Chapter IV. The Crystals Associated to

Barsotti- Tate Groups

Ql. (1.0) In this chapter we shall a

sociate to Barsotti- Tate groups G

on a scheme S (where p is locally nilpotent) certain crystals. For

applications in the next chapter it is ne
the same method, crystals can also be
S. The constructions in the case of an
repeating word for word the reasoning

For this reason only the case of a Bars

cessary to know that via (essentially)
associated to abelian schemes on
abelian scheme go through by

n the case of a Barsotti- Tate group.

otti-Tate group is explicitly dis-

cussed, but from time to time certain minor differences in the two situa-

tions are explicitly noted.

(1.1) This paragraph is devoted to

showing that when p is locally

nilpotent on the base scheme S, a Barsotti-Tate group G admits a

universal extension by a vector group.
no hypothesis on the base, but afterwar

P is locally nilpotent on S.

The first proposition below makes

ds it shall always be assumed that

(1.2) Let S be a scheme and G a finite locally-free S-group.

Recall that associated to a quasi-coher

ent Os-module M is a group W(M)

(in the notation of [S.G.A. 3.1 4.6]) whose sections over an S-scheme T

are given by

T(T, W(M)) = T(T, 6 €

M).
Cs

Because no confusion will result, the W(M) notation is below shortened

to M.

s
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Proposition (1. 3) The functor (on quasi-coherent modules)

. Lk . .
M Homs_gr. (G, M) is represented by CRE G~ being the Cartier

dual of G.

Proof: Fix a module M and let DO {M] = OS ® M, viewed as an
S

algebra via M2 = (0) and D = Spec (Do [M]). The S scheme D coincides
S

with S as topological space and has an obvious section ep’ S <D cor-

responding to the augmentation DO [M] — OS. Hence D-groups can be
S

pulled back to S along this section and it makes sense to speak of

Ker [HomD-gr.(GD' Gm ) — Homs_

G, & ).
gr.
D

Mg

Because G is fixed, this kernel depends only on M (as D depends only
on M) and hence can be written as Q(M). Note that M +—> a(M) is a
covariant functor, for given a linear u: M —> M’ there is a commutative
diagram:

Spec (D [u])
OS

Spec (DO'[MI]) =D’ D = Spec (DO [MD)
S \ S
(1.3.1) €p’ \ )

Assume momentarily that there is a functorial isomorphism:

H (G, M) =5 a (M). Let us show how the proposition follows.

oms—gr.

By definition (or by {S.G.A.3 VII A 3.3]) Q(M) = Ker{G*(D)—» G*(S)].

M). It is clear

But by {S.G.A. 3 III 0.9] this group is given by Hom (v ,
G



R,

B
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from the explicit construction of the is
[E.G.A. IV 16.5.14] that it is functori

indeed represented by w ..
G

omorphism between the two groups

al in M and thus the functor is

Thus we must establish the isomorphism

(1.3.2) Hom (G, M) —> Q (M).

M being fixed, let 'rrT: T——>D

be a D-scheme. There is to be

associated toa ¢: G—> M a o' GD —= G . Sucha ¢ isgivenby

a family o'(T): GD(T) — G (T).
D
T
viewed as an S-scheme via T —>

©'(T): G(T)—> I'(T, 0’;. ). To defi

Corresponding to the fact that T isa

. -1 _ -1 -1
phism PpiTy (GS oM) = L (OS) GE'n'T

But GD(T) = G(T) when T is
D —> S. Thus

ne (p'(T) proceed as follows:

D-scheme there is a ring homomor-

phism the image of n-Tl (M) has square zero. On the other hand associated

to ¢ thereisa @(T): G(T) —> I'(T,

xe G(T), 1 + pTo © (T) (x) has an ob

(M) —> OT . Under this homomor-
G, ® 'rr-l(M)) Hence for
T Ve, T : ¢
T 'S

vious meaning. It is a unit and the

map x > 1+ ppe @ (T) (x) is a group homomorphism G(T) -—>I‘(T,G=;_).

By definition this is ¢'(T). It is now

obvious because ¢ is a homomor-

phism of functors, that for variable T, the family ¢'(T) defines a

morphism GD—>Gm . Furthermo
D

¢’1 (T) +¢’2(T) that ¢ —> ¢’ is ah

morphism Hom (GD, (Bm ) — Hom
D

a given S-scheme T as a D-scheme

re, it is clear since (101'1’(02), (T) =

omomorphism. Since the restriction
(G, G ) is "obtained" by viewing
3 m
4
‘D
via T —> & <= D it is immediate
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1 -1 -
that the map pT: ™ (GS) ] ‘ITT (M) —> OT must map 1'rT:l (M) to zero and

T

hence ¢’ actually belongs to @ (M) = Ker[Hom {G_, G ) —>
D-gr. D’ my

Homg (G, @ ).

If u: M—> M’, then there is the map D' — D corresponding to

DO [M]—/>D_[M']. Let »: G—> M and T be a D’-scheme via n’,-
s % T

7’
Denote by ¢': GD —> @ the map associated to ¢ above. It must be

7’ 7 .
shown that ¢ | D: GD' —_— GmD/ is the same as (uc @) (i.e., the
map associated to G Lo, M’). But (¢’'|D') (T') def

7,
L)
’ 7 T
T/ —— D’ = —
o ( D' —> D) the map x lL+ppioo (T') (x) where

o=l -1
Pt T (GS) @'nTI (M) —%OT, . But obviously this is the composite

-1 -1 ’, s =1 .
T (Og) &7 (M) — w Og) @7l (M) — 0,

. P N
(since Tt = T D and D’ having the same underlying topological
space). From this it is clear that the map Homs (G, M) ——> 0 (M)
-gr. ’
is functorial.
It rerains to show that this map is bijective. Let us first observe
that the map is compatible with any base change S’ — S. To see this

take T’ tobea D' = Dé(S' = Spec [GS, B (M ®0 Os/)] scheme and note
S

that for xe¢ G (T’) and @: G—> M, (<p|s')'(x)=1+p,r,o (@8 NT )x) =

1+pm o (T) (x) = (©|D) (x).

Thus to prove the injectivity it suffices to show @'(D) = 0 implies
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o(S) = 0. But q:l(D) =0 says that for

Pp

id.
the identity map D [M] <= p
oS GS

o ©(D) (x) = 0. Here ¢@(D): G(D) —

x¢ G(D) 1+pDo¢(D)(xb=1, ie.,

~ T (D, DGS-[MJ ®GSM) and on is

[M]. Now over an affine open set U

of S, (D) (x) will be given by z (a\i ) mi) [ m; and hence the hypothesis

that (DI(D) = 0 says that Zaim; = 0.

