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Experiments with the flour beetle Tribolium have revealed that animal numbers
were larger in cultures grown in a periodically fluctuating volume of medium than
in cultures grown in a constant volume of the same average size. In this paper we
derive and analyze a discrete stage-structured mathematical model that explains
this phenomenon as a kind of resonance effect. Habitat volume is incorporated
into the model by the assumption that all rates of cannibalism (larvae on eggs,
adults on eggs and pupae) are inversely proportional to the volume of the cul-
ture medium. We tested this modeling assumption by conducting and statistically
analyzing laboratory experiments. For parameter estimates derived from exper-
imental data, our model indeed predicts, under certain circumstances, a larger
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(cycle-average) total population abundance when the habitat volume periodically
fluctuates than when the habitat volume is held constant at the average volume.
The model also correctly predicts certain phase relationships and transient dynam-
ics observed in data. The analyses involve a thorough integration of mathematics,
statistical methods, biological details and experimental data.

© 1998 Society for Mathematical Biology

1. INTRODUCTION

Natural populations live in changing environments; indeed, animal numbers
may be intricately linked to environmental periodicities (Morris, 1963; Welling-
ton, 1964; MacArther, 1968; Barbosa and Shultz, 1987; Tuljapurkar, 1990;
Caswell and Trevisan, 1991; McFadden, 1991). Although it is widely recog-
nized that environments are often not constant in time, the vast majority of
mathematical models in population dynamics and ecology are autonomous and
assume a constant environment. One of the main reasons for this is mathematical
tractability. There is, however, a (relatively small) body of literature dealing with
nonautonomous population models and, in particular, with models that assume
periodic environmental fluctuations (e.g. see Fretwell, 1973; May, 1973; Koch,
1974; May, 1976; Cushing, 1977; Smith, 1981; Cushing, 1982; deMottoni and
Schiaffino, 1982; Nisbet and Gurney, 1982; Bardi, 1983; Cushing, 1984; Namba,
1984; Cushing, 1986; Cushing, 1987; Smith and Waltmand, 1995). One theoreti-
cal tenet that resulted from early investigations of periodically forced models was
that a periodically fluctuating environment has a deleterious effect on the pop-
ulation (in the sense that average population numbers are less than they would
be in a constant environment held at the averaged environment level). It was
shown, on the other hand, that this tenet is model dependent and depends on the
nature of nonlinearities as well as the nature of the periodic flucuations (Rosen-
blat, 1980; Cushing, 1987). This literature is, however, virtually all theoretical;
little attempt is made to connect theory with data. Indeed there is little population
data, either field or laboratory, that addresses the effect of periodically fluctuating
environments on population density.

One notable exception comes from the controlled, replicated laboratory exper-
iments utilizing flour beetles (Tribolium) reported by Jillson (1980) in which the
habitat size (i.e. flour volume) was periodically altered and the resulting life cycle
stages of the beetle were counted. The most striking result of Jillson’s experi-
ment was that the beetle populations can have significantly larger total numbers
in a periodically fluctuating habitat than in a constant habitat of the same average
size. Specifically, this was the case when the flour volume was fluctuated with a
period of four weeks. (Jillson also carried out experiments with longer periods
in which increased numbers were not observed.)

Our aim in this paper is to show that an existing model for flour beetle popula-
tion dynamics that has been thoroughly parameterized and validated (Costantino
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et al., 1995; Costantino et al., 1997; Dennis et al., 1995) predicts, when appro-
priately modified to account for a periodically fluctuating volume of flour, the
increased population numbers observed by Jillson in a periodic environment. We
will also show that the model accurately describes a number of other dynamical
features of Jillson’s experimental data.

There have been two other modeling exercises that relate to the Jillson experi-
ment, neither of which addresses the increased population numbers that was the
main point of Jillson (1980). Nisbet and Gurney (1982) and Renshaw (1989)
treated the Jillson experimental set-up as a square-wave variation in carrying ca-
pacity and argued that this results in population fluctuations. They only treated
longer periods in Jillson’s experiments (eight weeks and 12 weeks respectively)
in which the increased population numbers are not observed. They do not con-
struct detailed models nor do they fit the data in any statistical way, but simply
observe that the experimental mean population data was seen to be similar to
the predictions of their periodically forced models. By contrast, we will consider
here the Jillson experiment in which the flour volume was fluctuated with a pe-
riod of four weeks and address the unusual result that population numbers were
greatly enhanced. Furthermore, our model assumes a fundamentally different
nonlinear mechanism that is responsible for the dynamics of flour beetles. Con-
trary to the assumption in Nisbet and Gurney (1982) and Renshaw (1989) that
the beetle dynamics are driven by resource-limited density dependence, we as-
sume that the driving nonlinear mechanism is interstage cannibalism (Costantino
et al., 1995; Dennis et al., 1995; Costantino et al., 1997) and that this interaction
is inversely related to flour volume. We have conducted laboratory experiments
to validate this latter assumption (see section 3.3).

