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. . J .
This equivalence is clearly compatible with extensions. ‘Thus, if

we assume p is nilpotent on So and
G satisfies the conditions of (4.9), w
o

sequence 0 —> G —> G —> G”" —> 0

G is a B.T. group on S such that

e can associate to G an exact

with the property that G; is ind-

- . ” . ’
infinitesimal (i. e., a formal Lie group by (4.9)) and with G~ ind-etale

since each G“(n) is étale by [E.G.A.

1V 18.3.2].

’ .
Note that G’ need not be ind-infinitesimal even though «Go is. For

example take a family of elliptic curves near a point where the Hasse

invariant is zero. Then G_ is ind-infinitesimal while G is not. Thus
)

even when p=0 on S we can not say

because the function s > separabl

3

y G'=G'. The difficulty arises

rank (Gﬂ)s) is not locally constant.

Chapter III. Divided Powers, Exponentials and Crystals

(1.0) Let A bearing and I an ideal of A. Recall that I is said

' to be equipped with divided powers if we are given a family of mappings

P 1—>1, n>1 which satisfy the following conditions:
(1.0.1) Yo M0 ="y (1), xeA, xel

(m4n)!
m! n! m+n

(1.0.2) 7, ) - Yt = (x)
) n-1
(1.0.3) ¥, (x4y) = Y (%) + iZ‘;l‘yn_i(x) 7y} + v ()

(mn)!

()P m: ™R

(1.0.4) Yo (Y, () = (x)

Given such a system we define 'yo via 7°(x) =1 for all x¢l and refer
to (I,y) as an ideal with divided powers. Also the map Y is some-

. . n
times written as x x( ).

Definition (1.1) Given (4,1, ) as above we say the divided ‘powers are
nilpotent if there is an N such that the ideal generated by elements of

the form y, (x;) ... v (x). i +...+i >N is zero.
i, %, %) k<

Remark (1.2) This is the definition of Berthelot [2, pg. 298].

Other variants (for exampile requiring that for each x¢l, there be an n
depending on x such that ‘yi(x) =0 for i >n) are possible, but we shall
use the condition (1.1). The definition implies (taking k=N, i =...=i_= 1)

1 N
that I = (0).
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Definition (1.3) Given an A-module M, I'(M) is the graded A-algebra
(n)

generated by elements m ', meM, n>1 with the relations:

1.3.1) 0m™ =" m™, rea, meM

-~

(1.3.2) m™ p@) o ) e

ni n.

n-1 A R
@ 0 5 m®@-1) m,(x) +m'

n=1

(1.3.3) (m+m’)

Remark (1.4) We shall use (sometimes implicitly) the following proper-
ties of I'(M) which are proved by Roby [26,27].

1) . . .
1) The map M —> T"(M) given by m |—> m( ) is an isomorphism of

~ 1
A-modules M — T (M).

2) There is a unique system of divided powers on the augmentation

ideal 1"+(M) = & I‘n(M) such that yn(m) =m(n) for all meM and all

n>1
n>1.

3) Consider the category of augmented A-algebras B whose augmen-
tation ideal BY is equipped with divided powers. Morphisms are of
course to be compatible with the augmentations and with the divided power
. ) .
structures. Then the functor on this category B r—> HomA(M,B ) is
represented by I'(M). This implies that M — T(M) is a functor
commuting with filtering direct limits and with direct sums (i.e.,

T(M & N) = T'(M) ® T(N)).

4) The functor Mt T(M) is compatible with a base change A —> A,
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Definition (1.5) A morphism u: (A,L,y) — (B,J,8) is a ring homomor-

phism u such that uw({I) € J and u(y (x)) = 6_(u(x)) holds for all x¢l.

{1.6) If the divided powers (4,1,y) are nilpotent we define two maps:
exp: I — (141)

3
log: (14I) —1

via the formulas exp (x) = 'yn(x) and log(l+x) =2 (-])n-l(n-l)l yn(x).

0 n>1

ot

To check that exp and log are inverse we can clearly reduce to
the "'universal' case where A = I‘z (Z), the completion being taken with
respect to the filtration coming from the gradation on I'(Z). But then
we are reduced to checking an assertion coefficient by coefficient. This
means it suffices to verify the desired identities over 0 (i.e., for the

ring Q[[T]]) and hence we win.

(1.7) The considerations of this section can all be globalized as
follows: We replace A by a scheme S, I by a quasi-coherent ideal of
Gs , M by a quasi-coherent Os-module. Divided powers on 1 are given
by assigning to each open set U a system of divided powers on TI'(U,I)
such that the restriction maps commute with the divided powers.

Given (S,1,7) and (8, I',9’) a divided power morphism f between
them is a morphism of schemes f: S —> S’ such that f-l(.'(’) maps into
I under the map f-l((}s,) — OS and such that the divided powers induced
on the image of f-l(I') ‘'coincide’ with those defined by 7.

I'(M) is obtained by looking at the sheaf associated to the presheaf
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U — (M(U)). The divided powers on I1C OS are saidI to be nil-

T
Gg(U)

potent if, locally on S, they satisfy the condition in Definition (1.1).

The following lemma was obserTed by Berthelot [2].

Lemma (1.8) Let (A,I,y) be as above and assume that B is a flat

A-algebra. The divided powers extend to the ideal I°B.

o T H /
Proof: We define a sequence (Vn)nzl

via requiring that 7;1 (i®b) = ‘yn(i) ® b" and that these mappings satisfy

of mappings of 1® B to itself
A

the axioms for djvided powers. To show this procedure works we proceed
inductively. Obviously '/’1 is well-dLﬁned as idl@B' Assume 'yi, cee,
v 1 have been defined so as to satisf"y the above condition. Consider

n-

IxB and define a map ¢: A(I xB) —> B via the formula
(%] (a1 (11,b1) + .. + al(ll't

k, k
= (2;b)) */kl(il) cee(aby) Ty )

where this sum runs over the {-tuples| (k. ,... ’kl) satisfying kj >0

1’

£
and 2 k, = n. As this map is to factor through I i B, it must be
j=1

(IxB)

shown that ¢@(x+y) = @(x) if y belongs to the kernel of A —> 1®B.

This kernel is generated by elements of one of the following forms:
1) i;+1i,,b) - (if,b) - (i), b)
2) (i, b1+ bz) - (i, bl) - (i, bz)

3) (ai, b) - (i, ab)
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Thus it suffices to show that - (x+y) = ¢ (x) where y is an element
of the form a’ - z and z is either of types 1), 2), or 3). We shall deal

with type 1) for example (the others being entirely similar).