* ) , .
©(S) (eD (x)) = Eaimi = 0. This mean

G(D) in G(S). But from the fact that

Notice that over this affine open U
5 @(S) must vanish on the image of

eD is a section of the structural

map D —> S it follows that G(D) —> G(S) is onto. Thus the map

Hom (G, M) —> Q(M) is injective.

To show surjectivity let @ ¢ G(M) be given. For any S’ over S

tz defines 2 homomorphism @ (Ds,):G(

DS/) —_— (sz(DS,). Consider the

inclusion G(S’) < G(DS,). For x¢ G(S'), G(DS,) (x) is "killed'" under

i G
the augmentation DO ,[OS' @ M]—- &

S s

/. Hence ;E (DS,) (x) is of the form

1+y where ye T'(S', Q& M). If ©:G—>M is defined via

%

©(S’) (x) =y (in the above notation), it

~ .
is clear that since ¢ is a homo-

morphism of functors ¢ is also. To show the ¢’ associated to ¢ under

the map Hom (G, M) — G(M) is the
D-scheme and let xe¢ G(T). ¢'(T) (x)

@(T) (x) = image of x under G(T) <

L
~ T
same as ¢, let T—> D bea

=1+ pT o (T) (x). Here

G(DT) "JH(D ) G}M(DT) minus

1 =9(T) (x) - 1 because there is a commutative diagram

o0 (DT)
G(D) Gm(DT)
o (T)
G(T) G (T)

But in this case it is immediate that pT (@ (T)) (x) = (T) (x). Hence

@UT)(x) =1 +o(T) (x) = 1 +F(T) (x) - 1 =& (T) (x).

Remark (1.4) By the proposition there is defined & homomorphism
a: G —> Yo with the property that given B8: G —> M, there is a unique

linear u:w ,—> M suchthat B=uo q.
=c*

Remark (1.5) If S is locally-free it is easy to make a 'explicit':
£
Let G =5Spec (B), G =Spec(B”), 1 CB”, the augmentation ideal
corresponding to the unit section of G—r, n: BT —> O, the augmentation.
- [~}

Define ¢: B —> Dg [I/IZ] via ¢(b) = y{b)+ residue class of (b-7(b)) in 1/12.
S

Since @: G —> O it corresponds to an algebra homomorphism
Sym [& , ]—= B, thatis to a linear map & ,—> B or by transposi-
LoF L

tion a linear map B" —> w 5
G

This last linear map is given by

b > o(b) - g(b).
Remark (1.6) It is easy to check that the above constructed isomorphism

Hom (G, M) = Hom_ (@ ,, M) is functorial in G. Thus for
S-gr. Os c*

u: G —> H, a homomorphism of finite locally-free groups, the diagram:
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G

Q,Gl
L
G

commutes. (The lower horizontal arroy

—>

———

oL
*

H
laﬂ
“H

w is induced by the Cartier dual of u).

In fact since the isomorphism Hom (G, M) -~ Hom (BG*, M) is

composed from three isomorphisms:
1) Hom (G, M) —> C (M)

‘ . N
2)  Q(M)—=> Ker [G (D)—> G (5)]

3)  Ker [G'(D)—> G (5)] = Hom (o s 20

it suffices to show that each is functoriz

1) For T a D-scheme and ¢@: H
@' (u(T) (x)) =1+ preoe (T)u
2) This follows immediately from th
~ *
Hom (G, G )—> G [S.
—_— m
3) Let G =Spec(C), H =Spec(B

Os-algebras. The Cartier dual of u: G

21 in G.

M,
(T) (%) = (pou)'(x) for any x in G(T).
e proof that

G.A. 3 VII A 3.3]

), C and B two finite locally-free

—> H corresponds to a bi-algebra

homomorphism f: C—> B. The identification of Hom (w ., M) with

the kernel of H*(D) —_— H'F(S) is made via thinking of T: EH* —> M as

an O_-linear derivation B —> M (with M viewed as B module via

S
Nyt B —> Os) and then associating to

T the homomorphism B —> D%[M]

119

given by b > nB(b) + 7(b) for b a local section of B. Composing this

Barsotti-Tate group on S and M a quasi-coherent module, Homs
: s N
= (0) because G is p-divisible and P

f: G—> M is zero, i.e., there is a commutative diagram:

times any homomorphism

{
G >
N
P
N
G —+

Ré—-—&

N

with { we find the homomorphism C—> D0 (M) with ¢ > nc(c) +
S
~ 7(f(c)). This makes obvious the functoriality in question.
. N .
(1.7) Let S be a scheme on which p is zero. For G a

(G, M)
gr.

Therefore an extension of G by M admits no trivial automorphism

1
and an extension is uniquely determined by its class in Ext (G, M).

Definition (1. 8)

An extension (E) 0 —> V(G) —> E(G) —> G —=> 0

of G by a vector group V(G) (i.e., a2 quasi-coherent module) is said to

be universal if given any extension 0 —> M —> *—> G —> 0 of G

by another vector group there is 2 unique linear map vV (G) £ M such

. that w*((E)) is the given extension.

Remark (1.9)

Because of the rigidity of the category of extensions

EXT (G, M), it follows that there is no ambiguity in the way in which

(p*((E)) "is'' the given extension and that a universal extension is deter-

mined up to unique isomorphism (rather than just its extension ciass).
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Proposition (1.10) The hypotheses be

universal extension of G by a vector g

ing those of (1.7), thereis a

roup.

Proof: Consider the exact sequence
N
(1.10.1) 0 — G(N) — G£— G — 0.

"Applying'' Hom (_, M) we find a long exact sequence:

1
0 —> Hom (G, M) —> Hom (G, M) —> Hom (G(N), M) —6$ Ext (G, M) —

1
Ext (G, M).
Since Ext is a bi-functor, them
e N
from multiplication by p» on M. Hen
an isomorphism induced by the cobound

Extl(G, M). This isomorphism is cert

ap Extl(G,M) g Extl(G, M) comes
1ce it is zero. This means there is
ary map 6§, 6:Hom (G(N), M) —>

ainly functorial in M. But by (1.3)

the functor which occurs on the left-hand side above is represented by

w .+ Therefore by definition of the

Gy

follows that the extension induced from

connecting homomorphism §, it

(1.10.1) by a:

0 —> G(N) G

e e

0w —_—w H — G—> 0

= * = *
G(N) G(N)

is universal.