In section 2 we review the experimental protocol and the results of the em-
pirical study using laboratory cultures of flour beetles (Tribolium) conducted by
Jillson (1980). In section 3 we describe a discrete, nonlinear stage-structured
model for flour beetle cultures in a constant habitat that has been extensively pa-
rameterized and validated by means of both existent historical data and our own
laboratory experiments (Costantino ef al., 1995; Dennis et al., 1995; Costantino
et al., 1997). This ‘LPA’ model (see (3.2) below) is then modified to account
for periodic fluctuations of flour volume. Laboratory experiments that support
the modeling assumption underlying this modification are described. Some of
the mathematical properties of the resulting nonautonomous, periodically forced
LPA model (see (3.3) below) are discussed in section 4, in particular with respect
to its relationship to the constant habitat LPA model and the possible increase
or decrease in population numbers. The ability of the periodically forced LPA
model to describe and explain the empirical observations of Jillson are discussed
in section 5. Finally, in section 6 some unusual predictions of the periodically
forced model are pointed out that suggest new laboratory experiments (which are
currently in progress).
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2. THE JILLSON EXPERIMENT

In the experiment conducted by Jillson (1980), cultures of the flour beetle
Tribolium castaneum (Herbst) were initiated with 30 adults and 75 small larvae.
All cultures were grown on 20 g of standard medium (95% flour, 5% dried
brewer’s yeast) for the first 18 weeks of the study. Following the census at week
18, six populations were assigned to the constant 20 g habitat and six were placed
in a habitat that alternated between 32 g and 8 g every two weeks. Note that
the average flour volume’ in the alternating 32-8 g habitat is the volume of the
constant habitat cultures. All cultures were censused (larvae, pupae, adults) at two
week intervals. Four of the constant habitat cultures and four of the alternating
habitat cultures were maintained and censused in this way for 70 weeks, and it
is on these eight remarkably long time series that we focus our analysis.

The total number of animals for individual beetle cultures grown in the four
constant 20 g habitats and in the four alternating 32-8 g habitats are listed in
Tables 1 and 2 respectively. In the 32-8 g cultures the data reveal a marked
increase in insect numbers beginning at week 28, an increase which is sustained
throughout the remaining weeks of the study. At some time in each of the
cultures grown in the oscillating volumes of flour, there were more than 1000
individuals. In only one replicate of the constant habitat cultures (#20) did total
animal numbers ever exceed 600, and in that replicate this occurs at only two
census times. The data clearly support Jillson’s conclusion that there was an
increase in beetle numbers in the alternating 32-8 g habitat as compared with the
constant 20 g habitat.

3. THE MODEL

3.1. The LPA model. To begin our analysis of the Jillson data (Jillson, 1980),
we focus on the numbers of larvae, pupae, and adults (rather than the total
number of individuals) and introduce a recently developed demographic model
based on the biology of the flour beetle (Costantino er al., 1995; Cushing et
al., 1996; Dennis et al., 1995). This stochastic model assumes a constant habitat
size. Three difference equations describe the dynamics of larvae, pupae and
adults in Tribolium cultures:

(@) Lipi =bA,exp(—couA; — cal, + Eyy)
(B) Pry1=(1 — )L, exp(Ex) 3.1)

() A =1[Prexp(—cpads) + (1 — o)Al exp(Ez).

“We take the unit of volume to be the volume occupied by 1 g of flour.
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Table 1. Total animal numbers for cultures grown in a constant habitat. Replicate culture
numbers correspond to the numbers used in the original Jillson data set.

Week  Flour Total Numbers
(grams) Replicate Cultures

#13  #18 #20 #23
0 20 105 105 105 105
2 20 109 117 103 92
4 20 93 88 87 80
6 20 256 243 233 243
8 20 207 185 194 211
10 20 334 224 361 286
12 20 330 233 266 232
14 20 347 234 184 229
16 20 221 156 140 167
18 20 240 228 129 265
20 20 203 173 133 198
22 20 365 398 132 353
24 20 263 265 98 248
26 20 281 330 129 315
28 20 215 235 133 274
30 20 262 316 124 315
32 20 207 215 153 286
34 20 263 354 120 365
36 20 209 366 136 282
38 20 302 345 187 321
40 20 281 362 121 279
42 20 247 294 191 298
44 20 237 230 154 275
46 20 293 257 411 406
48 20 259 231 344 280
50 20 440 225 573 538
52 20 233 201 288 288
54 20 470 313 552 498
56 20 383 266 380 337
58 20 387 318 535 407
60 20 284 208 272 258
62 20 486 472 640 428
64 20 281 277 352 296
66 20 449 447 604 524
68 20 218 214 312 324
70 20 466 417 515 390

251
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Table 2. Total animal numbers for cultures grown in a periodic habitat. Replicate culture
numbers correspond to the numbers used in the original Jillson data set. The grams of
flour represent the habitat volume into which the animals were returned after the census.

Week  Flour Total Numbers
(grams) Replicate Cultures
#5 #11  #24  #25

0 20 105 105 105 105
2 20 124 134 146 105
4 20 95 101 103 103
6 20 94 334 283 150
8 20 72247 211 104
10 20 209 425 293 212
12 20 185 256 199 170
14 20 175 228 179 223
16 20 176 195 155 185
18 32 170 237 207 293
20 8 266 212 247 278
22 32 189 94 111 137
24 8 191 211 381 178
26 32 148 160 230 148
28 8 588 225 449 467
30 32 425 158 375 369
32 8 748 637 399 710
34 32 569 610 306 635
36 8 423 544 443 648
38 32 342 567 396 609
40 8 470 449 797 560
42 32 483 384 872 668
44 8 565 823 947 1045
46 32 598 778 928 987
48 8 929 889 645 846
50 32 870 815 580 846
52 8 1046 994 897 1001
54 32 796 977 756 781
56 8 480 470 521 423
58 32 382 407 435 302
60 8 736 572 587 802
62 32 716 460 498 704
64 8 568 696 1041 742
66 32 474 578 834 695
68 8 508 1040 807 725
70 32 415 973 622 592

