent on S,

Lemma (4.1) Let B be a ring in which p is nilpotent and 1 be a nil-

=p1+12,...,1 =

potent ideal of B. Define a sequence of ideals I 1
n+

1
2
PL+ (I ). Then for n sufficiently large 1 = (0).

1

>

Proof: Let J =pB +1. Then one checks immediately that I < Jn+
2 rood n<

from which the result follows.

Lemma (4.2) If p is locally nilpotent on S and G isa formal Lie

group over S, then G is of p-torsion.

Proof: We must show G = lim a(n) and since this is a statement about

sheaves it suffices to check it locally on S. Thus we can assume

S = Spec (A) with p nilpotent on A and G is given by a power series

_ring A[[Xl""’XN]]' If T is any affine S-scheme, say T=Spec (B),

then an element of E(T) will be an N-tuple (bl, . ,bN) with each b,
i

nilpotent. Let 1 be the ideal generated by {b b, }. Then each

170 Py

component of p- (bl""’bN) belongs to pI+IZ and ;pz(b],...,bN) €
2 2.2 -

P (PI+1I)+(pI+17)°,... . Thus by (4.1) we see G is of p-torsion.

Let S be the spectrum of an artin local ring with residue field of
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characteristic p and let G be a p-divisible formal Lie group on S. We

shall show that G is a Barsotti-Tate group. To do this it suffices to

prove that G(l) is finite and locally-

free.

Proposition (4.3) Let A be an artin local ring with residue field k of

characteristic p and let u: G—> G

group to itself. Then IKer(u) is finit

Proof: Denote by the subscript "o

be an epimorphism of a formal Lie

e and locally-free.

the result of reducing an object

defined over A to k the residue field of A. Let (Sch/k)’ denote the

full sub-category of (Sch/k) consisting of those schemes which are

locally of finite type over k. Endow
by the f.p.p.f. topology on (Sch/k).
u: G—> G to (Sch/k)’ is obviously z
1.3.4] there is 2 morphism of sites

by the "inverse image' functor v

(Sch/k)’ with the topology induced
Observe that the restriction of
in epimorphism. By [S.G.A.3 VII B

v: (V£/k) —> (Sch/k); o given

p.f.

1: (Sch/k)’ —> V{/k which is defined

- ~
by v l(X) = X/k in the notation of [S.G.A.3 VIIB 1.2.6). Since the

. -1 .
extension of v to sheaves is exact

of as a "formal variety' in the sense

it transforms G into itself thought

of {S.G.A.3 VIIB] and transforms

u into an epimorphism in the category of formal groups over k. Since k

is a field [S.G.A.3 VIIB 1.4] implies

that the map ?1'0: k[[X]]— x[[x]]

corresponding to ug is "topologically flat'' and because the power series

ring is Noetherian this means it is flat.

Because the category of commutative formal groups over k is

antiequivalent to the category of commutative affine groups over k
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[S.G.A.3 VIIB 2.2.2] it follows from [G.A. III §3, 5.5a)] that Ker(uo)
is finite over k. Since A is artin this implies Ker{u) is finite over A.
To see Ker(u) is flat over A it suffices to show the map u: A[[X]] —>
A[[X]] corresponding to u is flat. Let m, denote the maximal ideal of

A. Consider the following sequence of maps

A — A[[X]] = A[[X]] .

Because the first map and the composite are flat, the map
- Al A v - A[[XID - Allx
my» ALXN @, AlXI = & (m - AlXID - ALX]]
is bijective. Since we already know '\70 is flat we can because m, is

nilpotent apply the criterion of flatness [4, Chap. 3 §5 Theorem 1] to

conclude U is flat. This completes the proof.

Proposition (4.4) Let p be locally nilpotent on S and let G be in
B. T. (S). Then the following conditions are equivalent:

1) G=G.

2) G is a formal Lie group.

3) For all n Gi{(n) is radiciel.

4) G(l) is radiciel.