Remark (1.11) The integer N could have been replaced with any n > N

and the extension obtained would certainly be universal. In fact the unique
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isomorphism between two such extensions comes from the commutative

diagram (1.6) Pi
G(N+i) —————— G(N)

~

w = > %
G(N+i) G(N)
The fact that T 4 is an isomorphism is [II 3.3.20].
G(N+i) G(N)

Definition (1.12) For n sufficiently large we write w
G(n)

5 = V(G) and

the universal extension constructed above is written 0 —> V(G) — E(G)
—> G —> 0. Thus E(G) is an f.p.p.f. sheaf of groups on S, determined

up to unique isomorphism .

Lemma (1.13) The universal extension 0 —> V(G)—> E(G)— G—> 0

commutes with an arbitrary base change S’ — S.
Proof: From its construction via the di;gram

N
0—> GIN)—> G —2— G—>0

| {

0 —V{(G) — E(G) —— G—= 0 ,

what must be shown is that q: G(N) —> @ commutes with base

Gy’

change. Since Cartier duality is compatible with base change and since

w . 18 {11 3.3.20] locally-free, this follows from the explicit description
G(N)
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of « given in (1.5). Proof: Because of the uniqueness assertion it suffices to prove the prop-

Corollary (1.14): Assume p is locally nilpotent on S and let G be a osition locally on S and hence it can be assumed that pN kills S.
Barsotti-Tate group on S. There is a universal extension 0 —> V{G) - Consider the following two diagrams:
—> E(G)—>G—>0 of G by a vector group with V(G) = w e 0 @ N E(G) G 0
G G(N) I
Proof: Cover S by affine open sets U, and consider for each i the V(u) ”
! (1) W " I
universal extension of G|Ui by Y(GIUi) = w "Ui' By the lemma, the \I/ G(N) l
G* i
. ) . 0 w w 1l Ew©) > G —= 0
. . . = % = %
two extensions obtained on Ui n Uj are | canonically isomorphic. This H(N) H(N)
guarantees the co-cycle condition for U N Uj n Uk and tells us that the
E(GlUi) can be glued together to give us a sheaf of groups E(G) on S. 0 © . E(H) XG —— G —0
H(N) H
We obviously obtain an exact sequence 0—> w « T EG—>G—0 ‘
G (1) ! u
which gives us the desired universal extension. ,i N f
!! \L/ s
s 1 0—> w = E(H) H—0
Proposition (1.15) Let p be locally nilpotent on S and G, H two -H(N)'r
Barsotti-Tate groups on S with u: G —> H a homomorphism. There is
Since the uniqueness assertion is a consequence of Hom (G, w ) = (0),

a unique homomorphism E(u): E(G) —= E(H) such that we obtain a H(N)

it suffices to know that the 1 r is i i
morphism of extensions: € lower row of (I) is isomorphic to the upper row

of (II).
0 ——> V(G) — E(G) —> G —> 0
i | 3 From the functoriality of the connecting homomozrphism we have a

V(u) E(u) [*8

i commutative diagram:
1y
y v -
0 —> V(H) E(H) H 0 Hom (H(N), «) ™ Ext (H, w «)
', TH(N) ’H(N)"'
(where V(u) is the map induced on the invariant differentials by the
Voo
Cartier dual of u). Hom (G(N), w W) 7> Ext (G, w )
H(N) H(N)

By the functoriality of (1.6), there is also a commutative diagram:
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f
Hom (@ ., @ ) —————> Hom (H(N), & )
H(N) | H(N) H(N)
\ ~
Hom (w o @ o) — > | Hom (G(N), w )
G(N) H(N) H(N)

Combining these two diagrams it is immediate that the lower row of

(I) and the upper row of (II) correspond to the two ways of taking idm

=

TH(N)T
into Extl(G, w *). Thus the two rows are isomorphic as claimed.
H(N)
(1.16) W e wish to show that E(G) is a formal Lie group on S. This

is a local question and hence S can be assumed to be affine.
Lemma (1.17) I:nfk (E(G)) is representable and of finite presentation.

Proof: Let pN kill S so that Infk(G\) < G(n+N-1) if k< pn [11(3.3.17)].

Consider the extension
(1.17.1) 0 — V(G) — E(G) x G(n+N-1) —> G(n+N-1) — 0
- G

Since In.fk(E(G)) maps to In.{k(G), it follows that Infk(E(G)) =

Infk(E(G)é G(n+N-1)). Because V(G) and G(n+N-1) are schemes it follows
that E(G)éG(n+N-l) is a scheme of finite presentation since it is a torseur
[G.A. 111 §4 1.9]. Thus Inik(E(G)) is

on G(n+N-1) under X(G)G(n-l-N-l)

representable by a scheme of finite pres entation.
Lemma (1.18) (Aséuming S is affine) E(G) is formally smooth.

Proof: Let T & T’ be a nilpotent immersion with T’ an (absolutely)

affine S-scheme. Let ¢: T —> E(G) be given:
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E(G)
/ﬁ N
0 | S o

N

N
T ¢&——obs T’
Since T is affine and E(G) = lim (E(G)éG(n)), X3 E(G)éc.(n) (T) for
some n.

Consider the exact sequence:
0 — V(G) —> E(G) = G —> 0

1TT(¢J) € G(n) (T) and hence by the formal smoothness of G [11 (3.3.13)]
it can be assumed (by augmenting n if necessary) that wT(w): T —> G{(n)
can be lifted to T'.

Since S is affine and V(G) is a quasi-coherent module all torseurs

under V(G) are trivial [G.A. I §1, 2.7; S.G.A. 4 VII 4.4]. This

G(n)
implies that the morphism E(G)éG(n) —> G(n) admits a section. Thus
the morphism T’ — G(n) gives rise to P: T — ]EI(‘G)éG(n). gb‘ T and
¢ certainly have the same image in -G(n) (T). Hence ¢ - $|T belongs to
V(GNT). Since VIG) is smooth, o-$|T can be lifted to n:T'—>V(G). Thus

n+t_lJ:T'—¢» E(C—)éG(n) and v7+(’)1T=<o. This proves E(G) is formally smooth.
Proposition (1.19) E(G) is a formal Lie group.