%%

. . -* .
Let x=al(1l, b1)+... +az(1£, b and y=a'(1 +i , b)-

)
. ¥ ,, FX
a'ti, b)-a'ti , b).

) =

Since ¢ is well-defined we can obviously assume that (il, bl
* % * *k
(i +i , b), (iz, bz) ={i,b), (13, b3) =(i , b)., (If this is not the

k%
case then we canput 0° (i +i , b) into our sum defining x without

affecting the value of ¢, etc.) Thus we must show

PR 7 * S RE
tp(a1+a(1 +i,b) +a2.a i, b)+a3— a'(i ,b)+...)=0p(x).

For every £-tuple of indices which defines a term in either of the
sums, the factors appearing after the third in the corresponding term
are identical. Hence to show @ (x+y) = @(x) it is sufficient to show that
for any fixed t we have:

k k k

s -" .** ’ -* 4 .
Z o Gapri) y (4 ayma ) Ly (M) y-atm) Py 67
k +k_+k_=t 1 2
17272
k k k ]
= D @by G Ly ()agb) Sy )
k]+k2+k3=t 1 2 3

But the first sum is

t , % k% * )
b z Y (al+a i+ ))- Y [(az-a')l ]71<> [a3-a'(1**)]
k1+k2+k2=t 1 2 3

t * ok
= by [(a1+a2) i+ (a 4a,) i )]

which is obviously the same as the second sum. This shows that %)
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factors through 1® B and enables us to define 7;1 via composing ¢ with

the inverse of the map I i B —> IB (using the flatness of B over A).

It is now obvious that the sequence of maps (7;1) define ''divided powers"

on 1® B and hence by transport of structure (as I1® B —>1B) we obtain

the desired divided powers on 1.B.

§2. (2.0) Let S be a scheme and U

a quasi-coherent OS co-algebra

which is co-commutative. Recall that this means we have two Gs-linear

maps A:U—>U®U and n:U-ﬁOS

obtained by reversing the arrows in the

tive algebra.

satisfying identities which are

diagrams which define a commuta-

Definition (2.1) Cospec (U) is the functor (Sch/S*,o — Sets given by

§" = {yeT(s', Uglnly) =1, 2ly) =y

It is clear that Cospec (U) is a s
because by descent S’ > I"(S', US,) is
the above subset is obviously stable und
obtain a covariant functor U > Cospe
(co-commutative) OS co-algebras to th

S. This functor is obviously compatibl

(2.1.1) Recall the category of co-alg

®v}.

heaf for the f.p.q. c. topology

a sheaf [S.G.A. 1 VIIL 1.7] and
er descent conditions. Thus we

c (U) from the category of

e category of f.p.q. c. sheaves on

e with inverse images.

ebras has finite products: Given

U and V, two co-algebras, the underlying module of their product is

U® V. The two projections are idU ®

Ny and 'qU ® idV while the '"co-

product' morphism is given by the following composition where T denotes
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the interchange of factors map:

A ® . .
U®V—IL—AV—> vevsvev S81%4 Leveuev.

Given W, a third co-algebra, and two morphisms
f:W—U,g:W—>V; (f,g): W—>USV
is {(f®g)o AW .
This allows us to see that Cospec (U® V) s Cospec (U) x “Cospec (V)

because T(S’, Cospec (U)) = Hom

Osl-co-alg. (GS, , US,) via the identifica-

tion which associates to ¢: OS, — US, , the element (1) ¢ T(s’, US/).

(2.1.2) If A is a finite locally-free OS algebra, then _Z\=Hom(A,Gs)

is a co-algebra. We have a natural identification Cospec (\A) - Spec(A)

v
(Ogrs Agr) = H°mos, ag. g O

- s Y -
via T(S’, Cospec (A)) = Homos,-co-alg.

= T'(S’, Spec (A)).
Hence Cospec (K) is representable and the category of finite locally-free
S-schemes is equivalent to the category of finite locally-free (co-commuta-

tive) Gs co-algebras.

(2.1.3) Let U= l}g Ui be a filtered direct limit of co-algebras. Then
_l_ir_n,. Cospec (Ui) = Cospec (U). To check this it is sufficient to look

at sections over an affine S’ which maps into an affine open subset of S.
This reduces us to the assertion in the‘a{ﬁne case. But if yeU satisfies
nly)=1 and Aly)=y®y and if y'¢ Ui is a representative of y, then
17(}") =1 and a(y') - y' ® y' is mapped to zero in U ® U. Thus there is

a j>i such that the image of y' in Uj satisfies the two conditions.
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From the above we know a filtered direct limit of finite lc'arcally-freer
S-schemes is given by Cospec (U) for an appropriate OS co-algebra U.

If (3f is the category of finite locally-free OS co-algebras and C=ind (Cf),
then by (2.1.2) we have an equivalence of C with ind (finite locally-free
S-schemes). The functor hg is faithful from ind (finite locally-free
S-schemes) to sheaves on S. Furthermore if S is affine then this
functor is full. Because Hom (U,V) and Hom (Cospec (U), Cospec (V))
are the sets of global sections of locally isomorphic sheaves we see that
the functor is full without any hypothesis on S. Thus the category of OS
co-algebras which are filtering direct limits of finite locally-free co-
algebras is equivalent to the category of sheaves on S which are filtering
direct limits of finite locally-free S-schemes. In particular either a

Barsotti-Tate group or a formal Lie variety can be written as Cospec (U)

for an appropriate co-algebra U.

(2.1.4) Let M be a quasi-coherent OS module and T'(M) the associated
divided power algebra [(1.6)]. The diagonal map A:M—> M &M and

the zero map M —> (0) give rise by functoriality to morphisms

T 4> rM) @ T(M) and r(M)—"->os which make T(M) into an Gg
co-algebra. Recall that M (> TY(M) | is compatible with all base changes

[(1.4),4]. We come to our first instance of an "exponential "’ map.