L, is the number of small feeding larvae (called the L-stage), P, is the number
large larvae, nonfeeding larvae, pupae and callow adults (called the P-stage), and
A, denotes the number of reproductive adults (referred to as the A-stage). The unit
of time (two weeks) is taken to be the feeding larval maturation interval so that
after one unit of time a larvae either dies or survives and pupates. This unit of time
is also the cumulative time spent in the P-stage. The quantity » > 0 is the number



Resonant Population Cycles in Temporally Fluctuating Habitats 253

of larval recruits produced per adult per time unit in the absence of cannibalism.
The fractions u; and p, are the L-stage and A-stage probabilities, respectively, of
dying from causes other than cannibalism. The exponential nonlinearities account
for the cannibalism of eggs by both adults, exp(—c.,A,), and larvae, exp(—cyL,),
and the cannibalism of pupae by adults, exp(—c,,A,). It is assumed that the only
significant source of pupal mortality is cannibalism by adults. In equations (3.1),
E, =[E\;, E», E5]is arandom vector that is assumed to have a trivariate normal
distribution with a mean vector of [0, 0, 0] and a variance—covariance matrix of
> . Covariances among E);, Ey, and E3 at any given time ¢ are assumed
(and represented by off-diagonal elements of > ), but we expect the covariances
between times to be small in comparison. Thus, Ey, E;, E,, ... are assumed
uncorrelated. Models with noise additive on a logarithmic scale correspond to
environmental-type fluctuations (Dennis et al., 1991). At the large population
numbers typical of Tribolium cultures, we expect the variability component due
to environmental fluctuations to outweigh the component due to demographic
fluctuations (Dennis and Costantino, 1988).

The ‘deterministic skeleton’ of the stochastic model (3.1) given by the system
of difference equations

((l) Lf+l = bAr exp(_ceaAr - C(,]L,)
by P=0—p)L, (3.2)

(©) A= Prexp(—cpaAp) + (1 — ) A,

will be referred to in this paper as the ‘LPA’ model. This system has been used
to design and predict the asymptotic outcome of several long-term laboratory
experiments (Costantino ef al., 1995; Costantino et al., 1997; Dennis et al., 1997).
We will use a periodically forced version of this system to address Jillson’s
experimental results.

3.2. Theperiodic LPA model. How is the alternating size of the habitat from 32
to 8 g to be accommodated in the LPA model (3.2)? Very early in the long history
of modeling the dynamics of flour beetle populations, cannibalism is described
as a random collision between the mobile (adults and larvae) and immobile (eggs
and pupae) life stages (Stanley, 1932). The random encounter interpretation of
cannibalism appears throughout the Tribolium literature (Crombie, 1943; Landahl,
1955; Lloyd, 1968; Mertz and Davies, 1968; Neyman et al., 1956; Park et al.,
1974).

We assume that each cannibalism coefficient in the deterministic model (3.2)
is inversely proportional to flour volume V:
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This parameterization arises from the following random encounter mechanism.
Suppose the average effective volume of flour searched per adult for, say, pupae,
is kp, in a unit of time. Then the probability that a pupa is not included in the
search volumes of A, adults is

with limiting approximation

A
exp —kpav .

We next consider the case when the flour volume oscillates with period of 2
around an average V,,. with a relative amplitude of «. Thus we write

V= Vave (1 +a(_])l)

and the cannibalism coefficients in the LPA model become, respectively,

kel kea kpa
Vave(1 +a(_1)t)’ Vave (1 +a<_1)t)’ Vave (1 +Ol(—1)t)'

Letting ¢, Ceq, and cp, now denote the cannibalism coefficients in the average
volume of flour, i.e.

_ kel kel k[’a

Coq = Cpy, =
’ ea ’ pa
Vave Vave

we obtain the ‘periodic LPA’ model given by the equations

_'eaA - eL
(@ Ly =bA, exp (#)

1+ a(=1)
by Pi=0-wL, (3.3)
(¢) A =P L“A’ | A
) A =Peexp| 70 + (1 = pa) A

for relative amplitude 0 < o < 1. Note that the autonomous LPA model (3.2)
is obtained by setting « = 0 in this periodic LPA model and interpreting the
cannibalism coefficients as those associated with a constant habitat with the flour
volume fixed at the average amount V..
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3.3. Test of the cannibalism survival model. An experiment was carried out
to test the assumed relationship between flour volume and cannibalism survival
rate for pupae. In the experiment, 50 pupae were placed in each of 30 glass
vials. Each vial was assigned a different treatment combination of the amount of
flour and the number of adults in a factorial design. The treatments for various
amounts of flour were: 8 g, 16 g, 20 g, 24 g, 28 g, and 32 g. The numbers of
adults were: 0, 50, 100, 150, and 200. There was one vial for each treatment
combination. The vials were placed in a dark incubator at 34 °C for 48 h, and
the numbers of surviving pupae in the vials were counted. The results appear in
Table 3.

Table 3. Observed number of survivors out of 50 initial pupae placed in vials with
different numbers of adults and different amounts of flour.