Proof: Since E(G) is by (1.18) formally smooth (locally at least) it
follows immediately from [II 3.1,1] and (1.17) that E(G) is a formal Lie

group. In particular E(G) is formally smooth.

Definition (1.20)  Lie (E(G)) = Lie (E(G)) = {if pN kills S) Lie (E(G) x G(N)).
G
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It is a locally free (of finite rank) sheaf of

Os-modules.

Proposition (1.21) The sequence 0 —> V(G) — E(G) — G — 0 is exact.

Proof: The only non-trivial fact is that E(G) — G is an epimorphism.

Because this is a statement about sheaves

it suffices to prove it locally.

Hence it can be assumed that § is affine and killed by pN. It must be

k k
shown that the map Inf (E(G)) ——> Inf (G) is an epimorphism (for all k).

As was noted in the proof of (1.18), E(G) x G(n+N-1) is as G(n+N-1)-
G

scheme isomorphic to V(G) and

G(n+N-1)’

therefore is smooth over

G{(n+N-1). Consider the following diagram, with T affine:

By the smoothness noted above, the dotted

arrow can be filled in so as to

obtain a commutative diagram. Clearly this implies that

k k
Inf (E(G)) —> Inf (G) is an epimorphism.

Proposition (1.22) The sequence 0—> V

is exact.

Proof: Once again the assertion is local
. N
affine and p kills S. Then the map E(G

section (see the proof of 1.18) and hence it

(G) — Lie (E(G)) — Lie (G)—>0

so it can be assumed that S is

) x G(N) —> G(N) admits a
G

is an epimorphism of
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presheaves. This certainly implies that Lie (E(G)) —> Lie (G) is an
epimorphism (as both are finite and locally free: see [S.G.A.3 II 4. 11]).

The exactness of the rest of the sequence is obvious.

Remark (1.23) We indicate how the results of this paragraph are to be

modified (usually simplified) so as to apply to abelian schemes. By [1(3.4)]
the morphism p: A—> A is an epimorphism of the abelian scheme A
and hence (1.7) - (1.12) are carried over with only the change of replacing
everywhere the words '"Barsotti-Tate group'' with the words ''abelian
scheme'' (i.e., with no change). In (1.14) the symbol BG* is to be
replaced by EA m)* where A(=) d_-if_' l_xrl)> A(n). (1.15) goes through with
no change. (1.16) - (1.19) can be simplified since from the exact sequence
0—> V(A)— E(A)—> A—0 (where V(A) is locally given as SA(N)*)’
it follows that E(A) is a smooth S-scheme and E(A) —> A is a smooth
morphism: [G.A. III §4 1.9, E.G.A. IV 17.7.3(ii)]. This immediately
implies m is a formal Lie group. (l.20) remains unchanged and the
proof of (1.21) can be simplified by repeating the r easoning of [II (4.11)]

utilizing the fact that E(A) —> A is smooth to make the simplification.

The proof of (1.22) can be simplified using smoothness just as before.

§2. (2.0) The purpose of this paragraph is to associate to certain
Barsotti-Tate groups on a scheme So (where p is locally nilpotent)
various crystals. The word 'certain' is undoubtedly unnecessary as was

already noted in the introduction. To such a B.T. group G, there will be



associated:
1) a crystal in (f.p.p.f) groups: IE(G)
2) a crystal in formal Lie groups: E(G)

3) a crystal in finite locally-free modules: D(G)

(i.e., a locally-free sheaf on the crystalline site). |

The constructions will be such that E(G) is (as the notatio\}x suggests)
obtained from IE(G) by ""completing along the unit section, " while D (G)
will be obtained from IE(G) by applying | Lie. Hence it is clear that
IE(G) is the basic crystal to construct. Again, as the notation is intended

to suggest, IE(G) will be obtained by "crystallizing'' E(G).

Notation (2.1) $° will denote a scheme|with p locally nilpotent on it.

B. T.'(SO) will denote the full sub-category of B. T. (So) consisting of those
Go with the following property: There is an open cover of So (depending on
Go) formed of affine open sets Uo < S(J such that for any nilpotent immer-

sion UOQ*»U there is a B.T. group G |on U with GJU°= Goon.

. Remark (2.1.1) Since amalgamated sums of affine schemes exist, a
morphism f: To —_— So induces f*: B.T '(So) — B. T.'(To). Also the
condition of (2.1) implies that any affine open subset of an element of the
cover satisfies the same hypothesis. The B.T. groups in B. T.'(SO) are
"locally infinitesimally liftable. "

We can now formulate the main theorem which allow the construc-

tion of the crystal 1E(G).

129 gec (M) By

N .
Theorem (2.2) Let S =Spec (A), p - ls= o, S°= Ygr‘(_l’) where 1 is an

ideal of A with nilpotent divided powers. Let G and H be two B.T.
groups on S and assume u: Go —_— Ho is 2 homomorphism between
their restrictions to SO. uo defines a morphism vO= E(uo): E(»Go) —_—

E(Ho) of extensions:

0 — l/(Go) — E'(?o) —_— Go —> 0
|

l Vi) . v, |

< L

0—> V(H ) E(H_ ) H >0

There is a2 unique morphism of groups v: E(G) —> E(H) (not nec-
essarily respecting the structure of extensions) with the following properties:
1) v is a lifting of v,

2) Given w: V(G) —> V(H), a lifting of l/'(uo), denote by i the inclu-
sion V(H) —> E(H), so that d =iow - v|l/(G): V(G) —> E(H) induces
z€ero on So' Then, d is an expox}enfigl (an assertion which makes sense

by [11I 2.4]).

Remark (2. 3) The morphism v is independent of w. For if w'=w+h
was a second lifting of l/'(uo), h would map V(G) to V(H) and would
obviously be an exponential. But defining d’ (corresponding to w’) as
above, d'=d +ih. Since ioh is clearly identified with Goh yi: V(H) —>
E(H) )it is obvious that (denoting by B the hyperalgebra of the formal Lie
< - (n), T (n) . ifying 1: V(H)
group E(H)) ioh(x) = i (Z(h(x))" ') =5 (io h(x)) (identifying i: V(

—> E(H) with the corresponding T'(V(H)) —> B) and thus that ioch is
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an exponential. Hence d’ is an exponential if and only if d is one.

(2.4) Prior to proving the theorem le

allow the construction of IE(G).