Definition (2.1.5) M is the sheaf on |S whose sections over an S-scheme

S’ are given by
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(S, M) = Ker [r(s’, Mg/) —> P(S;ed' M, )] .
red

Remark (2.1.6) The fact that M is a sheaf is a consequence of the fact
that it can also be described as the image in M of the sheaf Nilrad 8 M
(where M is thought of as an f.p.q.c. sheaf in the obvious way [S.G.A.,
1 VIII 1. 7] and Nilrad denotes the sheaf S’ —> I'(S’, Nil (G-

We can think of M as being the ''formal group'' associated to M.
Indeed, if M =0g, then M =G,

Definition (2.1.7) expy M— ‘Cospec (I'(M)) is the mapping given by

expM(m) =2 m(n).

n>0
To check that this definition makes sense it suffices to look at the
case S = Spec (A), §' = Spec (A’). Then me¢ M® A’ can be written as
A
s N
= mi®)\i where the },i’s are nilpotent. If )\i =0 for i=l,...,r then
i=1

m'(n) =0 if n>Nr. This shows that the series terminates and thus eXpy,
is well-defined locally and hence is really well-defined. A priori we have
expM(m) (S, TM) ® Gs,) but it is clear that expM(m) actually lies
in T(S’, Cospec (T'(M))).

Recall that M being an abelian group in the category of Gs-modules,
T'(M) is an abelian group in the category of GS co-algebras and hence
Cospec (I'(M)) is an abelian sheaf on S. Explicitly p, the multiplication

map making T'(M) an algebra is, when viewed as a co-algebra map

T'(M) ® T'(M) —> T'(M), the map defining the addition law on ‘Cospec (I"(M)).
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L
Since we have expM(m+m') =2 (m+rn')(n) = m(n)) - Zm ,}m)'

exp, ! M —> Cospec (I'(M)) is an additive map.

Proposition (2.1.8) If M is flat, then exp, . is an isomorphism.

Proof: Since we are dealing with sTeaves it suffices to prove the state-
ment locally. Thus we assume S = Spec (A), s' = Spec (A’), I=nil-
radical of A’, M’ = MiA’. We must show exp) ¢ M —
{yePM)|niy) =1, aly) =y®y} isan isomorphism. The injectivity
is clear because expM(Zkimi) =1 E)‘imi +2>‘imi)(2) + ... where

A‘i el. To prove surjectivity we use Lazard's result that M can be
written as lim F, where the F, are free of finite type [18].

Then ﬁ:mfi, T(M) = lim T(F,) [1.4.3], Cospec (I(M)) =

lim Cospec (INF,)) [2.1.3], Cospec (T(F) = Cospec(T(A)& - -®T(A))
if F, = DA [1.4.3], Cospec(T(A)®---®@T(A)) = Cospec(T(A)) x---x
Cospec(T(A)) [2.1.1]. Since expy, is functorial in M, this reduces
us to the case M = A. But now I(A]) = A'@A’xl eA’xze ... where

n-1
xx, = (u;,) %45 and Alx ) =1@x + iZ=) @x +x® 1. Thus if

y=1+ 4% + ayx, + ... + ax iss uch that A(y) =y ® y we have
_ i n+l _ | _ . _
a;= a) and hence a, = 0. Thus expM(alxl) =y and the map is sur

jective.

Remark (2.1.9) The following example shows that the flatness assump-

tion can not be eliminated. Let A be an integral domain and B a non-

reduced quotient of A. Then E(A) =/0 while T'(A, Cospec(B)) has
M—

elements suchas 1+a, - 1_ + ;Z 1(2)

1 B 118 + ... where a] is a non-zero
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nilpotent element in B.

Remark {2.10) Cospec (I'(M)) is naturally equipped with a structure of

Gs-module and eXPy, is a homomorphism of ’_&S—modules. Indeed if

v =Z)y(i)e T'(M) is such that Aly) =y®y and q(y) =1, thenA-y=2 liY(i)

satisfies the same conditions.

(2.2) Let U be an augmented co-algebra on S. This means we have

a co-algebra map G <.y and hence 6(10 ) =1 will be a distinguished

S S u

element in T(S, Cospec (U)).

Definition (2.2.1) A section x of U is said to be primitive if A(x) =

x®1 +1® x. This implies 7n(x) = 0 for (idU®-r;')° A= idU and hence

N——.——.—
x (1) + p(x)-1 =x. But g(1) =1 and thus 7(x).-1 = 0 which implies

%

n(n(x)- 1) = n(x)-n(1) = n(x) = 0.
We denote by Lie (U) the shea}' of Qs-modules whose sections over
S’ are the primitive elements in I{S’, US,) and where the operations are

induced by those on the underlying module of U.

Example (2.2.2) Let U be finite and locally-free and X = Cospec (U) =

Spec (ﬁ/). Then Lie (U) = V(gx) = Lie (X), where EX is defined via the

section e: S X corresponding to the augmentation € , and where V

applied to an arbitrary Os-module M is the (_Bs-modude S

HomOs,(MS" GS,). More generally this description is valid if U = lim Ui
a filtered direct limit with Ui finite locally-free and augmented and the

transition morphisms compatible with the augmentations. In particular it



89

Lemma (2.2.4) Let S° ©— S be an immersion defined by an ideal with
nilpotent divided powers and let U be a flat OS bi-algebra. The map
exp: I'(S,1- Lie(U)) —> I'(S, Cospec(U)) defined by exp(x) = = x(n) is a

homomorphism whose image lies in Ker [I'(S, Cospec(U)) —>

I"(So, Cospec(U))].

Lemma (2.2.5) Assume (in the notation of (2.2.4)) that U/Lie(U) is a

flat O  module. Then exp: I'(S, I-Lie(U)) —> Ker[T'(S, oosﬁecw)) —

I"(SO, Cospec (U))] is an isomorphism.

Proof: Without hypothesis on U/Lie (U) observe we can define a map

log: Ker —> I-U N Lie (U) via log(l+y) = Z>}1 0" Ya-n: v, The map
n

is defined since y belongs to 1. U. log (I:y) lies in Lie (U) since log

is a functorial mapping and A(l+y) = (14y) ® (l+y). Thus we see exp and

log are inverse isomorphisms between T(S, 1-UN Lie (U)) and

Ker [T'S, Cospec (U)) — I"(So, Cospec (U))]. But the flatness hypothesis

insures that I-UN Lie (U) = 1- Lie (U) [4, Chapter I, §2 #6 Corollaire].

Remark (2.2.6) We note explicitly the fact mentioned in the proof that
there is always an isomorphism Lie (U)N1I1.U = Ker[T'(S, Cospec (U))

— I"-(So, Cospec (U))], U of course being assumed flat.