Flour Number of adults
Amt(g) | 0 50 100 150 200
8 50 43 39 42 31
16 50 44 44 43 33
20 49 44 45 45 42
24 49 45 45 46 40
28 49 47 46 46 45
32 50 47 48 47 46

According to the model, the dependence of pupal survival probability on adult
numbers and flour amount should be of the form

c
s =exp <——a>
v

where a is the number of adults, v is the weight of flour (in grams corresponding
to V units of volume), and s is the 48 h survival probability. In this experiment, a
small amount of noncannibalistic mortality was observed in the a = 0 treatments,
and consequently an extra parameter was included in the data analysis to represent
the background survival rate. Thus, the survival probability s;; for a pupa in the
presence of ¢; adults and in v; grams of flour was taken to be

c
Sij = cXp <—C0 — v—a,)
J

where ¢q and ¢ are unknown parameters.

If survival of each pupa is an independent event with probability given by s;;,
then the number of survivors y;; observed out of 50 pupae at adult treatment g;
and flour treatment v; is the outcome of a binomial random variable:

50\ N
P(Y; =yy) = (y”>siyj’(1 —sij)SO Yij |
ij
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The likelihood function L(cg, ¢) for the unknown parameters ¢, and c is the joint
probability of the independent binomial outcomes of the 30 treatment combina-

tions:
5.6 /50
L. =[]]] ( s ) 5 (L= 5™,
ij

i=1 j=1

Maximum likelihood (ML) estimates ¢, and ¢ were calculated by numerically
maximizing log L(co, ¢). The results were ¢y = 0.01577 and ¢ = 0.0008784.

Two hypotheses were tested statistically against the proposed survival model.
The first is that a simpler model is adequate to describe the data. The simpler
hypothesis is of the form

H()ZCZO.

That is to say, the null hypothesis is that survival is constant and does not depend
on adult treatment or flour treatment. The hypothesis Hy was tested against the
alternative hypothesis

H]IC;&O

(i.e. the survival model) using the likelihood ratio statistic

L
G* = —2log =0y,
L,

Here I:() is the likelihood function L{(cg, ¢} maximized under the null hypothesis
constraint ¢ = 0 and L, is the unconstrained maximum. The sampling distribution
of G? under the null hypothesis is well approximated by a chi-square distribution
with degrees of freedom (DOF) equal to the number of free parameters estimated
in H; minus the number of free parameters estimated in Hy (Serfling, 1980). The
test rejects the simpler model in favor of the proposed survival model (G*> =
90.6, DOF =1, P < 0.0001).

The second hypothesis is that a more complex model is necessary to describe
the data. The hypothesis, denoted H», is that every treatment combination has a
separate survival probability. The hypothesis can be parameterized as

Hy: sy =exp(—co—cij), Y cij=0,
i,
i=12,..5 j=12...6.

This model has 30 free parameters. The likelihood ratio statistic

L
G* =log il
L,
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for testing the null hypothesis H; (the proposed survival model) against the
complex alternative H, is a standard goodness-of-fit statistic (Read and Cressie,
1988). As the simpler model, the proposed survival model H; plays the role of
the null hypothesis. The test fails to reject the null hypothesis, indicating that
the proposed survival model fits acceptably well (G? =27.3, DOF =30—-2 =
28, P = 0.50).

In the dynamical LPA model (3.2) we dispense with the term for noncannibal-
istic mortality of pupae. Parameter estimates of P-stage mortality obtained from
time series data are negligibly small. Thus, the functional form used for A-stage
recruitment (3.2c) has P, as the potential recruits (in the absence of cannibalism)
and not (1 — pp) P;.

3.4. Parameter estimation. We used the four constant habitat cultures to esti-
mate model parameters (see Table 1). The model was fitted to combined data
from all four cultures, resulting in a single set of parameter estimates. The four
alternating habitat cultures (Table 2) were withheld from the estimation process
and used to evaluate the model’s alternating habitat predictions. In this way, the
model can be ‘validated’ in the sense that its ability to predict can be analyzed
by means of data that were not used in the parameter estimation procedure (as
opposed to its ability to describe data to which it has been ‘fit’). See Dennis
et al. (1995) for details of the statistical methodology. The predictive capability
of the LPA model is unusually accurate relative to other models in population
dynamics; for more applications of the LPA model see Costantino ef al. (1995);
Costantino ef al. (1997); Dennis et al. (1995); Dennis er al. (1997); Cushing ef
al. (1998).

The parameter u, was estimated directly from counts of live adults at time ¢
and dead adults at time 7 + 1 (binomial distribution) in the four constant habitat
cultures. This estimate is u, = 0.1542. The remaining parameters were esti-
mated from the time series observations of the three state variables. Namely, the
parameters b, ¢/, Ceq, Cpa, and p; were estimated by means of conditional least
squares (CLS) estimation (Klimko and Nelson, 1978). This amounts to minimiz-
ing the sum of squared one-time-step prediction errors for each state variable.
CLS estimates are known to have desirable statistical properties and be robust to
many types of probability structures for describing the residual errors.