Corollary (2.4.1) Let K be a third B.

a homomorphism. Denote the v whose lexistence is guaranteed by the

th ’ =
eorem, by Es(uo). Then Es(uoo uo)-

Proof:

be shown that v'o v, satisfies the condition concerning the exponential.

Let w:V(G) —> V(H) and w’:V(H) —>

’ - . . . .
_Y(uo). Note such liftings exist by [4(bis) Algebre Chap. II §5, prop. 7(ii)].
Let i’: V(K)—>E(K) be the inclusion and set d”= i‘o (wow) - (vov)i V(G).

It must be shown that d” is an exponential. Consider the following

diagram:

0 — vV(G) —

" l

i

00— V(H) —>

i

w’ ’

A\ i’

00— V(K) ——>
By hypothesis i‘ow’ = v'oi + exp ('), wh
Thus i‘o(w'ow) = v'o(iow) + exp 8')ow. B
6: V(G) —> I-Lie (E(H)). Hence i'o(w'ow

exp (6'ow). Just as in remark (2.3) it is

Let v’ = Es(u;). Since v'ov is a lifting of E(u’ou ), it must
o o

1

t us give the corollaries which

T. groupon S and u':H— K
o "o °

Es(u;)o ES(uo)'

V(K) be liftings of '\_/(uo) and

E(IG)

E(K)

ere 8: V(H) —> I- Lie (E(K)).
ut iow = V|!(C’) + exp (@),
) = vov|V(G) + v'o exp () +

clear that v’'o exp(8)+ exp(8'ow)
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is an exponential. This proves the corollary.

Corollary (2.4.2) If G=H and u = ldG , then Es(uo) = 1dG.

(e}

Proof: This is immediate from the uniqueness assertion.

Let G, H, u be as above and assume ug is an
[)

Corollary (2.4. 3)

isomorphism. Es-(uo) is an isomorphism.
Proof: This is a formal consequence of (2.4.1) and (2.4.2).

Suppose there is a commutative diagram:

S

f

s/
[e]

where So C—- S and S; &—> 5’ are nilpotent immersions of the type

Corollary (2.4.4)

>

—
[ oo,

d,\ —_——

hypothesized in the statement of the theorem. Let S; = Var (J), So: Var (I)
and assume S' —> S is a divided power morphism. Let G and H be
two B.T. groups on S and u: Go b Ho be given. Under these cir-
cumstances the construction of the theorem is compatible with the base

’ - -
change S" —> S: ESI(U.OS,) = (Es(uo))s, = vs, .

o

Proof: Since vs, lifts uo , it must be shown that the exponential
Sl
o

condition is verified by vS/. (We are of course using (1.13) to know the

corollary makes sense.)

In the notation of the theorem let w: VIG) — V(H) lift lf(uo).
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ws, lifts Y.'(uo :) and it must be shown

o
is an exponential. By its definition 4’ |

that d’ = igro we - vs,ly(cs,)

s d_ s where d is as in the state-

S

ment of the theorem. If d = exp (8) where 6: V(G) —1-lie (E(H)), then

ds, is (obviously) exp (es,) where GS/

V(Gg) —> - Lie (E(H,)) is

deduced from 6 via extension of scalars.

(2.5) Let us show how the corollaries

permit the construction of the

crystals. Let So be an arbitrary scheme (with p locally nilpotent on it)

and let Go be in B. T.’ (SO). By the reasoning vrecalled in [III (3.8)]:

namely that f.p.p.f. groups form a stack with respect to the Zariski

topology, it suffices to give the value of the crystal ]E(Go) on objects

v, S— U of the crystalline site of S,
be lifted to U, and Uo is affine.

It is precisely the content of (2,4, 1
isomorphism the group E(G) is indepenc
has been chosen.

If V0 “—V was a second object

was given a morphism

Uo
2
|

\4
o

—
e

<—=3cq

with the property that Go | Uo can

) and (2.4. 3) that up to canonical

ient of the lifting of GOIUO which

of the crystalline site and there

then for a lifting GU of Goon to U and a lifting GV of Golvo to V

—% ~
the same corollaries give a canonical isomorphism f (E(GU)) —_— E(GV).

It is now clear that the value of the

crystal lE(Go) on an object
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Uo <— vy (as above) is simply E(G) for some choice of lifting of -GOIU0
to U (i.e., chosen via the Hilbert e€-function).

In the same way it is clear that for u: Go — H0 a homomorphism
between two B. T.' groups, there is a morphism ]E(uo) between the asso-
ciated crystals which is defined on a "sufficiently small" open set Uo'c—> 1)

via EU(uO) in the notation introduced above.

3%
Let f: To —_— So be an arbitrary morphism. The crystal f (IE(GO))
is determined by its values on "sufficiently small" open sets in the cry-
stalline site of T°\G1005e "sufficiently small' to mean that the object

Vo ©— V has two properties:

1) I(Vo) [= Uo and GoIUo can be lifted to infinitesimal neighborhoods.

2) V  is affine.
o

Then using the amalgamated sum construction, as in [III (3. 8)], we

build the diagram

A\

o
yot__)}]{:t’o—u v
IT l?
VOL'——>V

It is immediate that, for a lifting G of GOIUO to U,

17 (E@) =BGy = EEG,)
V — VvV
o

Thus f*(lE(Go)) = ]E(f*(C-O)).

Of course the last equalities have to be taken with a grain of salt and a

more precise statement would be that the following diagram is commutative
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up to a unique natural equivalence:

B.T.'(so)—L (Cryst

(2.5.1) £

als in f.p.p.f. groups on So)

*
f

1E
B. T.'(To) — > (Crystals in f.p.p.f. groups on To)

It is obvious that IE 1is an additive functor and therefore that the

functors IE and D defined below are additive.
IE is defined via
2.5.2 E =
( ) = (GO)UO"——> U (E(GO)UO — U) N

for any object u, > U of the crystalline site of S,

D is defined via:

(2.5.3) D(G,) = Lie (EG_) )

US—u
o

o'U«~=>1Uu
()

for any object Uo “—> U of the crystalline site.

(2.5.4) To summarize: if So ]

is a nilpotent divided power immer-

sion and Go can be lifted to a B.T. group G on S, then (up to canonical

isomorphism)
1) E(G g ¢, g = EG)
o
2) EG)s <, = EQ)
o]
3) = Lie (E(G)).

lD(Go)So S

(2.6) We now turn to the proof of the

theorem (2.2). Several preliminary

135
lemmas are necessary. It is Lemma (2. 6. 3) which plays the crucial role.