Proof: 1) implies 2) by (3.3.18). 2) implies 1) because, by definition,

a formal Lie group is ind-infinitesimal. Since property 2) is stable under
base change by (1.03), to prove that 2) implies 3) we must show the map
G(n) —> S is injective. Clearly we can assume S is affine and hence

G(n) is quasi-compact and therefore G(n)C lnfk(G]> for some k. But
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. k — —
since the map Inf (G) — § is obviously injective it follows that i étale. Conversely if G = 0, thenfor any s¢S, G =0, which implies
j at G(n) is 24 s

radiciel. Conversely if G(n) is radiciel, then since the closed immersion (Gin)) has no connected (= radiciel) part and hence is étale. But G(n)

S —> G(n) is surjective, the ideal of this immersion must be locally being flat over S, this implies that G(n) is étale.

nilpotent. Obviously this implies that| G(n) is ind-infinitesimal (and in Apologies are offered in advance to the reader for the proof in the

fact is equal to one of its infinitesimal neighborhoods locally on S) and following lemma.

hence G = lim G(n) is ind-infinj i -G : :
) is ind-infinitesimal. Thus G =G and 3) implies 1) Lemma (4.8) Let X ——> S be finite and locally-free. Then the function

d 2)). i . . X . .
(and 2)). Finally as 3) obviously implies 4) we must see that 4) implies 3). s —> separable rank (Xs) is locally constant if and only if there are

i But this follows immediately via using the exact sequence 0 —> G(n-1) —
o n-1

Ek P '
G(n) /> G(1) — 0.

morphisms i: X —> X', f': X’ —> S which are finite and locally-free with

i radiciel and surjective, f' étale and f = f'ci. The factorization is

Lorollary (4.5) 1If p is locally nilpotent on S, there is an equivalence "unique'' up to unique isomorphism and is functorial in X/S.

of categori i X
cgories between that of Barsotti-Tate groups on S, with G(1) radiciel Proof: Observe that because of the uniqueness assertion it suffices to

’

and the category of formal Li G wi : i i
e groups with p: G—> G an epimorphism prove the lemma locally on S. Thus we can assume S affine and separable

and G(l) finite and locally-free.
v rank (Xs) =n for all s¢S (n some integer). Also observe that the "if"

Proof: By (4.2) and (4.4) both categories are identified with the same full assertion is trivial. Now, by {E.G.A. IV 8.9.1, 8.10.5 (x), 11.2.6 (ii),

sub-category of f.p.p.f. sheaves of groups on S. 9.7.8, 9.3.3] we can assume S is noetherian in order to prove the

1
.iﬁ
|

y i i i i iali i . W d i ral
Corollary (4.6) If S is artin, a  p-divisible formal I ie group is a existence uniqueness and functoriality assertions e proceed in severa

Barsotti- Tate group with G(1) radiciel |and conversely steps which we outline:

}

M;(a}’, 3) and (4. 5). 1) existence and uniqueness when S is a field.
Froposition (4.7) Let P be loc.nilpotent on § and G in B T.(5). 2) existence and uniqueness when S is a complete (Noetherian) local ring.
In order that G = 0 it is necessary and sufficient that G be ind-étale. 3) uniquensss for arbitrary S = Spec (A), A Noetherian.
Proof: If G is ind-étale, then for all k, Infki'G)= (0), since locally a 4) exdstence of £:X' > 5 when S is a local ring.
point of In.fk(G) with values in an S-scheme T must be a point of G(n) 5) existence of i: X —> X' when § is a local ring.

with values in T for some n, and hence must be zero since G(n) is 6) existence for arbitrary S = Spec (A), A Noetherian.
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7) functoriality.

1) If S =Spec (k) and X = Spec (B), we write B = B x...th as a

1

product of finite dimensional local k-algebras. For each i we let k; be

the maximal separable extension of k in the residue class field of Bi'

Since Bi is artin we see there is a un que homomorphism k! — B.
i i

lifting the natural inclusion. Thus we can take X’'= Spec(kix. oo X k;).

This gives us existence. Uniqueness is

a field of representatives for k; in B,.

clear because of the uniqueness of

2) Using the constancy of the separable rank to show X - X' is

radiciel and surjective we see from [E

G.A. IV 18.3.2, 18.5. 14, 18.5.12,

11.3.11, 1.5.4 (v) ] that there is a unique solution of the problem when

S = Spec (A), A a complete Noetherian
fl 7

local ring.