Suppose I;;, pi;, and a;, represent the observed values of the state variables in
the ith culture at time t(i = 1,2,3,4;¢t =0, 1, ..., q). The conditional sums of
squares for the state variables are as follows

E~]

2
51(b, Cet, Cea) = [li+1) — bai exp(—calis — ceattis) ]

1

Mg
i

i

<

2
s2(pr) = [Pic+1y — (1 — w)li]

-

I
~
Il
=)

1
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4 g-1
53(Cpa) = Z Z [ai(t+l) — (pis exp(_cpaait) + (1 - Ma)ait)]

i=1 t=0

2

In these equations, p, = 0.1524 is the estimate of the adult death rate obtained
directly from the mortality counts. The functions s, s», and s;3 were minimized
for the remaining parameter estimates using the Nelder—-Mead simplex algorithm
(Press et al., 1992). The parameter estimates

Coa = 5.785 %1073, co = 5.841 x 1072, Cpa = 1.053 x 102
b = 4.445, W =4.794 x 107", gy = 1.524 x 107!
(3.4)
were obtained.

3.5. One-step forecasts. The observed time series for one of the constant habitat
populations (rep #23 in Table 1) together with the one-step predictions of the
LPA model with the parameter estimates obtained above are plotted in Fig. 1.
In these graphs solid circles represent census data. Open circles represent the
numbers predicted by the LPA model equations (3.2) from the census data at
the previous time (i.e. the one-step forecast), using the CLS parameter estimates
above. The accuracy of a prediction at a particular time ¢ can be judged by
noting the differences between the solid and open circles at that time (i.e. the
‘residual’). Overall, from Fig. 1 one sees that there is a close association between
the one-step forecasts and the census data.

The observed time series for one of the periodic habitat cultures (rep #25 in
Table 2) together with the one-step predictions of the periodic LPA model are
presented in Fig. 2. Keep in mind the fact that the one-step forecasts are based
on a single set of CLS estimates obtained from the constant habitat cultures so
this comparison can be viewed as a model ‘validation’. As can be seen in Fig. 2
the one-step forecasts are, overall, reasonably accurate.

The one-step forecasts as plotted in Figs. 1 and 2 give a visual impression
of how successful the LPA and the periodic LPA models are at describing the
census data and the dynamics of the beetle populations. Sophisticated statistical
analyses have also been performed on the residuals for several other data sets
and show the accuracy of the LPA model (Dennis ef al., 1995).

4. SOME MATHEMATICAL PROPERTIES OF THE PERIODIC LPA MODEL

For a specified triple of nonnegative initial conditions Ly > 0, Py > 0 and
Ay > 0 the recursive equations (3.3) define a unique sequence of nonnegative
triples L, > 0, P, > 0and A, > O for all t = 1,2,3,.... That is to say, the
positive octant is forward invariant for the (semi) dynamical system defined by
(3.3). We are interested in the asymptotic behavior of this sequence as t — +o0.
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Figure 1. Time series data (solid circles) and the one-step forecasts (open circles) of the
LPA model (3.2) with parameter estimates (3.4) for a culture of beetles (replicate #23,
Table 1) grown in the constant 20 g habitat.
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Figure 2. Time series data (solid circles) and one-step forecasts (open circles) for a
culture of beetles (replicate #25, Table 2) grown in an alternating, 2-periodic habitat
sequence of 32-8 g of flour starting at ¢+ = 0 (week 18). The one-step forecasts are
made by the LPA model (3.2) with parameter estimates (3.4) for r = —8 to = 0 and by
the periodic LPA model (3.3) with the same parameter estimates and relative amplitude
a=06forr=1tor=26 Atr =0 (week 18), the culture with population numbers
L =178, P =1, and A = 114 was placed in the 32 g habitat. One unit of time equals
two weeks.
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Clearly Lo = Py = Ap =0 implies L, = P, = A, =0forallt =1,2,3,..;
i.e. the origin is a ‘trivial” equilibrium point of (3.3) for any fixed amplitude
O<ua <.

For @ = 0 the system (3.3) is autonomous (i.e. not periodically forced) and
there can exist other ‘nontrivial’ equilibrium points. Specifically, if

Ia
1 —

b>b,=

there exists a unique positive equilibrium L, =L, >0, P, =P, >0, A, = A, >
0. These positive equilibria bifurcate from the origin as b is increased through
the critical value b, (that is to say, as a function of the parameter b, the positive
equilibria form a continuous branch that coalesces with the trivial equilibrium at
b = b.). These positive equilibria may or may not be stable, however. They
are known to be (locally asymptotically) stable for b sufficiently close to b,.,, but
stability is in general lost for larger . Nonetheless, it is true for b > b,, that
all solutions are bounded for ¢ > ( and that the system is uniformly persistent
(with respect to the trivial equilibrium, i.e. with respect to the extinction state).
On the other hand, for b < b, there is no nontrivial, nonnegative equilibrium
and it can be shown that all solutions of (3.3) starting with nonnegative initial
conditions, tend to the origins as t — +o00. Thus, under these circumstances the
model predicts extinction. All of these facts about the autonomous LPA model
(3.2) can be found in Cushing (1995); Henson and Cushing (1997).