Lemma (2.6.1) Under the hypotheses of (2.2) made on S, let ‘G be a
Barsotti-'i'ate groupon S. For n>N, thegroup L = E(C—)(x;-G(n) satisfies
the hypotheses of (III 2.6.4) and hence the exponential mapping exp:

Hom (M, I-Lie (L)) <—> Ker [Hom {M, L) —> Hom (Mo’ Lo)] is defined

for any locally-free module M.

Proof: The first sentence of the proof of (1.2 2) tells us that E(G)éG(n)
—> G(n) admits a section. Since E(‘G)é G(n) is a group and the section
is a morphism of S-schemes, by translation by an appropriate element of
the kernel V(G) (S) it can be assumed that the section preserves the unit
section. Consider the isomorphism of G(n)-schemes E(vG)é G(n) —_
X(G)gG(n) determined by this section. It is obvious that it takes unit

section to unit section and hence is an isomorphism of pointed S-schemes.

(2.6.2) Let S, SO be as in the statement of the theorem. Let T be a

finite locally-free group on S such that w 4 =V is locally-free. Denote
T

by & the canonical map I'— V of(l.4): Let F be agroupon S

which is one of the three types given as examples in [III (2.7)]. In partic-

ular this means the exponential map Hom (V,1. Lie (F))‘% Ker[Hom(V, F)

—> Hom (VO,FO)] is defined. Assume further that EF is finite and

locally free . (This is only an assumption for F of the third type [c.f.

1II (2.7)] and here it has an obvious meaning. )

Lemma (2.6.3) Let wo: Vo'——> Fo be a homomorphism and let @ be,

a linear class of liftings [III (2.7.2)] w:V—>F. Let viI'—> F
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|

satisfy v, Ewe o . There is a unique w’ in @ such that woa = v.

In other words: given a diagram

T
|
a | v
v Ny
v —> I

which becomes commutative when pulled back to So , there is a unique

w': V—>F such that

1) v=wo a
2) w o =w
o o
3) w - w is an exponential,

(2.6.4) We first make two simple reductions.

15t reduction: Set w' =w+h and v = v - wo @
Then the conditions 1) - 3) to be satisfied become:
1) v =hog
2) h =0

3) h is an exponential.
This reduces us to considering the case w =0, Vo= 0.

20d reduction: Take a finite filtration of S: § =Sr2 Sr 12 .2 S(J such

that each Si is defined by an ideal Ii stable under the divided powers
induced by I. Assume that the lemma is true step by step. We claim
then, that the lemma is true. To verify this it obviously suffices to

consider a filtration S28§, 2 So and to verify the claim in this case.

1

such that exp (91)0 =V

137

Let the subscript ''1" denote the objects obtained by making the base

change S1 ©— S. By hypothesis there is a unique Glzwr*—» I/I1 -Lie(Fl)
1
1 Consider the diagram

----------------------- > 1-Lie (F)

L]

> 1/11‘ Lie(F)

— 1

; |

0

Since V is projective (being finite and locally-free) there is a 92: VvV —
1-Lie (F) which will make the diagram commutative.

The functoriality of the exponential implies that exp (92): V—>F
will reduce to exp (91).

Let us apply the hypothesis that the lemma is true to the pair (S,Sl)
and the map exp (QZ). Thus there is a unique 93: V — II'LE(F) such
that exp (62+ 93)0 a =v. This gives us the existence of a solution. To
show uniqueness let 9': vV —> I-Lie(F) be any solution. Then exp ©")

restricted to S, 1is clearly a solution of the problem for the pair (51'50)'

1
By the uniqueness of such a solution 9'1 = 91 and hence (6'- 92)1 = 0.

This implies that exp (8°) and exp (BZ) are linearly equivalent and hence,

by the uniqueness assumption made for the pair (S’Sl)’ implies 8'= 92+ 63.

Application: The ideals defined in [II (4. 1)] are clearly stable under the
divided powers of I. Hence it suffices to prove the lemma under the

additional hypothesis that p-1 = 12= (0).



13

(2.6.5)

to be a group scheme. The reason for

|
Let us observe that without loss of generality F can be assumed

this is: By hypothesis F is either

2 group scheme or a filtering direct lirnit of (sub) group schemes. The

map v:T'—> F will factor through on
since T is quasi-compact. Furthermc
hypothesis on F tells us that the expon
Trepresentable sub-groups in question.

Finally let us observe that F car
some bi-algebra B. This is obvious fo

third examples of [III (2.7)]. If F is a

e of the representable sub-groups
re if F is not representable, our

ential is defined for each of the

1 be assumed to be Cospec (B) for
r the groups in the second and

smooth group; then, since the

exponential really depends only on the formal Lie group F , this is clearly

permissible [c.f. III (2.4)].

(2.6.6) Proof of (2.6.3):

Let i: So ©“— S be the inclusion

morphism F —> i*(Fo). Let K be its

(2.6.6.1) K(T) = Hom, (w

S o
(o]

and consider the canonical homo-

kernel. By [S.G.A.3 III (0.9)]

53 %s r I'O'r>

]
(o]

for any S-scheme T. For typographical reasons, the ""W( )" notation of

[S.G.A. 314.6] will not be used below and the same symbol will be used

for a quasi-coherent Os-module and the

corresponding Qs-module, e

By [S.G.A. 3110 (0. 6)] the restriction of K to the full sub- category

of Sch./S consisting of flat S-schemes

v:I'—>F reduces to zero over S, v
o

is 1*(Homss(gro,1)). Since
o

is a homomorphism I'— K.
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A homomorphism I'—> K is an

pK((vxv)) in K(I'x IN (here pr

*
element v e K(I') such that ]-lr (v) =

:I'xT—> T is the grouplawon T

and By K x K—= K is the group law on K). But because I' and T'x T

are flat over S, this implies that a homomorphism I'—> K '"is" a

homomorphism I'—> i, (HomE
S

(9_1:, ,I)). Finally by adjointness we
o

o]

o

see v "is'" a homomorphism:
(2.6.6.2) v: I’o — Ho%s (SF , 1),
o

We are trying to find a homomorphism w: V ——>F which is an

exponential. To give w is thus equivalent to giving a linear homomor-

phism u: V—> Lie (F) ®OS I.