£

3) Let X tox -1 S and X +— x* 1 S be two solutions. To

construct a unique isomorphism between
is a unique isomorphism between their 1
For, if this were done, then for each s

Us of s to which this iscmorphism ext

them it suffices to show that there
ocalizations at any point s¢S.
¢ S, there would be a neighborhood

ends, since we are really dealing

with modules of finite type over a Noetherian ring. But by the uniqueness

these isomorphisms would have to agree

on Us n Us, for any two points

s, s'€S. Therefore they could be patched together to give the desired

uniqueness statement for all of S. Henc

e we have reduced ourselves to

the case when S is a Noetherian local ring A. Let S'= Spec (A) and

S“z Spec (;*. % A). The morphism §’ —§ is faithfully flat and quasi-
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compact and hence we will apply descent {S.G.A. 1VIII 2.1]. By 2) we

have a commutative diagram:

We must show that 7 is a morphism of objects with descent data. To see

this let Tx(resp. TX' R TX”) denote the canonical isomorphism

* *
PT(XS') — p;‘ (Xg/) (vesp. ... ) Wemust show Tyu op,(n) = p,(n)e 1y -

But we know p:(n)o Ty © pf(is,) = pt(‘n)° P*z(is/)o Ty T p*z(ilsz) °Ty =

Tyt © p’:(ig,) = Tyuo p:,; (m) e p*l(is,). But i: X —> X' is faithfully flat and
hence p’:(isl) is faithfully flat. But this implies it is an epimorphism
of schemes and hence pj_(n)o Ty = Tywo p*l('n), completing the proof.

4) To show f': X —> S exists we shall show that, using the notation
of 3) above, the X’ which we know from 2) to exist over S’ can be
descended to S. Thus we have the standard situation §” 2 s’ — S and
we have a solution of our problem for XS' , call this solution Y. We
want to descend Y to S. But by the uniqueness proved in 3) we see
there is an isomorphism p*1 (Y) == pZ(Y) (since both are solution for
Xs,,). But using the uniqueness of isomorphisms between solutions we see
the isomorphism pj (Y) %p*Z(Y) must satisfy the cocycle condition and

hence Y can be descended to an X’ étale and finite over S [E.G.A. 1V

17.7.3(ii), 2.7.1 ].
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5) From 2) and 4) we know that over S’ we have a morphism p* (%) pX X X p* (X))
178’ S 27's
iS,: XS, — Xé, - We want to see that this implies the existence of a *
- o , P P, (ig/) P,lig)
similar morphism i: X~ X' . When we pull back to S” we find a com-
. . Ot
mutative diagram * Py . X *
PI(XIS/) L pZ(XS')
Xew
S
o ) . 1)
g (‘5,) \\PA(‘S‘)
X u
X5 S Xl s

because of the uniqueness established

identity it follows again from part 3) th

in part 3). While p need not be the

1at the isomorphism p must satisfy

T Wt d that
We are told that popy, o pylic/)opy = 0ysep,lig)e ¢, and tha

-1 * ~ * . Lo .
Oy 0o Py :PI(XIS/) —_— pZ(XS,) satisfies the cocycle condition.

Thus we find a T/S and an isomorphism ¢: X'S, e, TS, which makes

* *
the cocycle condition Py alH) = Pyjln)e

reference to S.G.A.1 as above) that th

*
(). But now this implies (same
P12 P

ere is a scheme T f{inite and étale

the following diagram commute:

P . , o~ . -1
over S and an isomorphism o Xs, —_ TS, such that » establishes an . Py , " , x! * <
pl (XS,) —_— XS” XS‘/ PZ( S/)
isomorphism between X' with descent datum K, and TS, with its canon-
* *
ical descent datum. If we now replace i: Xgr —> Xé, by @oi: Xg—> T P, (o) P, (o)
Wwe see easily from the following calculation that ¢oi is a morphism
-1
between objects equipped with descent data and hence can be descended. 9r°Pr

Consider the following diagram in which all morphisms g,p have

obvious meaning:

* " (Ter)
P, (Tg,) Pyllgr

-1 * * s
Therefore we have Oyi°Ho px, ° pl(ls,) °py = p21[1s,) ° oy giving

* -1 * * *
Py@) e oyio e Py ° Pyligr) e Py = Pylo)e p,lig/) © oy . But by the

diagram above, the left-hand side is

-1k
Op° Py °Pyloeig)e py
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I

- * * -1
Therefore g, o pTl ° pl(w © iS,) = pz((p o js,) ° 0y Py which tells us

T

©o is, is a morphism between objects
the proof of 5).
6) We observe that the solution whi
each local ring G's can be prolonged t
[E.G.A.1V 10.8.5]. By the uniquenes

can be patched together to give us a so

bottom one in the following diagram co

epimorphism.
oA

s

1
£ /
BSON —— EXy,

|

b Vv
[;M A R il s

Mo s s
R Paly

This gives us functoriality when

)

with descent data. This completes

ch we know from 4) and 5) to exist at
0 some neighborhood of s. See
s proved in part 3) these solutions

lution valid over all of S.

7) Since functoriality is obvious when S is a field, it follows formally
from [E.G.A. IV 18.5.12] for the case when S is a complete Noetherian
local ring. To know we can descend the morphism from S’ to S (in the

notation used above) we use the fact that all faces except possibly the

mmute and that p: (i) is an

—> F..(Y)

\/

ALY,

S is a local ring. Now just as

above, we extend this first to an open neighborhood of any point and finally

to all of our scheme S.
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Proposition (4.9) Let P be locally nilpotent on S and G be in B. T.{S).
The following conditions are equivalent

1) G is a B.T. group.

2) G is an extension of an ind-étale B. T. group G” by an ind-infini-
tesimal B.T. group G'.

2 bis) G is an extension of an ind-étale B. T. group by a p-divisible
formal Lie group.

3) For all n G(n) is an extension of a finite étale group by a finite
locally-free radiciel group.

3 bis) G(l) is an extension of a finite étale group by a finite locally
free radiciel group.

4) s > separable rank (‘G(l)s) is a locally constant function.

Proof: 4) implies 3 bis) by the lemma, since the functoriality assertion
together with the obvious fact that the construction of the scheme X' in
the lemma commutes with products, tells us that if G is a group then the
associated scheme G’ is also a group and G —> G’ is a homomorphism
which is an epimorphism since it is faithfully flat.

It is clear that 3 bis) implies 4) Since the separable rank of G(l)
at s will then be equal to the rank of the étale quotient of G(l) at s and
hence is certainly a locally constant function.

Obviously 3) implies 3 bis) and conversely 3 bis) implies 3) via 4)
since the separable rank of G(n)s = (separable rank Cv(l)s)n as follows

n-1
from the exact sequences: 0 —> G(n-1) — G(n) p——ﬁ- G(1) — 0.
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Now let us assume that 3) holds

so that for each n we have an exact

sequence: 0 —>G’(n) —> G{n) —> G”(n) —> 0 with G’(n) finite, locally

free and radiciel, G”(n) finite and étale. We will show that the systems

(G’(n)) and (G”(n)) give us Barsotti-Tate groups. To do this it suffices

to see that if 0 —> G —> H —> K —>
locally-free groups satisfying the con
sponding sequences of étale quotients
this will follow frem (4.10) proved be
2.61(i), 2.7.1 (viii), 2.2.11 (iv)] it
sponding when S is the spectrum of

this case it is obvious because for an

0 is an exact sequence of finite
dition of the lemma, then the corre-
or radiciel kernels are exact. But
low. For by (4.10) and {E.G.A. IV
then suffices to check the corre-

an algebraically closed field. But in

ét
y finite group H we have u=HxH"".

Therefore by applying the above discussion to the sequences

i
0 — G(i) — G(n) —=—> G(n-i) —> 0

we see that G’ = lim G'(n) and
EN

G”=lim G”(n) are Barsotti-Tate groups. Furthermore by passage to

the limit we see we have an exact seq

uence 0 —> G '— G—> G"—> 0

with G’ ind-infinitesimal and G” indiétale. This shows that 3) implies 2).

2) implies 3) is trivial because

from the exactness of the sequence

0—> G —> G —> G” — 0 follows that of 0—> G'(n)—> G(n)—> G*“(n)—> 0

[1, 2.4.3]. 2) implies 2bis) is also c¢lear because G’ being ind-infinites-

imal we have G’ = G’ and is therefore a formal Lie group by (3.3.18).