(2.2.7) Note the above discussion will apply if U is the hyperalgebra
e ——

of a formal Lie group or a Barsotti-Tate group or more generally of a

group G which can be written as a filtering direct limit of finite locally-

free S-schemes (2.1.3).
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(2. 3) Let S be a scheme, 1 an|ideal of OS with divided powers,

U a flat bi-algebraon S and M a quasi-coherent O_-module. Consider

S

the O_-algebra O_ @1- U. It is obvious that the set of GS-algebra homo-

S S
morphisms T'(M)—> U which send I

patible with the divided powers is in b

<

(M) into I-U and which are com-

jective correspondence with the set

of divided power homomorphisms of augmented O_-algebras I'(M) —>
—_—— S

S

O, ®1-U. By (1.4) part 3, this last set is simply Homo (M, IU). Let
S

u: I'(M) —> U be a map compatible with divided powers (so that

u(I‘+(M)) €1-U). Let 6: M —> 1-U be the corresponding linear map.

Then it is clear that u is compatible with the augmentations if and only

if 81U n Ut =1Ut (since U/

*s OS is flat over S). For u to

be compatible with the co-product maﬂpings A, itis necessary and

sufficient that A(u(m)) = u ® u (A(m)) ‘since M generates T(M). But

Mm)=m®1+1®m and hence A(f(m
B(m)®1+1®806(m) is the necessary a

can say u is a bi-algebra map if and

Lemma (2.3.1) The above correspon
isomo rphism between Hom (M, Lie (U
homomorphisms, u, such that u(r+(

compatible with divided powers.

))=AMu(m)) =u(m)®1l+1®u(m)=
nd sufficient condition. Hence we
nly if 8 ¢ Hom (M, Lie(U) N I-U+).
dence 6 =+ u establishes an

) N1*U) and the group of bi-algebra

M)) € I'U and such that u is

Proof: Ve have already defined a set-theoretic bijection. To show

that the above bi-algebra homomorphis

ms constitute a group and that

8 = u is an isomorphism, it suffices to show 8 > u is additive. If
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6 F>u and 6 +—>u’, then u+u’(m)=po {u®u’)(A(m)) = u{m)+ u'{m)

and it is clear that § + 8’ corresponds to this homomorphism.

Remark (2.3.2) The target of the above isomorphism is contained in

Ker [Hom (T'(M), U)—> Hom (I'(Mo), Uo)] where

Os-bl-alg. Gs-bx-alg.

o

Mo and Uo denote the respective restrictions of M and U to S°=Var(1).

Also there is an evident functoriality in the above construction.

(2.3.3) Assume that M is flat. Let G = Cospec (U). Recall that

M= Cospec (I'(M)) {2.18]. Thus we have defined a monomorphism:

(2.3.3.1) Hom(M, Lie(G) N1-U) > Ker[Hom(M,G)— Hom (M_, G )]
S-gr. So~-gr.° ©

We make the map explicit as follows: Let §: M —> Lie(G) NI-U and let
u correspond to 6 as in (2.3). Thus u defines a homomorphism
Cospec (T'(M)) —> G and by composing with the isomorphism M
Cospec (I'(M) we obtain our desired morphism u’ =no exp, - The map

M(S) —> G(S) can be written as u’(x) = u(Z x‘“",:Z ©0)™ where this
last sum makes sense since 6(x) ¢ Ni](Os) +1-U. Thus we can write

u'(x) = exp (6 (x)).

Intuitively we can think of an v’ in

Ker [Homs_gr. (M, G) —> HomSO-gr. (Mo, Go)]

as having a tangent mapping §: M —> Lie{(G) N1+-U and thus we think of
certain u’'s as being the exponentials of their tangent mappings (i.e.,

u’ = exp (8)).
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I
(2.3.4) Let U = T(N) where N is|a flat Os-module. We have

Lie (G) = Lie (Cospec (I'(N))) = N (as lis seen immediately by reducing to

the affine case, writing N = lim Li each Li free of finite type,...,

and eventually observing that the assertion is trivial if N = Os). In this

case we have Lie (G)NI-T(N) =1 «Lie
exp (8) : I'(M) —> I'(N) is the natural pr
follows because the divided powers on

on I, coincide with the divided powers

(G)=I‘N. If : M—1-N,
olongation of 8: M —> N. This
I-NCcI-T'(N) arising from those

on i-N coming from those on

P+(N): (in)(j) = i(j) nj = i(j) ji n(j) = ijn j). Hence the map ﬁ—é E

corresponding to @ is the obvious prolongation of §: M —> N. Clearly

this map respects the module structure

Remark (2.3.5) If U/Lie (U) is flat

I-Lie (U) and the homomorphism (2. 3.

Hom (M, I-Lie (G)) = Ker [

Remark (2.3.6) Let G = Spec (B) be

s.

then we will have Lie(U)N1-U =

3.1) can be written as

Hom(—lxz, G) — Hom (ﬁo, Go)]

a finite locally-free group scheme

and assume that w_ is locally-free. Then B“/Lie (G) is flat. To see

<
this observe that it suffices by [E.G.A.

Lie(G) —> B” is universally injective.

1V 11.9.18] to know the map

But after an arbitrary base

change s — S' Lie(G) ®G Os, = Lie (Gs,) and hence the map is clearly
S

injective.

Remark (2.3.7) Let U and V be two pointed co-algebras over a ring

A. Let I be an ideal in A with 12 =

0). Assume that I-U N Prim(U) =
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I-Prim (U) and similarly for V.
Claim: U®V has the same property.

Proof: Let Afe] be the pointed co-algebra which is the linear dual of
the '"dual numbers" so that it has a base {1,e} a1)=1® 1, Ae) =€®1 4
1®e¢, n(l) =1, n(e) = 0. It is obvious that to give a homomorphism of
pointed co-algebras Ale] —- U we simply have to tell the image of €
which must be primitive. Therefore on the category of pointed co-algebras
the functor U > Prim(U) is represented by A[e]. Clearly this category
admits 2 product (namely the ordinary product of two co-algebras with the

obvious 'pointing'’). Hence:

Prim(U® V) = Hom (Ale], U V)
pt. -co-algebras

= Hom (A[€], U) x Hom (A[e], V)

= Prim (U) x Prim (V).

Thus the map Prim (U® V) —> Prim (U) X Prim (V) of components

idU 3 Ty and 1y ® idv is an isomorphism. Let ue¢Prim(U) and
vePrim (V). The element u® 1 +1 Qv is primitive and maps to the

pair (u,v) under the isomorphism. This means any primitive element

of UV can be uniquely written as u® 1 + 1 ® v as above.

Let x=u®1l+1®v belong to 1:(U8V) N Prim (U®V). This implies
u=id ®ny (x)el-UNPrim (U) and hence u=1 i, u, with u € Prim(U),
i,€1. Similarly write v=2Zi, v,. Then x =Zia(uav®l +1®v) +

B g

Zip(u®1l +1®v,) sincethe i - (1®v) and i%(u® 1) =0 because of
o B

B B
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the hypothesis I2 = (0).