Since = 0, Lie(F)®, 1= Lie(F)®, (6, ®, I)=Lic(F)8, 1=

S

ﬁ_o_n:b (EF , I) because [E
So o [

S o S So

is locally-free. Thus the giving of w is

equivalent by adjointness to the giving of an OS -linear homomorphism:

u: Vo _—> Ho[gc

S

Since w: V—>F is to be

o

(wr 1)

-F)
o
[}

an exponential it can be interpreted

(just as v was above) as a map w: Vo —> Hom (w._. , I).

From the way in which this

]

identification is made it is immediate

that the translation of the requirement woa =v is weo 010= v where w

is interpreted as 2 homomorphism Vo —> Hom (EF , I) and v is

[}

interpreted as a homomorphism I‘o —> Hom (SF , I).

o
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Let us write F = Cospec (B) where B is (a not necessarily flat) Hence exp(u) viewed as a map Vo —> Lie(F) ®1 is given via
bi-algebra. In each of the three cases being treated 1-B N Prim (B) = x F— “(x)‘(n)-

n>1
I-Prim (B). For the case of a formal Lie group this is obvious. For the

Now having interpreted what exp {(u) means we must utilize our
remaining two cases it follows from [111 (2. 3. 6),(2.3.7)] since the state-

R hypothesis that p-I = (0) in order to show that a unique u:V°—>Lie (F°)®I
ment is certainly true for B = " [M], M locally free.

can be found so as to satisfy the conditions of the lemra.
We now want to make explicit how to interpret exp (u): V—>F as

Because O is locally free and p-I = (0) the giving of a linear
a homomorphism VO —_— &(Fo) ®1=1Lie(F). First identifying V
R u:V —> Lie(F ) ®1 is equivalent to giving a linear map
with Cospec (I"' (V)) we know exp (u)(x)|=Z (u(x))(n) for any x¢V. ° °
n>0

Vv /pV_ ——> Prim(B/@n)- B) ® = Prim(B ) 9 1.

1
. g A
(If B is not flat then (u(x))(n) is defined via the procedure of [III (2, 6. 7). ford

The extension of the definition of exp(u) |to points of V with values in On Prim(B/(p1l1) - B) there is a pth-power mapping g since this is a

an S-&cheme T is obvious. ) Lie -algebra in characteristic p.

Let us observe that the element % (u(x))(n) of B is primitive. If y denotes the divided powers on I, then
n>1
—_— . 2_
This follows from ;vp(x+y) - ‘yp(x) + 7P(y) + Zyi(x) 'yp_i(y) = yp(x) + 'yp(y) since I = (0).
_\P o . . 1 .
A(l + 2 u(x)(n)) - (1 +2 u(x)(n)>® (1 + 3 u(x)(n)> Because yp(kx) =X\ yp(x) it is immediate that -yp is a p-linear mapping
1
nz n21 a2l of I to itself.
=181+ (Z u(x)(n)® l+10 5 u(x)(n)> ‘ Hence w = s ® 'yp is an additive mapping of LEE(FO) &1 to itself.
nzl n21 It is immediate that this map extends to any scheme To over So and
+ (2 u(x)(n)> 3 (:3 u(x)(n)) hence 7 defines a homomorphism of the group Lie(Fo) ®1 to itself.
n>1 n>1

Since ‘yp,;; ('yp)l [5 Exposé 3, §3, Theorem 3] the hypothesis that the
and the fact that the last term is zero since each '"factor" in the tensor

divided powers are nilpotent implies m is nilpotent. Hence 2 7" is an
product is in I.B and 12= (0). nz?

automorphism of the So—group Lie (Fo) ® I.

Thus 2 u(x)(n) is primitive and obviously belongs to I-B and

n>1 Let u: V0 —> Lie (Fo) ®1 be any linear map. Let x¢ Vo and

hence from the above remarks it belongs to Lie (F)® 1.

write u(x) = Ebj @ ij. Then
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(Z mMeu=I(T «° 88 1))

n>0 J n>0

n n
=T (Z P ®ij‘P )

j n>0

® N,
=Z (ZbP 8P
n>0 j J

(n
=2 (S moi)P)
ns0 j 4

n
22 (Zb.2i)P ) as 2o
530 it

n
=2 (u(x))(P ).
n>0

(n)

But unless n is a power of p, u(x) is in IZ-B = 0 because of the

explicit formulas in [5 Exposé 3 §3 Theorem 3].

n
Thus 2 u(x)(p) = 4 u(x)(n) = exp (u) (x).
n>0 n>1

Thus we can state:

(2.6.6.3) (Zx™)ou = exp (u).
In the above computation Lie(F)®1, &(Fo) ®1, I-Lie(F) have
been systematically identified.
To complete the proof let us observe that because L« is an iso-
morphism, the problem of finding a u: Vc —_— &(Fo) ®1 such that the

following diagram commutes:

e
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T
o

o

[]
N
v

o

exp (u) Lie(F)e1

is equivalent to the problem of finding a u which makes the following

diagram commute:

by

&
o

v, —_— Lse(fo) ®1

But by the universal property of o, there is a unique u making

the diagram commute. This completes the proof of the lemma.

(2.7) Proof of Theorem (2.2):
Consider the following diagram from which the universal extension

E(G) is obtained (and consider the corresponding diagram for H).

L
0 —> G(N) -5 G ——>G > 0

(2.7.1) a
0 —> V(G) E(G) G 0

‘o " =i A\
Let v/ = E(uo)IGO and v E(uo)|y(c}0) ioViu ).



(2.7.2) B e Rt SRR 2 E(H)

Observe that (2. 7.2) (above) is commutative. This is obvious except

(possibly) for the face

uO
G — H
o o

E(uo)
E(C—o) — E( Ho)

But by a trivial diagram chase both wayjs of going around the diagram
when composed with GO(N) —_— Go give the same morphism, GO(N) —_—
E(HO). Of course, the analogous statement is true with GO(N) replaced
by Go(n), n > N. Since Go = lim Go(n , the desired commutativity
follows.

To prolong E(uo) at all is equivalent to finding:

(2.7.3) v':G—> E(H), v": V(G) —> E(H) satisfying
1) v lifts v, v” lifts v”

o o
2) v'o |,G=V"o o .
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Lemma (2.7.4) Suppose there is a unique way to prolong v‘; to

v': G —> E{H). Then the problem of the theorem can be solved uniquely.

Proof: By the statement of the problem it is clear that the set of solutions

is in one to one correspondence with the set of v”: V(G) —* E(H) such

that:
1) V" lifts v”
o
2 “" ° . V’ °
) vioq ta
3) d=iow-v’ isan exponential.