Conversely let 0 —> G’ —> G —> G” > 0 be an exact sequence with G’

a p-divisible formal Lie group and G

an ind-étale B. T. group. In order

to show 2bis) implies 2) we must prove G’ is a B.T. group. To do this
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it suffices (because of (4.2)) to show G’(1) is finite and locally free. But
from our exact sequence we obtain a sequence 0—>G'(1)—~ G(1)—G"(1)— 0
since G’ is p-divisible. Therefore G’(1) is finite and locally-free.
Finally it remains to show 1) and 2) are equivalent. To do this we
shall utilize (4.11) which is proved below. Assuming 2) we have from (4.11)
and {4.7) that G'= G and hence G is a Barsotti- Tate group. Conversely
if G isaB.T. group then we can form the sequence 0 —> G —> G —> G/G
—> 0. From{I 2.4.3)] we know ‘G/G is a Barsotti-Tate group. But by
(4.11) (ETEF (0) and hence by (4.7) G/G is ind-étale. This completes

the proof.

Lemma (4.10) Let 0 — G -lﬁH 2 K—> 0 be a complex of finite locally-
free groups on S. The sequence is exact if and only if for all s¢S, the

sequence 0 —> Gs—*» Hs% K —> 0 is exact.
s

Proof: Only the "if' part Trequires proof. By the criterion for checking
flatness fiber by fiber [E.G.A. IV 11. 3.11] we know that H— K is an
epimorphism if all maps Hs—> Ks are epimorphisms. Thus it remains
to prove the map G —> Ker (u) is an isomorphism. This can be checked
locally on S and hence we can assume S is affine, say S = Spec(A),

G = Spec (C), Ker (u) = Spec (B) where B and C are projective (finitely
generated) A-modules. To show B —> C is an isomorphism it suffices to
prove this at each point. Hence we can assume A is a local ring with
maximal ideal m. By hypothesis B/m B—> C/m C is an isomorphism.

By Nakayama (since C is finitely generated) the map B —> C is surjective.
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To show it is injective let W be its kernel.

Then because C is projec-

tive the sequence 0 —> W —> B —> C+— 0 splits and hence W is finitely

generated since B is.

Nakayama again we see W = (0).

Lemma (4.11)

But then we have W/EW = (0) and hence using

Let p be locally nilpotent on S and let 0 —> Gl__> G2

— G3 —> 0 be an exact sequence of Barsotti- Tate groups on S. Then

0—*»5 -->6 — G —> 0 is also exact.

1 2 3

Proof: The exactness of 0 —> G, — E — G

1

prove EZ —_ 63 is an epimorphism. 1

is trivial. We must

2 3

et T be an S-scheme and

yea3(T) be given. Then because GZ - G3 is an epimorphism we can

find a covering {Ti —> T} such that for

GZ(Ti) with the image of %, being lei.

each Ti we can assume yITi has the p

Ti — Ti is a nilpotent immersion and

each i, there is an xi in
By passing to a covering of
roperty that yl?i = (0) where

Ti is affine. But this tells us

that xil¥i belongs to Gl(?i). Since G1 is formally smooth by (3.3.13),

we know there is an x; in Gl(Ti) which
maps to yl Ti and has its restriction to
- x; € Ez(Ti) and hence the map az —

Let A be an adic ring for the topolog
1 with I/IZ of finite type over A/I. Set

Sn= Spec (An).

Lemma (4.13):

lifts x |T.. Then x - x ¢G,(T)
i' i i i 2'7

?i equal to zero. Therefore

> 63 is indeed an epimorphism.
y defined by the powers of an ideal

n+l

An= A/T""7, S = Spec (A),

The natural functor Formal Lie Varieties (S)

—_— &im Formal Lie Varieties (Sn) is an equivalence of categories. In

I

o

g
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particular it induces an equivalence of categories between the category of
formal Lie groups on S and the inverse limit of the categories of formal

Lie groups on the various Sn's.