(2.4) So far we have (under appropriate circumstances) associated

to a linear map 6: M —> I-Lie(G) an element u = exp () in

Ker {Hom (_I\:I_,G) —> Hom (.I\‘/IO,G‘)]. We

now investigate the question of

when M (resp. ﬂo) can be replaced by M (resp. Mo). For simplicity

assume S = Spec (A) is affine (this is the only case used later). Let

IS A be an ideal with nilpotent divided powers and let A = All, S =
° c

Spec (Ao)' Let G beagroupon S and V a locally-free of finite type

S
co-algebra U and that all Infk(G) are

6:V —>1-Lie (U) be given. Then 8 «

given by u(x) =Z(6(x))(n) for xeV. B

C.-module. Assume E = lim Infk(G) is Cospec (U) for a flat augmented

finite and locally-free. Let
orresponds to a u:IN(V) — U

ecause the divided powers on 1

are nilpotent u will map < l"l(V) to zero if n is sufficiently large.

i>n

Thus u can be extended to the completi

on T (V) of T(V). If InfN@G) =

Spec (Bi) so that U = lim B; then G & Spf ( Lim Bi) where each Bi is

given the discrete topology. Since G i
"topological bi-algebra (i.e., ® repla

axioms). By taking the transpose of u:

5 a group, B = lim Bi is a
ces ® in the ordinary bi-algebra

T'(V) — U we find a bi-algebra

mapping B —> Sym (i’l) and this defines a group homomorphism V —- G.

Since given u: T' (V) —> U, the taking of its transpose commutes with

the base change A —> Ao' we see that the induced homomorphism

Vo — G0 is trivial. Thus we have defined a mapping:

Hom (V, I-Lie (G)) < Ker [H

om (V,G) —> Hom (VO,GO)].
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The fact that it is additive and injective comes from the fact that
6 t—> u had these properties.

Notice the above construction is valid if G is a smooth.group scheme
over S, if G is a formal Lie group or if G is a Barsotti-Tate group.

Note that it is clear that for the above mapping of Hom(V,I- Lie(U))
to Ker [Hom (V,G) —> Hom (VO,GO)] we have 6 > uT and uT(x) =

(@) _

Z(0(x)) exp (0 (x)) an element of Ker [G(S) — G(So)] for xeV.

(2.5) Let A be aring and B an A-bi-algebra which is complete
with respect to a topology -defined by a family of (open) ideals. Thus we

have continuous maps (A being given the discrete topology)

¢:A—>B, ;:B®B—> B, ;: B—> A, A:B—> B ® B which satisfy
the usual identities. Consider B~ = Homcont. (B,A). As B isa co-
algebra via 7 and A we can use the transposes nT and AT to make
B” into an algebra:

T

(multiplication) B*@B"—> (B®B)" —&— B~

(structure map) 17T: A—B".

Also via eT: BY—> A, B” becomes an augmented algebra.

In general B~ will not be a co-algebra because the canonical map
BY® B —> (B é B)v is not necessarily invertible. But, observing that
BE&B isa co-algebra we see (just as above) (B ® B)' has a structure
of augmented algebra. Corresponding to the two projections ™= idBé n
we have by transposition two algebra maps

and T, =11®idB
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T T
1

~N

~

(B®B)". Using (nlé o by sy = id

B®B

T
L

|

B"® B —> (B® B)".

, :B”—#(BéB)'. Consider the algebra map 1'rlT®'n'Zr:B'®B“—>

B&B * it follows that

® ‘né :BY®B” —> (B®B)" coincides with the canonical map

(2.5.1) Assume in the above notation that B is flat over A and that

we are given an ideal 1 € A with nilpo

(1.8) the maps exp: I B —> 1 4

log: 1 +IB” —> I'B

are defined and are (1.7) inverse isonw

tent divided powers. Thus using
10:0

v

orphisms. These maps are of course

functorial in flat A-algebras. An element ve B” is said to be primitive

if eT(y) =0 and uT(y) = -n"lr ®"';I (y®

(2.5.2) On I1-Prim(B”) there ared

those on 1*B”. Consider an element

x = exp (iy) = 2 i(n)yn and applying g
T

14-1®y) e (B®B)".

efined divided powers induced from

i-y in I.Prim (B”). Then writing

T p T =23 (FT(Y))n

-z (n;rson;r(ym s1@y)=n ®172T(Ei(n) yel + 18y)")

1
= nf@ '"g (x®x), we find that x is a '

sense:

group-like element' in the following

Definition (2.5.3) An element x of B is said to be group-like if

eT(x) =1 and pT(x) = w;r® w,zr (x®x).

Remark (2.5.4) This is an obvious g

eneralization of the usual definition.

Notice that for 8,8’ in B we have (8-8', x) = (L(B®B'), x) =

Bop’, HT(X)> = (B®p’, 1r'1r® 11'2T(x®x)

= {B,x) + (B,x) by the final
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T
remark of (2.5.1). Also (1,x) = (e(IA),x) = (IA,e (x)) = lA. Thus x

''group-like'' implies x: B —> A is an algebra homomorphism.

- {2.5.5) If (B =) B)” is also flat over A then since divided powers are

defined on 1-B” and I1-(B ® B)” we have:

For yel-B” NPrim(B"), pT(exp (y)) =
T T T
exp (1~ (y)) = exp () ®m, (y81 +18y)) =
T T . ) .
'rrl ® 172 (exp (y) ® exp (y)). Thus x = exp (y) is a group-like element of B”.

In this case we can also define the log mapping and have for

l1+z ¢l1+1.B":
T T . . :
€ olog (1+z) =log (€™ (142)) =0 if 1 + z is group-like.
Also p.To log (1+42) = logo pT (14z) = logo n.]r® ﬂg((]%z}& (1+z))

® 17;_[‘ [l1og (142®1) + log (1®1+z)]

Thus in summary, we can state:
Lemma (2.5.6) Assume B and (BéB)" are flat over A. Then exp

and log are inverse isomorphisms:

1-B” NPrim(B”) ——=L—— {group-like elements in 1 +1-B"}
log

Application (2.5.7) Let G be a commutative group scheme which is
locally of finite type over S. Let G = im Inf* (G) and InfS (G) =

Spec (B,) where B, is a finite A-algebra [E.G.A. IV 16.1.7]. Also set
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[
B = lim Bn’ a complete adic ring whose topology is defined by the ideal

J=Ker (B—>B_) [E.G.A. 017.2.7]
G (C) = Homconth, C) where C is giv

define the hyper-algebra of G to be B

If C is any A-algebra then
en the discrete topology. Let us

Y. BY is, as was noted above in

(2.5.1), an algebra and not in general a bi-algebra. For y in Prim(BY)

and B,,B, € B, (B, *B,,y> = (B,y)¢

kills JZ and hence gives us an A-linea

T (ﬂz) + (ﬁz,y) eT(ﬁl). Thus y

r derivation of Bl —> A (i.e., an

element in Lie (G)). Conversely it is obvious that any such derivation

comes from an elément in Prim (B").