For ¢ > 0 the periodic LPA model (3.3) is periodically forced and hence
nonautonomous. It does not possess any equilibrium points other than the trivial
equilibrium. However, as in the autonomous case « = 0, it has been shown that
all solutions tend to the origin if b < b.,, and that for b > b,,, all solutions are
bounded and the system is uniformly persistent with respect to the origin, i.e. with
respect to the extinction state (Henson and Cushing, 1997). Furthermore, when
a > 0, 2-cycle solutions play the role analogous to equilibria in the ¢ = 0 case.
Specifically, for any fixed @, 0 < o < 1, there exists a branch of positive 2-cycle
solutions that bifurcates from the origin as b is increased through b., (Henson and
Cushing, 1997) and this branch exists for all & > b, (Cushing, 1998). It is not
known, however, whether there exists a unique positive 2-cycle for each b > b,,.
For small larval recruitment rates b > b, the bifurcating 2-cycle solutions can
be approximated by Liapunov—Schmidt expansion methods (Henson, 1996). This
procedure not only establishes the stability of these 2-cycles for small b > b,,,
but also allows a study of their oscillatory properties (mean, amplitude, etc) as
they depend on the environmental amplitude ¢ > 0 (Henson and Cushing, 1997).

For a fixed larval rate b > b,, the properties of the 2-cycle can also be studied
by regular perturbation techniques using « as a small parameter. Thus, if the
equilibrium when o = 0 is hyperbolic (the linearization at the equilibrium has
no eigenvalues of magnitude equal to 1), the 2-cycles for small & > 0 have the
same stability properties as the equilibrium and their oscillatory properties can
be approximated to lowest order in o (Henson and Cushing, 1997).
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Using the techniques described above, the effect of introducing environmental
periodicity can, in principle, be analytically studied by means of the periodic
LPA model (3.3). The details are not necessarily tractable, however. In Henson
and Cushing (1997) it was shown, by using Liapunov—Schmidt methods, that the
periodic LPA model predicts a ‘negative effect’ of periodicity for small larval
recruitment rates b > b.,. In fact, for small b > b, and arbitrary environmental
amplitude o, 0 < o < 1, the cycle averages of each of the components of the
2-cycle solution of the periodic LPA model (3.3)

(L;) = 3(Lo+ Ly)
(P)=1(Py+ P)
(A;) = %(Ao + Ay)

are less than the values of the corresponding components of the equilibrium of
the autonomous LPA model (3.2), i.e.

<LZ> <Le
(Pl> < Pe

(As) < A,.

That is, the average number of animals in each life stage is decreased by the
advent of environmental forcing. This, of course, implies that the cycle-average
of the total population size in the periodic habitat is less than the total population
at equilibrium

(L,+ P +A)<L,+ P, + A, 4.1)

This is the opposite effect of that observed in Jillson’s experiment.

On the other hand, for large larval recruitment rates b > b, it is known
(Henson and Cushing, 1997) that the periodic LPA model can predict a ‘posi-
tive effect’ of periodicity, at least for small environmental amplitudes o > 0.
Depending on the values of model parameters, either a positive effect

(Li+ P +A)>L,+P.+ A, 4.2)

or a negative effect (4.1) is predicted by the periodic LPA model. This assertion
is proved in Henson and Cushing (1997) by regular perturbation methods and is
valid for those nontrivial 2-cycles that are ‘near’ the equilibrium associated with
the constant environment o = 0. These 2-cycles are small amplitude oscillations
that mathematically approach the nontrivial equilibrium as « decreases to 0 in
the limit. The results for small amplitude 2-cycles hold regardless of the stability
properties of the nontrivial equilibrium, which can be stable or unstable. If the
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equilibrium is unstable (which is generally true if b is sufficiently large) then these
mathematical results concerning the cycle averages of the resulting unstable 2-
cycle are probably of limited interest. However, numerical simulations, using the
model parameter estimates (3.4) obtained from Jillson’s data, demonstrate that
positive effects do indeed occur for small « near stable equilibria (i.e. for values
of the larval recruitment rate b > b, that are not so large that the equilibrium
of the constant environment is destabilized) (Henson and Cushing, 1997) (see
Fig. 3).

The mathematical results described above prove that the periodic LPA model
(3.3) is theoretically able to predict an increase in average total population size
due to environmental periodicities, at least for certain parameter values. These
analytical results do not, however, apply directly to Jillson’s experiment for two
reasons. First, at the estimated value of the larval recruitment rate b = 4.4450
for Jillson’s data the nontrivial equilibrium of the LPA model (3.2) is unstable
(see Fig. 3). The model attractor for the LPA model (3.2) in this case is, in fact,
a stable 2-cycle. Second, the relative amplitude o = 0.6 in Jillson’s experiment
is not ‘small’.

The predictions of the periodic LPA model (3.3) with the parameter estimates
(3.4) can, however, be investigated numerically and compared with Jillson’s
experimental results. This is done in the next section.

5. THE PERIODIC LPA MODEL AND JILLSON’S EXPERIMENT

For the parameter estimates (3.4) it can be shown mathematically, by standard
regular perturbation arguments, that for small relative amplitudes o > O there
exist two stable nontrivial 2-cycles solutions of (3.3) near the stable, constant
environment (@ = 0) 2-cycle. This is because a 2-cycle in the autonomous LPA
model (3.2) is really ‘two’ 2-cycles; a 2-cycle and its shift by one time step.
These 2-cycles can be viewed as two different cycles from each of which a 2-
cycle arises when periodicity is added. Unlike in the autonomous case, however,
the two perturbed 2-cycles of the periodically forced system (3.3) are not time
shifts of each other and represent two different cycles. By continuity (of the
eigenvalues of the linearization as functions of «) both 2-cycles are stable.