Consider the diagram:

G(N)

vie) —¥ ., B

Since v’ lifts v; and w lifts l/(uo), the pullback of this diagram
to So is commutative. Thus by (2. 6. 3) there is a unique v’ having the
same restriction to So as iow (namely ioo \_/'(uo)), making the diagram
commute (v'oa=v'o LG), and differing from iow by an exponential.

This completes the proof of the lemma.

Let j: So S—> S be the inclusion and let M =Ker|[E(H) —->j*(E(H0))].
By (1.1 8) E(H) is formally smooth and this implies that E(H) —>
j*(E(HO)) is an epimorphism. (Infact if T is an affine scheme over S,
the map T(T, E(H)) —— TI(T, j* (E(Ho))) = I"(To, E(H)) is surjective.)

Consider the exact sequence
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0—> M —> E(H) —> j,(E(H ) —> 0. v'OIGO—(N) to G(N) is zero.
o
1 By its definition v’ is the composite of G —> E(G ) with E(u ).
The obstruction to lifting v;: G0 —_— E(Ho) is an element of Ext (G, M). ) o [} )
By looking at (2.7.2) it is obvious that if w is a lifting of y(uo), then

Let us assume for the moment that this obstruction can be calculated ,
iowo @ is a lifting of vy ‘I‘GO(N). But as has been noted several times

by looking at the restrictions of G and M to the full sub-category con-
V(G) is a projective module and hence such a lifting w certainly exists.

sisting of schemes T over S which are flat. ,
This gives us the existence of v'.

Since M is clearly equal to the kernel of E(H) —> j* (E(H)o) ,
The set of all such v’ is principal homogeneous under the group

and since E(H) is a formal Lie group, [III (2.2.5),(2.2.6)] can be applied
Hom (G, M). But this group is zero because it can be written as

to tell us that TS, M) —> Homy, (3_ , 1).
' S E(H) 1i Hom {G(n), M). 1If (<pn) were an element of this inverse limit, then:
More generally if T is flat over | S, then since N

G(n+N)'—p—-—» G(n) C—— G(n+N)

T(T, M) = T(T, M) = Kernel of r(T E(HT)>—> r('r, jT*(E(HT)0)> S .

\L Pn4N
we see (T, M) — Hom w , I OT> since the divided powers M‘<
T E(HT)

N _ . . . v
(’on+N o p ldG(n+N) =0 since G(n+N) is flat and wn+NE M(G(n+N))

.
on 1 extend. pl\ kills S, and hence pN kills the restriction of M to N N N
which is killed by p" . Thus ®oP = 0 which implies ®.= 0, since p

flat arguments.
is an epimorphism.

Consider the exact sequence ,
This tells us v’ is unique and hence completes the proof of the

N
0 —> G(N)—™> G _p__> G —>0. theorem.

* . i In the course of the proof the following lemma has been used.
Applying Ext (-, M) to it there is an exact sequence

N
Ext' (G, M) 2— Exti(G, M) — Ext}(G(N), M). - Lemma (2.7.6): let S, . denote the ordinary f.p.p.f. site of S and

let sflat denote the site which is the full sub-categery of Sch/S <consisting

1 1
Thus there is an injection Ext (G, M) “—> Ext (G(N), M).
of those T over S which are flat (provided with the induced topology).

Hence we are reduced to showing that the obstruction to lifting For a sheaf F om S demote by F' its restriction to S ™
. Then,

Flat flat
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|
the map G —> i, E(Ho) can be lifted to a map G —> E(H) if (and only

if) the map G' —> (i*E(Ho))' can be lifted to a map G' —> (E(H))'

Proof: Let w : G' —> (E(H))' be a lifting. Because G(n) is flat, w

is an element in lim I(G(n), (E(W))') = 1im T(G(n), E(H)) = Hom_, (G, E(H)) .
P AN

< S
Flat

Because the G@™) are affine and E(H) |is a filtering direct limit of
sub-group schemes, w , when viewed as a morphism G —> E(H) , is a
homomorphism of groups. Since the mapping E(H) —> i*(E(HO)) induces the

same mapping on G(n)-valued points as the mapping (E(H))' ——> <i-n£(H0))'

w when viewed as a homomorphism G ——> E(H) is a lifting of ¢ —> i*E(Ho)

(2.8) Let us examine how the preceding results are to be modified so

as to apply to abelian schemes. The only difference is that no restriction
on the abelian scheme need be made. This follows from the following

lemma.

Lemma (2.8.1) Let A bea ring, I an ideal of square zero in A and
) AO = A/I. Let Xo be an abelian scheme on Ao. Then there is an

abelian scheme X on A lifting Xo.

Proof: Let us write A = l_lg A}\ where Al is a Noetherian subring of

By [E.G.A. IV 8.8.3, 8.10.5 (xii),

A. Then Ao = lim A)\/I ﬂA‘\.
9.7.7, 17.7.9] there is an abelian scheme X0 )y ©°n A\/I nAA (for some
sufficiently large )) which satisfies Xo, \ ®A JINA Ao = Xo' It is
A A
obvious that if we could lift X0 Y to A\, then there would be a lifting
2 7

X of Xo to A. This allows us to assume A is Noetherian and hence
Spec (A) is locally connected.
By [25, 2.2] the scheme Xo can be lifted tc 2 smooth X over A.

This scheme X is separated over A by [E.G.A. I 3.4.8, 5.3.4]. Thus
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it is proper by [E.G.A. II 5.4.6]. Now following Mumford's argument

in Geometric Invariant Theory (prop. 6.15) we construct a mag

p: X® X—> X which lifts the subtraction map p : X & X —» X .
A o "o, o [¢)

It remains only to see that p defines a group law on X. Again, following
Mumford we want to apply the rigidity lemma to see that certain identities
(i. e., associative law, ...) are satisfied.

Now we use the local connectedness of Spec (A). Namely consider
for a connected open set U C Spec (A), X!U, }.LIU, ... . Applying the
reasoning of [21, pg. 126], we see X|U is an abelian scheme over U.

Cbviously this implies X is an abelian scheme.

(2.8.2) Thus as was mentioned above the arguments of §2 apply to
abelian schemes exactly as they are stated. Hence we conclude that if P
is locally-nilpotent on So and A is an abelian scheme on SO, then
crystals

IE(A), IE (A), D(A) are defined.