Thus Prim(B”) — Lie (G).

Also the set of ''group-like" elements in B~ is identical with G (A).

If B® is flat over A, the exponential d
Ker [G(A) —™> G(A/I)]. If furthermor

have an isomorphism given by the expor
(2.5.7.1) Lie (G) N1-B~ - Ker [G

(2.6) Unfortunately, what has prec

efines a map: exp:I-Lie (G) —>
. (B®B)” is flat over A, we

1ential:
A) —> G(A/M)].

eded is not general enough. Thus

in this section we give an ad hoc construction of the exponential in a

situation which we will meet again later.

necessary.

Remark (2.6.1) 1In (1.8) it suffices to

isomorphism (i.e., Tor? (A/1,B) = (0)

Some preliminary comments are

assume that I1® B—> IB is an

Remark (2.6.2) In the constructions of the exponential in 2.2 through

2.5 the hypothesis that the bi-algebra was flat can be replaced by the

hypothesis that the divided powers on 1

extend to it as well as to its tensor
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product with itself (obvious modification with regard to section 2.5). In
effect all that was used was that it made sense to write down expressions

suchas I x‘n).
n>0

Remark (2.6.3) Given a bi-algebra U it was its structure of augmented
co-algebra which played the predominant role in the preceding sections.
The concepts of primitive element and group-like element (or points with
values in Cospec (U)) did not make use of the multiplication p: U U—> U.
Thus if the underlying augmented co-algebra of the bi-algebra U satisfies

the appropriate conditions we will have the exponential defined.

(2.6.4) Let A be aring, I anideal of A with nilpotent divided
powers, Ao= A/l. Let V be a locally-free of finite rank A-module and

G 2 finite locally-free group scheme over S = Spec (A). Let G =Spec(B).
Consider the S-group V éG whose ring is Sym (\} )iB. Let H be an
S-group which, as pointed scheme, is isomorphic to V g G. We will
show that there is a "'theory of the exponential"” for H (at least when

Lie (G) is locally-free).

v
(2.6.5) Set C=Sym (V)®B so that H = Spec (C). C possesses two
different structures of co-algebra corresponding to the two distinct group

structures on Spec (C). Because V X G and H are isomorphic as
S

~

pointed schemes, @ . and hence is locally-free of finite type.

2y xG
s

Thus Lie (H) is locally-free. Let W be a locally-free module and

6: W—>1:Lie (H) an A-linear map. Before defining exp (8), a lemma
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is needed.

Lemma (2.6.6) Let C" = Homcont
C"® ¢ (C® C)° is an isomorphi
Proof: C® C—> (Sym (V)® B) ® (Sy

® (B ® B). Therefore (C® ) —> T

(C,A). The natural map

sm.

m (V) @ B) —>(Sym (V)& Sym(V))

Vv5V)® (B*®B")— T(V&V)

& (B*®B") (since B ® B” is of finite presentation) —> (I'(V)® T'(V))

é (B"®B") == (I(V)® B”) & (T(V) ®B~) == (T(V)®B") &(T(V) ® B")

by [E.G.A. 01 7.7.1] for example. This establishes the lemma.

Let p: C"—> C” & C” be the trrnspose of the multiplication map

p on C. If yel-Prim(C")=1-Lie (H), My) =y®1 + 1®y belongs to

I'Lie(H)®1 + 1®1.Lie (H) and this

Lie (H)).

Lemma (2.6.7) Let BI and ZB2 be

modules of Bl and B2 respectively.

finite and locally-free so that the divid

1.Sym (Ml) and I-Sym (MZ). Let p

last is isomorphic to I:(Lie(H) &

A-algebras, Ml’ M2 sub-A-
Assume Ml and M2 are both

ed powers on 1 extend to

(resp. pz): Sym (MI) —_—> .'B1

(resp. Sym (MZ) —_ BZ} be the canonical mapping. Finally let

©: B1 — B2 be an algebra map taking

@o p; (expy) = pyo exp (oly)).
Proof: Obviously it suffices to verify
iy’ , iel. Then we have @o Py lexp(i

Zi™ @) Qearly this is Pyo €

M1 to MZ. Then for y(I-M1

the assertion for y of the form

¥ =eop (T P57
n>0

P @)

Applying the lemmato B, = C*, B, = C & C", M

1 = Lie (H),

2 1

MZ =Lie(H)®1I + 1® Lie (H), ¢ = A, we find Alexp(y)) = exp(y®1 + 1®y)

= exp(y®1)-exp(l1®y) = exp(y) ® exp(y), where the last equality follows

by applying the lemma to Bl =Cc", B2 =C'® C”, ¢ = "inclusion along

first factor, " Ml = Lie (H), M, = Lie (H)® 1,... . Hence for yel-Lie(H),

2
exp (y) (= pl (Zy(n)) in the above notation) is a ''group-like' element.
From (2.6.7) it is clear that C" is a bi-algebra and thus exp (y) is in
Cospec (C") (A). But this is certainly H(A) since (C')v = C. Thus there
is a homomorphism I1-Lie (H) —> Ker [H(A) —> H(AO)]. As usual it is

injective. By looking at exp (6(x)) for xe W (notation of (2.6. 5), we

obtain our desired homomorphism:

(2.6.8) exp: Hom (W, 1 -Lie (H)) “—> Ker [Hom (W, H) —> Hom (Wo‘Ho)]
defined by exp (8) (x) = exp (6 (x)).

More precisely, by looking at the mapping I'(W) —> C” given by
x > exp (6 (x)), and repeating the reasoning of (2.4) we obtain the above

inclusion.