Numerical simulations show, for small @ > 0 that one of the two stable 2-
cycles exhibits a negative effect due to periodic forcing (in the sense that the
cycle average is decreased) and that the other exhibits a positive effect (in the
sense that the cycle average is increased) (see Fig. 4). These facts have not been
proved rigorously. As « is increased, the former 2-cycle abruptly disappears
as a critical value «., of the amplitude « is surpassed. This disappearance is
apparently due to a saddle-node bifurcation as the stable 2-cycle coalesces with
the unstable 2-cycle that bifurcates from the unstable equilibrium of the ¢ = 0
autonomous model. On the other hand, the 2-cycle exhibiting a positive effect
persists for all amplitudes 0 < « < 1.
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Figure 3. Orbit diagrams for (a) larval, (b) adult, (c) total numbers, and (d) cycle-
average total numbers for the constant habitat (¢ = 0) LPA model (solid lines) and the
periodically forced (¢ = 0.6) LPA model (broken lines) using the parameter estimates
(3.4) obtained from the Jillson data. The asymptotic states (shown in numbers of animals)
are shown plotted against the larval recruitment rate . The arrows locate the estimated
value of b = 4.4450 where Jillson’s experiment took place. At this value of b both the
constant habitat and the periodically forced LPA model predict a 2-cycle attractor, with
the average total population number being smaller in the constant habitat than in the
periodic habitat.
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from the periodically forced LPA model (3.3) is plotted against the relative amplitude o
of the flour volume oscillation. Solid lines indicate the ‘resonant’ 2-cycle that has higher
numbers than those in the constant habitat. Broken lines reveal another lower cycle that
has fewer animals than the constant habitat.
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The critical value of the relative amplitude, for the parameter values (3.4),
is approximately «., = 0.45 (see Fig. 4). In Jillson’s experiment the relative
amplitude o = 0.6 exceeds this critical value. Consequently, the periodic LPA
model (3.3) predicts an increased cycle average for total population numbers,
exactly as Jillson observed in Jillson (1980).

More specifically, the attractor of the periodic LPA model (3.3) is a 2-cycle
that oscillates between the life cycle stage distributions given by (rounded to the
nearest whole integer)

0
221 in 32 g of flour
L 189
P )= (5.1)
A 424
0 in 8 g of flour.
224
The resulting total population number T = L + P 4+ A oscillates between
410 in 32 g of flour
r= {647 in 8 g of flour (5-2)

with an average of T,,. = 529. This 2-cycle attractor of the periodic LPA model
(3.3) is to be contrasted with the 2-cycle attractor the LPA model (3.2) (using
again the parameter estimates (3.4)). The 2-cycle attractor of (3.2) oscillates
between the distributions

L 0 265
Pl=1]138 and 0 (5.3)
A 118 140

and the resulting 2-cycle oscillation of total population number alternates between
T =256 and 405 (5.4)

with an average total population size of T,,. = 331. Thus, there is nearly a
60% model predicted increase in the average total population numbers in the
periodic environment, above that in the constant environment. These numbers
are quantitatively commensurate with the Jillson data in Tables 1 and 2, although
the data often reach levels even higher than those predicted by the model.

The periodic LPA model (3.3) not only accounts for the increased population
numbers observed by Jillson in the periodic habitat, but also for other features
of the data as well. One prediction of the model is that there exists a certain
phase relationship between each life cycle stage in the 2-cycle attractor and the
oscillations of the flour volume (see (5.1)). For example, the L-stage oscillation
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between a low of 0 and a high of 424 is out-of-phase with the flour volume
oscillation from a low of 8 g to a high of 32 g (i.e. the L-stage low coincides
with the flour volume high of 32 g and the L-stage high coincides with the
flour volume low of 8 g). The A-stage is also similarly out-of-phase with the
flour volume oscillation, while the P-stage is in-phase. These relative phase
relationships predicted by the periodic LPA model are strikingly evident in the
L- and P-stage experimental data plotted in Fig. 2. (The A-stage data does not
exhibit a 2-cycle oscillation. One explanation for this is that the amplitude of the
predicted A-stage 2-cycle is relatively small, unlike those of the L- and A-stages,
and hence the A-stage 2-cycle is obscured by stochastic fluctuations in the data.)

There is a biological explanation for the observed (and model predicted) phase
relationship between the oscillations in life cycle stage numbers and flour volume.
Notice that there are no L-stage animals when the population is placed into the
32 g habitat and that their numbers swell during that interval to 424 when,
following census, they are placed into the 8 g habitat. In the 32 g habitat, larval
recruitment is enhanced by the absence of larval cannibalism on eggs and by
the reduced egg eating by adults. In the 8 g habitat, L-stage animals undergo
metamorphosis to pupae and then emerge as F adults. The latter is a series of
biological changes that can occur quite satisfactorily in 8 g of flour.