Proof: First observe that a formal Lie variety X on S can be thought
of as the sheaf corresponding to the formal scheme Spf (Symligx]) where
the symmetric algebra is completed with respect to the topology defined
by powers of the augmentation ideal. Under this identification XISn is
identified with Spf (Sym '[_xﬁxi An]> - But a mapping Y —> X of formal

Lie varieties on § then corresponds to an A-linear map  © —> Sym[gy]+
=1 SI[EY] where the '+' denotes the augmentation ideal and SI[EY]
i=1

is the ith symmetric power of w,. Thus Hom (Y, X) is identified with

Y
i . i
AH HomA (EX’ S [SY]) —.1'1 lim HomA (3X® An’ S (EY @An))
i>1 i>1 n
. i
[E.G.A. OI 7.2.10] = lim .Il HomA (2X®An, S (ﬁY ®An)) , as
i>1 n
inverse limits commute. But this last is via the above simply identified
with lim Hom (YIS R X|S ). Thus the functor is fully faithful. To show
n n

it is essentially surjective assume we are given a compatible family of
Then we obtain a family of finite locally-free

formal Lie varieties X .
n

A -modules w with w ®A =W But let w=1im w_ . w is
n =X -X = - -

n-1 <~ =X
n n-1 n

of finite type over A by [E.G.A. 01 7.2.9]. Butby [E.G.A. IV 18.3.2.1
(ii)] we know w is projective. But now it is clear that setting X =

~
Spf (Sym [2]) we have X|Sn = Xn and hence our functor is indeed an

equivalence of categories.



(4.14) Let us assume that p is nilpotent on S0 and let G I:Ite]ong to
B.T. (S). Then for each n, we have the formal Lie group En and since
these obviously are compatible we can by (4.13) define a formal Lie group
But notice that we can not in general define a homomorphism G—G
inducing the given map En s Gn on Sn. To see> this take S =
Spec (ZP) and let G be any Barsotti- Tate group on S. Then since
G = h__m> Infk(G), any homomorphism G—G induces for each k a
morphism of pointed sheaves Infk(G) —> G. Butas S is affine, any
such morphism must factor through some G(n). Thus we are led to

k
examine a morphism of pointed schemes Inf (G) 2., G(n). Thus we have

a commutative diagram
k
Inf" (G) —&— G(n)

DN

S

and restricting to the generic fiber we still have such a diagram. But we
know:
1) Infk(G) is an infinitesimal thickening of S.
2)  G(n) | Qp is étale.

3) Qo e =eo “In.fk(G)e €
Therefore golQp is the trivial map. But since ¢ corresponds to a
mapping of free Zp-modules, it is determined by its restriction to the

generic fiber. Thus ¢ is trivial and we see there is no non-zero way to

G . Thus we obtain a functor G F—> E from B.T. (S) — Form Lie Gr.(S).
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map G to G.

(4.15) Keeping the same notation as above, we see that the obvious functor
from finite locally free groups on S to Qﬂ fin. loc. free gr. (Sn) is an
equivalence of categories, because such groups are given in terms of
modules of finite type over the appropriate ring with additional structure
making them into bi-algebras also defined in terms of the underlying
modules. Thus using [E.G.A. Ol 7.2.9, 7.2.10] and the criterion of
flatness we obtain the equivalence. This equivalence preserves exact
sequences. To see this observe that it suffices to treat the case of epi-
morphisms and show it is kernel Preserving. For epimorphisms this
follows from the fact that they can be expressed in terms of the bi-algebras
of the groups. Thus if Gn—> Hn is an epimorphism of groups on Sn’
then we have Cn is a finite locally free Bn-module for all n where

Gn = Spec (Cn)’ Hn = Spec (Bn). But B = lm Bn satisfies the same ring
theoretic hypotheses made on A (for the ideal IB). Thus C ,is a finite
locally free B-module (C =_1<i2 Cn), and hence the morphism G —> H,
between the two groups associated to the families (Gn) and (Hn), is an
epimorphism. The kernel Preserving property is proved in an analogous
manner using the fact that the kernel is expressed in terms of a tensor
product of rings. But now it is clear, since exact sequences of the form

0 —> G(i) — G(n) —L G(n-i) —> 0 are Preserved under the equivalence,

that we have the following lemma.

Lemma (4.16) The natural functor establishes an equivalence of

categories E.T. (S) — &im B.T. (Sn).