Remark (2.6.9) This construction is obviously functorial with respect

to both arguments. If H is a sheaf of groups and H is a group scheme
as above and we assume H “—> H’, H’ is a formal Lie group,

Lie (H) = Lie (H) = Lie (I_-I' ), then the above definition of the exponential
coincides with the one given in (2.4) in the following sense: any homo-
morphism u: W —> H which restricts to zero over So must have its

image contained in H “—> H’'. Then for : W —> I *Lie (H), exp(6):



[P ———

E T T ——

g

s

R T R e

e

102

W —> H' is the mapping defined in (2.4).

Remark (2.6.10) The introduction ¢

f the symmetric algebra above seems

necessary because I"(V) is not necessarily flat over A [4, Chapter I,

exercises §2,#12]. Thus although the

divided powers on I will extend

to T'(V), itisno longer clear that they will extend to I'A(V) ® B” when

this module is given the non-standard

to H as opposed to VxG).
S

algebra structure (corresponding

(2.7) In this section we study prolongations of homomorphisms and

the relation between these and the exponential.” Let S be an affine scheme,

Spec (A), 1 an ideal of A with nilpo

Let G be a2 groupon S. Assume that G is a filtering direct limit of

sub-groups Ga each of which is repr

esentable. Also assume that

1 1
Inf (G) = Inf (Ga) for some @, so that Lie (G) = Lie (Ga) and that the

"'theory of the exponential' exists for
that the homomorphism

exp: Hom (V, I-Lie (G)) > Ker

is defined. Examples of groups which

following:
1) smooth group scheme
2) Barsotti- Tate group, say over a

3) a group of the type discussed in

limit of such (provided the condition on

G. The last requirement means
Hom (V,G) — Hom (V_, G )]
S-gr. o—gr.o °

satisfy these conditions are the

base where p is nilpotent
2.6.4) or more generally a direct

the Lie algebra is satisfied).

ent divided powers, and So=Spec(A/I).
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Actually, we shall later use the following discussion in connection

with groups of the third type.

" (2.7.1) Let H be an S-group and u Ho —_— Go a homomorphism.

It is clear that the set of liftings of ug to homomorphisms u: H—> G is
either empty or principal homogeneous under the group Ker [Hom (H,G) —
Hom (Ho’Go)]' Assume that V = H is a vector group (i.e., the group
associated tq a locally free of finite rank, Gs-module). Then the theory
of the exponential permits us to make the following definitions:

Definition (2.7.2) Two liftings u',u” of uo: V0 — Go are linearly

compatible if their difference is in the image of
Hom (V, I-Lie (G)) <> Ker [Hom (V,G) —> Hom (VO,GO)].

This is obviously an equivalence relation on the set of liftings of ug

toa u:V—G.

(2.7.3) Assume ug: V0 —_— Go is a monomorphism with image HDS Go'
We want to examine the set of liftings H of Ho to subgroups of G, flat

over S, together with structure of locally-free module on H, lifting that

e e T i,

defined on Ho' Let H be a solution of this problemn. Then H is given

by V where V is a finite locally-free Gs-modu.]e. Any such V is
determined up to (non-unique) isomorphism [S.G.A 1 III 7.1]. Let us fix
once and for all such a V lifting Vo. Then, to give an H as above is

equivalent to giving a monomorphism V —> G lifting U modulo identi-

fying two such u and u’ if they differ by an G.-automorphism of V
g >4 (S P
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which reduces to the identity on So' In fact given such a mono:['norphism
u: V—> G, it is obvious that H = im(u) is a solution of the problem.
Conversely,let H be a solution of the ‘problem. Via u;l: Ho —_ VO, H
becomes a lifting of Vo' Thus by [S.G.A. 1 III 7.1] there is an isomor-
phism w between H and V which reduces to u;I . By taking u to be
the composite of w-l and the inclusion of H into G, wefinda w:V—G
of the desired type. Finally it is clear that if and only if u and u’ differ
by an @S-linear automorphism of V (reducing to idv ) is it the case that
H=im (u) and H = im (u’) give the same solution o(; the problem (after

all one makes H into an Qs-module via transport of structure).

Lemma (2.7.4) Any homomorphism u: V— G lifting u: Vo —_ -Go

is 2 monomorphism.

M: Since V is quasi- compact and | G satisfies the conditions of (2.7),
u: V== G factors through a representable sub-group G’ of G. The
induced morphism u’: V— G’ is locally of finite type [E.G.A. Iv,
1.3.4(v)], and hence So S S being 2 nilpotent immersion implies that

W:V—0G’ isa monomorphism [S.G.A.3 VI B 2.11].

Definition (2.7.5) Two homomorphisms‘ wu': V—>G lifting u_ are
said to be congruent if they differ by an (‘Ts-linear automorphism of V
reducing to the identity on v, ‘

Thus u and u’ are congruent if and only if they define the same

solution of our problem. The next lemma allows us to speak of two solu-

tions of our problem as being linearly compatible.

L
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Lemma (2.7.6) If u and u’ are congruent, then they are linearly

compatible.

. Proof: Write u’ = uo (idv+ n) where M:V—=>1+V since m reduces

to zero. u’-u =uo 7 and hence by the functoriality of the exponential it
suffices to show that 7 is an exponential. But V is given by the co-
algebra P‘(V) via the identification of its "group-like' elements with
elements of V givenby 1 + v(l) + v(z) tees b v(]'). Hence under this
identification we see that n = exp (n).

Thus we see that the exponential allows us to define an equivalence
relation on the set of solutions H of our problem.

Let hc Lie (G) be a locally-free sub-module lifting _}30=_I_JE(HO) fwith
necessarily locally free quotient by the criterion for flatness [4, Chap. 11

§5, Theorem 1]). The following proposition will be quite important later.

Proposition (2.7.7) In each linear equivalence class of solutions of our

problem, there is exactly one H with Lie (H) = h.