Another interesting accurate correspondence between the periodic LPA model
(3.3) and the experimental data of Jillson concerns transient phenomena. When
the volume oscillation began in the Jillson experiment (at ¢t = 0, i.e. at week 20)
the data stage distributions were not near the model predicted 2-cycle distributions
(5.1). For example, the stage structure of replicate #25 in the Jillson experiment
(Fig. 2), when the animals were initially placed into the 32 g habitat, was

L 178
Pl = 1
A 114

Clearly, this stage distribution vector does not correspond well to the model pre-
dicted distribution in 32 g given in (5.1). As a result the periodic LPA model
(3.3) predicts that transients will occur as the time series moves to the 2-cycle
attractor. The features of these predicted transients can be seen in Fig. 5. Notice
that larval and pupal numbers are initially relatively low (i.e. at t = 0 when the
onset of volume oscillations occurs) and that they show a decreasing trend be-
fore increasing to the 2-cycle attractor. Even more striking is the adult transient
behavior. Adult numbers show a monotonic decrease for six time units before
beginning an increase towards the stable 2-cycle attractor. Also during the tran-
sient phase, larval and pupal numbers exhibit a ‘stutter step’ (from ¢ = 4-5 and
t = 5-6 respectively) that brings them into the proper phase relationship that the
attractor has with the oscillating flour volume.

Although the (stochastic) data tends towards the 2-cycle attractor sooner then
the model time series predicts, all of these features of the transient dynamics of
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Figure 5. Transient behavior for (a) larval, (b) pupal and (c) adult numbers for time
series obtained from the periodic LPA model (3.3) with parameter estimates (3.4) and a
relative amplitude of « = 0.6. The initial conditions are Ly = 178, Py =1, Ag = 114,
which are the numbers in replicate #25 of Table 2.
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the periodic LPA model (3.3) described above can be seen in the experimental
data of Jillson. From the data time series plots in Fig. 2 the adult numbers are
seen to monotonically decrease from (model time) f = 0—4 before beginning a
marked increase. The ‘stutter steps’ occur in the larval and pupal data at time
t = 2-3 and ¢ = 3-4 respectively and after this phase adjustment both larvae and
pupae numbers quickly move to the 2-cycle attractor (i.e. begin large increasing
amplitude oscillations of period 2).

6. CONCLUDING REMARKS

The periodically forced LPA model (3.3) is based on the premise that all rates of
cannibalism (larvae on eggs, adults on eggs and pupae) are inversely proportional
to flour volume. In a 32 g habitat, cannibalism rates are expected to be lower
than in an 8 g habitat. Our experiments and analysis described in section 3.3
provide strong evidence of the validity of this premise. As we have seen, this
model provides an explanation for the experimentally observed increase in total
animal numbers or biomass in the periodic 32-8 g habitat as compared to the
constant 20 g habitat.

The basic features common to a resonance phenomenon are present in the
Jillson experiment. First, there is an inherent 2-cycle oscillation that occurs
in the constant habitat. Second, there is an external periodic forcing, namely
the 32-8 g oscillation of the flour volume, which is of the same period as the
inherent biological oscillation. Third, the population’s response to the periodic
habitat forcing is an increase in animal numbers or biomass. In this sense, the
population 2-cycle resonates with the habitat 2-cycle. The inherent biological
2-cycle can be interpreted as an interval with high rates of larval recruitment
followed by an interval with low rates of larval recruitment. The oscillating flour
habitat can be viewed as alternating intervals with low rates of egg cannibalism
(thus high larval recruitment) with intervals of high rates of egg cannibalism (thus
low larval recruitment). So the inherent high larval recruitment cycle is enhanced
in the 32 g habitat, which in turn lowers the rates of egg cannibalism, and the
inherent low larval recruitment cycle is intensified in the 8 g habitat, which in
turn increases the rates of egg cannibalism.

Our main conclusion is that the Jillson experiments and our mathematical analy-
sis suggest periodic habitat oscillations can result in a resonance-induced increase
in population biomass. Conservation biologists, wildlife managers, and others
may view this assertion as one possible way of increasing population numbers
without altering the total available resources. This resonance occurs only under
suitable circumstances, however. For example, in the case of flour beetles as
studied here a sufficiently large larval recruitment rate and the presence of an
inherent (constant habitat) oscillation are required. Under these circumstances,
the total population biomass monotonically increases with an increase in large
amplitudes « of the habitat oscillation. (However, as noted above, the model
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also predicts a biomass increase in the absence of inherent oscillations, but this
theoretical prediction has not been observed in data.)

It is interesting to note that the periodic LPA model (3.3) makes an unusual
prediction when the circumstances for resonance are present and the relative
amplitude « of the habitat oscillations are increased, but is small. As discussed
in section 5 there exists two stable, model-predicted 2-cycle oscillations, one
exhibiting an increased population biomass and the other exhibiting a decreased
biomass (Fig. 4). For example, with relative amplitude o = 0.25 (i.e. flour
volumes that fluctuate between 25 and 15 g with an average still equal to 20 g)
the initial distribution vector

Ly 10
Py | = 0
Ag 100

in the periodic LPA model (3.3) leads asymptotically to the 2-cycle

0 )
172 in 25 g of flour
L 148
P =
A 331
0 in 15 g of flour
174 )
while the initial distribution vector
Lo 100
Po]l=1{ 0
Ag 100
leads asymptotically to the 2-cycle
198
0 in 25 g of flour
L 105
P} =
A 0
103 in 15 g of flour.
89

Note that the high and low cycles in L, P, and A numbers implied by the latter
(nonresonant) 2-cycle bear a quite different phase relationship to the flour vol-
ume oscillation than the former (resonant) 2-cycle does. The existence of this
nonresonant stable 2-cycle in the periodic habitat is somewhat counter-intuitive
biologically and laboratory experiments to document its existence are currently
underway.
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