Proof: Choose a particular class and let u: V —> G be a representative
(lifting uo) in it. By the previous lemma we are allowed to modify u by

exactly one element in Hom (V, I.Lie (G))/Auto (V, inducing idV ).
S [

Here the quotient has an obvious meaning. On the other hand if we look
at Lie (u): V—> Lie (G), which lifts Lie (uo):Vb-ﬁLi_g(C-o), it is clear
that we are permitied to modify Lie (u) by exactly one element in

Hom (V, I+Lie ,(G))/Autg (V, inducing idv ) in order to get any possible
S o
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i i o : -
locally-free lifting of ho C Lie (Go). Note that any such modification will - such that U U’ is the inclusion and T f T s a divided power
give rise to a monomorphism V — Lie (G) by [E.G.A. IV 11.9.18]). : morphism (i. ., the sheaf of rings morphism 7! 6 6. isa
’ T T

Hence in modifying Lie (u) by an appropriate element so as to obtain h, divided power morphism).

i t u':V—s> t i ie))=h.
we obtain an element u G such that im (L‘E (w)) =h The topology on Crys (X) is "that induced by the Zariski topology!'':

it is defined by a pre-topology where
§3. (3.0) In this paragraph we define crystals and discuss the trivial
S {(Ui;*Ti,Yi)_>(U'_>T:Y)}
""general nonsense'' aspect of this theory which we will need later.
is a covering family when Ti is the open sub-scheme of T whose under-

Remark (3.1) The definition of crystal which we adopt is a very naive
—_— lying set is Ui and when U Ui= U.

one. The crystalline site should be defined with reference to a base scheme

R k(3.3 is si i -
and a compatibility condition on the divided powers should be imposed. Remark ( ) Sheaves (of sets for example) on this site admit the fol

lowing d iption: . . : .
Also the nilpotent site must in characteristic 2 be replaced by the Berthelot owing description: To give a sheal F is equivalent to giving for each

object (U “—— T,y) an ordinary sheaf F on T together with

site. It is essentially because we do not utilize crystalline cohomology, (U =T,y
that the naive definition suffices. For a more detailed discussion along morphisms f"l (F(U' s, 6)) —_ F(U =T,y whenever we have a
with example see: [2,3,15]. morphism:
Definition (3.2) For a scheme X, its crystalline site Crys (X) consists v T
. : . : (3.3.1) f I

of the category whose objects are triples (U <> T, y) where: ‘

" s < 2
1) U is an open sub-scheme of X v T
2) U T is a locally nilpotent immersion » These maps are to satisfy an obvious transitivity condition and
3) y = ('yn) are divided powers (which are locally nilpotent) on the ideal -1

I 2 . . .
( (U <> T’,G)) — F(U s,y * to be an isomorphism

I of U in T. The morphisms from (U < T,y) to (U < T',§)

whenever T is the open sub-scheme of T’ carried by set U.

are the commutative diagrams: %
Uy &——— T . . ﬁ Remark (3.4) The site Crys (X) is ringed in a natural way. Namely
f \L \l,?- % OX crys corresponds, according to (3. 3), to the systemn G(U cﬁT,'y): GT.

UI < T/
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A sheaf of modules M on Crys (X), t

|
hus is given by a family MT of

O,.-modules,... . M is said to be special if for any diagram (3.3.1) we

T

%
have f (MT,) =M A module M is

T
special and all M(U T, y) are quas
(3.5) We now turn to the definition
category on (Sch) which is a stack wit
This means that both morphisms and o

2 precise definition see [11, I 3.2].

Definition (3.6) An F-crystalon X

category F x Crys (X), where Crys
Sch

quasi-coherent if and only if it is

i-coherent.

of crystals. Let F be a fibered
h respect to the Zariski topology.

bjects can be glued together. For

(X) —> (Sch) is given by

(U= T,y) —> T. A morphism of F-crystals is a morphism of

cartesian sections.
Crys (X) we are given an object Q

morphism (3.3.1) in Crys (X) we are

u ————

:Q
H (U =T,y

—%
These isomorphisms are to satisfy f (u Jou =u

from a morphism in Crys (X)

This means that for each object (U “—> T,y) in

in F_ and that for each

(U =T, T

given an isomorphism

_%
f (Q(U' %T'.E))

where g comes
g f gef

is a cartesian section of the fibered

e
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Remark (3.7) For details on the above definition see [10,81]. We will
systematically assume the fibered categories dealt with are "'split, "' which
again by {10, §5] is harmless. Finally we will in general be careless about
the canonical isomorphism u and assume we have an actual identity of

. T
objects f (Q(U' <, 6)) = Q(U “>T,y)" This will never lead to

confusion.

(3.8) We want now to define the notion of "inverse image' for crystals.

Let v —2— x be a morphism of schemes. Fix a fibered category ¥

as above and let Q be an F-crystal on X. (p*(Q) is to be an F-crystal
on Y. To define (p*(Q), observe that since ¥ is a stack it suffices to
give the value of tp*(Q) on "sufficiently small” objects in Crys (Y).
Specifically "sufficiently small' means an object (U <= T,y) in Crys (Y)
such that ¢(U) is contained in an affine open subset V of X, and where
U (and hence T) is affine. To define <p*(Q) on such an object we proceed
as follows: Choose V 2¢(U), an affine. Let U = Spec(A), T =Spec A,

A'/l=A, V= Spec (B) and consider the diagram of rings:

A <— A

T

B <——— BxA’
A

Obviously B}\A' —> B is surjective with kernel {0} xI. On this ideal
we define divided powers via 'y; (0,i) = (0, ‘yn(i)). Obviously these divided

powers are nilpotent and B x A’ —> A’ is a divided power morphism.
A
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Taking W = Spec (Bx A’) we see that (V <> W,y') is an object of making the following diagrams commute:
A
Crys (X). Furthermore we have a diagram: / ‘\'.LC-—~—9T/
; /
Ue—s T ‘ V" s W l
. '
-— 1
(3.8.2) qol ltp ‘.L“"Lc_.__ N L e
VvV &——> W=V _u T (in the category of affine schemes). L:/’
U v w¥
By definiti @) o @ ) * *
efinition ¢ i = . l PR
Y MR R 7] (V W, 7) Thus & Qy Ly T = 87 (Quug , yn)
It must be shown that this object is independent of the V chosen. But if _ =% s
=@ (Qvl c W/)l T

V’ is a second affine open in X such that o(U) < V', then repeating the

This shows the definition above is independent of the choice of V. Having

above construction we obtain V' <> W’ and 3': T—> W’'. What must

. *
. defined ¢ (Q) for "sufficiently small" objects it is immediate (since ¥ is

_*
be shown is that ¢ (QV %W) =P QV' ‘-'-9~W’)' To do this it suffices,

a stack) that this partial definiti i
since ¥ is a stack, to show these objects are equal locally. Thus choose P efinition can be uniquely completed so that

x
. ) , , © (Q) is a crystal.
U’ <= T', with T’ the open sub-scheme of T induced on U'=— U,

so that (p(U') is contained in an affine V” cVv NVv’, and U’ is affine.

For U’ &> T’ the above construction can be performed to obtain

UI c T/

L

V// c Wll

By looking at the definitions of the various diagrams it is immediate that

there are morphisms: VY <> W" VY e— W
VvV &— W v/ —w’




